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A Theoretical margin distribution of a linear classifier

In this section we prove that even for linear classifiers trained on T1(ε, ρ,N) the distribution of
margins along non-discriminative directions will never be infinite, and that it will have a large
variance (c.f. Section 3.1). This effect is due to the finiteness of the training set which boosts the
influence of the non-discriminative directions in the final solution of the optimization. In particular,
we show this for the linear classifier introduced in [1] and prove the following proposition:

Proposition. Let f(x) = wTx be a linear classifier trained on T1(ε, σ,N) using one-step gradient
descent initialized with w = 0 and α = 1 to maximize f(x(i))y(i) for every sample, and let ξ2(x)
denote the ratio between the margin in the direction of the discriminative feature span{u1} and the
margin in an orthogonal random subspace Sorth ⊆ span{u1}⊥ of dimension |S| = S ≤ D − 1, i.e.,

ξ2(x) =
‖δspan{u1}(x)‖22
‖δSorth(x)‖22

,

The distribution of ξ2(x) is independent of x and follows ξ2(x) ∼ Nσ2χ2
S , where χ2

S denotes the
Chi-squared distribution with S degrees of freedom. In particular,

median(ξ2) = O
(
σ2

Nε2
S

)
and Var(ξ2) =

2σ4

N2ε4
S

Proof. First, note that the weights of the classifier, after one step of GD, are

w = ∇w
N−1∑
i=0

f
(
x(i)

)
y(i) =

N−1∑
i=0

x(i)y(i) = U

N−1∑
i=0

(
x
(i)
1 ⊕ x

(i)
2

)
y(i).

Hence,

w = U(w1 ⊕w2) with

{
w1 =

∑N−1
i=0 y(i)x

(i)
1 = Nε

w2 =
∑N−1

i=0 y(i)x
(i)
2

Since y(i) are uniform discrete random variables taking values from {−1,+1}, x(i)
2 are standard

normal random variables independent from y(i), it can be shown that their product y(i)x(i)
2 is also a

standard normal random variable. Hence, w2 ∼ N (0, Nσ2ID−1).

Recall that for linear classifiers the distance to the decision boundary of a point x on a vector subspace
S ⊆ RD can be computed in closed form as

‖δS(x)‖2 =
|wTx|
‖PS(w)‖2

where PS : RD → RD denotes the orthogonal projection operator onto the subspace S . Considering
this, we can compute both the margin in span{u1} and Sorth as

‖δspan{u1}(x)‖2 =
|wTx|

‖Pspan{u1}(w)‖2
=
|wTx|
‖w1‖2

,

‖δSorth(x)‖2 =
|wTx|

‖PSorth(w)‖2
=

|wTx|
‖PSD−1

orth
(w2)‖2

,

where SD−1orth ⊆ RD−1 is the subspace generated by the last D − 1 components of the vectors in S.

Squaring these distances and taking their ratio we have

ξ2 =
‖δspan{u1}(x)‖22
‖δSorth(x)‖22

=
‖PSD−1

orth
(w2)‖22

‖w1‖22
.

Note now that due to the rotational symmetry of N (0, ID−1)

PSD−1
orth

(w2) ∼ N
(

0, Nσ2USD−1
orth

ISU
T
SD−1

orth

)
,
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where USD−1
orth
∈ RD−1×S is a matrix whose columns form an orthonormal basis of SD−1orth . Hence,

‖PSD−1
orth

(w2)‖22 ∼ Nσ2χ2
S and

ξ2 =
‖PSD−1

orth
(w2)‖22

‖w1‖22
=
‖PSD−1

orth
(w2)‖22

N2ε2
∼

σ2

Nε2
χ2
S .

Finally, plugging in the expression for the median and variance of a Chi-squared distribution we get

median(ξ2) ≈
σ2

Nε2
S

(
1−

2

9S

)3

,

and

Var(ξ2) =
2σ4

N2ε4
S.

Clearly, median(ξ2) decreases asymptotically with respect to the number of samples. Nevertheless,
due to the finiteness of the training set, small but non-zero values of ξ2 are unavoidable. Similarly,
Var(ξ2) only decreases quadratically with the number of samples and grows linearly with the
dimensionality of Sorth. Hence, some fluctuations in the measured margins are expected even for
linear classifiers.

We demonstrate this effect in practice by repeating the experiment of Sec. 3.1, where instead of an
MLP we use a simple logistic regression (see Table S1).Clearly, although the values along span{u1}⊥
are quite large, they are still finite. This demonstrates that due to the finiteness of the training set
and its high-dimensionality the influence of the non-discriminative directions in the final solution is
significant.

Table S1: Margin statistics of a logistic regressor trained on T1(ε = 5, σ = 1) along different
directions (N = 10, 000, M = 1, 000, S = 3).

u1 span{u1}⊥ SORTH SRAND

5-PERC. 2.39 36.7 184.95 11.57
MEDIAN 2.49 38.3 192.98 12.08
95-PERC. 2.60 39.92 201.16 12.59
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B Examples of frequency “flipped” images

Figure S1 shows a few example images of the frequency “flipped” versions of the standard computer
vision datasets.

(a) ImageNet

(b) CIFAR-10 (c) MNIST

Figure S1: “Flipped” image examples. Top rows show original images and bottom rows the “flipped”
versions.

C Invariance and elasticity on MNIST data

We further validate our observation of Section 3.2.2 that small margin do indeed corresponds to
directions containing discriminative features in the training set, but this time for a different dataset
(MNIST), on a different network (ResNet-18), and using different discriminative features (high-
frequency). In particular, we create a high-pass filtered version of MNIST (MNISTHP), where we
completely remove the frequency components in a 14× 14 square at the top left of the diagonal of the
DCT-transformed images. This way we ensure that every pairwise connection between the training
images (features) has zero components outside of this frequency subspace. The margin distribution of
1, 000 MNIST test samples for a ResNet-18 trained on MNISTHP is illustrated in Figure S2. Indeed,
similarly to the observations on CIFAR-10, by eliminating the low frequency features, we have forced
an increased margin along these directions, while forcing the network to focus on the previously
unused high frequency features.
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5

M
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g
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Figure S2: Median margin of test samples from MNIST for a ResNet-18 trained on MNISTHP from
scratch (test: 98.71%).
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D Connections to catastrophic forgetting

The elasticity to the modification of features during training gives a new perspective to the theory
of catastrophic forgetting [2], as it confirms that the decision boundaries of a neural network can
only exist for as long as the classifier is trained with the samples (features) that hold them together.
In particular, we demonstrate this by adding and removing points from a dataset such that its
discriminative features are modified during training, and hence artificially causing an elastic response
on the network.

To this end, we train a DenseNet-121 on a new dataset TLP∪HP = TLP ∪ THP formed by the union of
two filtered variants of CIFAR-10: TLP is constructed by retaining only the frequency components in
a 16× 16 square at the top-left of of the DCT-transformed CIFAR-10 images (low-pass), while for
THP only the frequency components in a 16× 16 square at the bottom-right of the DCT (high-pass).
This classifier has a test accuracy of 86.59% and 57.29% on TLP and THP, respectively. The median
margin of 1, 000 TLP test samples along different frequencies for this classifier is shown in blue in
Figure S3. As expected, the classifier has picked features across the whole spectrum with the low
frequency ones probably belonging to boundaries separating samples in TLP, and the high frequency
ones separating samples from TLP and THP

1.
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(a) Zoom-out axes for observing the general invariance.
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(b) Zoom-in axes for a more detailed observation.

Figure S3: Median margin of TLP test samples for a DenseNet-121. Blue: trained on TLP∪HP; Red:
after forgetting THP; Green: after recovering THP.

After this, we continue training the network with a linearly decaying learning rate (max. α = 0.05)
for another 30 epochs, but using only TLP, achieving a final test accuracy of 87.81% and 10.01%
on TLP and THP, respectively. Again, Figure S3 shows in red the median margin along different
frequencies on test samples from TLP. The new median margin is clearly invariant on the high
frequencies – where TLP has no discriminative features – and the classifier has completely erased the
boundaries that it previously had in these regions, regardless of the fact that those boundaries did not
harm the classification accuracy on TLP.

Finally, we investigate if the network is able to recover the forgotten decision boundaries that were
used to classify THP. We continue training the network (“forgotten” THP) for another 30 epochs, but
this time by using the whole TLP∪HP. Now this classifier achieves a final test accuracy of 86.1%
and 59.11% on TLP and THP respectively, which are very close to the corresponding accuracies of
the initial network trained from scratch on TLP∪HP (recall: 86.59% and 57.29%). The new median
margin for this classifier is shown in green in Figure S3. As we can see by comparing the green to
the blue curve, the decision boundaries along the high-frequency directions can be recovered quite
successfully.

1TLP and THP have only discriminative features in the low-frequency and high-frequency part of the spectrum,
respectively.
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E Examples of filtered images

Figure S4 shows a few example images of the filtered versions of the standard computer vision
datasets used in the Section 3.2.2, C and D.

(a) CIFAR-10 (Top original images, middle low-
pass and bottom high-pass)

(b) MNIST (Top original images and bottom high-
pass)

Figure S4: Filtered image examples.

F Subspace sampling of the DCT

In most of our experiments with real data we measured the margin of M samples on a sequence of
subspaces created using blocks from the DCT. In particular, we use a sequence of K ×K blocks
sampled from the DCT tensor either from a sliding window on the diagonal with step size T or a grid
with stride T (c.f. Figure S5).

Figure S5: Diagram illustrating the main parameters defining the subspace sequence from the diagonal
of the DCT.
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G Training parameters

Table S2 shows the performance and training parameters of the different networks used in the paper.
Note that the hyperparameters of these networks were not optimized in any form during this work.
Instead they were selected from a set of best practices from the DAWNBench submissions that have
been empirically shown to give a good trade-off in terms of convergence speed and performance. In
this sense, especially for the non-standard datasets (e.g., “flipped” datasets), the final performance
might not be the best reflection of the highest achievable performance of a given architecture. In
fact, since the goal of our experiments is not to achieve the most robust models on such non-standard
datasets, but rather investigate how the previously observed trends are represented in these new
classifiers, no further hyperparameter tuning was applied.

Table S2: Performance and training parameters of multiple networks trained on different datasets.
All networks have been trained using SGD with momentum 0.9 and a weight decay of 5× 10−4. For
ImageNet, the training parameters are not known, since we use the pretrained models from PyTorch.
For “flipped” ImageNet, the weight decay was set to 10−4, while for computational reasons the
training was executed until the 68th epoch.

DATASET NETWORK
TEST
ACC. EPOCHS

LR
SCHEDULE

MAX. LR BATCH

MNIST LENET 99.35%
30 TRIANG. 0.21 128RESNET-18 99.53%

MNIST
FLIPPED

LENET 99.34%
30 TRIANG. 0.21 128RESNET-18 99.52%

CIFAR-10
VGG-19 89.39%

50 TRIANG. 0.21 128RESNET-18 90.05%
DENSENET-121 93.03%

CIFAR-10
LOW PASS

VGG-19 84.81%
50 TRIANG. 0.21 128RESNET-18 84.77%

DENSENET-121 88.51%

CIFAR-10
FLIPPED

VGG-19 87.42%
50 TRIANG. 0.21 128RESNET-18 88.67%

DENSENET-121 91.19%

IMAGENET
VGG-16 71.59%

– – – –RESNET-50 76.15%
DENSENET-121 74.65%

IMAGENET
FLIPPED

RESNET-50 68.12% 90(68)
PIECEWISE
CONSTANT

0.1 256

As mentioned in the paper, all the experiments with synthetic data were trained in the same way,
namely using SGD with a linearly decaying learning rate (max lr. 0.1), no explicit regularization, and
trained for 500 epochs.
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H Cross-dataset performance

We now show the performance of different networks trained with different variants of the standard
computer vision datasets and tested on the rest.

Table S3: Multiple networks trained on a specific version of MNIST, but evaluated on different
variations of it. Rows denote the dataset that each network is trained on, and columns the dataset they
are evaluated on. Values on the diagonal correspond to the same variation.

MNIST MNIST FLIPPED MNIST HIGH PASS

MNIST LENET 99.35% 18.73% 44.09%
RESNET-18 99.53% 11.88% 15.73%

MNIST
FLIPPED

LENET 10.52% 99.34% 9.87%
RESNET-18 16.59% 99.52% 11.23%

MNIST
HIGH PASS

LENET 96.35% 42.36% 98.65%
RESNET-18 88.38% 21.48% 98.71%

Table S4: Multiple networks trained on a specific version of CIFAR-10, but evaluated on different
variations of it. Rows denote the dataset that each network is trained on, and columns the dataset they
are evaluated on. Values on the diagonal correspond to the same variation.

CIFAR-10 CIFAR-10 FLIPPED CIFAR-10 LOW PASS

CIFAR-10
VGG-19 89.39% 10.63% 61.4%

RESNET-18 90.05% 10% 46.99%
DENSENET-121 93.03% 10.3% 27.45%

CIFAR-10
FLIPPED

VGG-19 10.77% 87.42% 10.79%
RESNET-18 9.91% 88.67% 9.97%

DENSENET-121 9.98% 91.19% 10%

CIFAR-10
LOW PASS

VGG-19 85.16% 10.52% 84.81%
RESNET-18 85.47% 10.45% 84.77%

DENSENET-121 89.67% 10.45% 88.51%

Table S5: Multiple networks trained on a specific version of ImageNet, but evaluated on different
variations of it. Rows denote the dataset that each network is trained on, and columns the dataset they
are evaluated on. Values on the diagonal correspond to the same variation.

IMAGENET IMAGENET FLIPPED

IMAGENET VGG-16 71.59% 0.106%
RESNET-50 76.15% 0.292%

DENSENET-121 74.65% 0.22%

IMAGENET
FLIPPED

RESNET-50 0.184% 68.12%
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I Margin distribution for standard networks

We show here the margin distribution on the diagonal of the DCT for different networks trained using
multiple datasets using the setup specified in Section G. We also show the median margin for the
same M samples on a grid from the DCT.

The first thing to notice is that, for a given dataset, the trend of the margins are quite similar regardless
the network architecture. Also, regardless the evaluation (diagonal or grid), the observed margins
between train and test samples are very similar, with the differences in the values being quite minimal.
Furthermore, for the grid evaluations, the trend of the median margins with respect to subspaces of
different frequencies (increasing from low to high frequencies) is similar to the corresponding one of
the diagonal evaluations. Hence, the choice of the diagonal of the DCT is sufficient for measuring the
margin along directions of the frequency spectrum. Finally, in every evaluation (diagonal or grid) and
for every data set (train or test), “flipping” the representation of the data results in “flipped” margins
as well, with CIFAR-10 results being an exception due to the quite uniform distribution of the margin
across the whole frequency spectrum.

I.1 MNIST
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Figure S6: Diagonal MNIST (M = 1, 000, K = 8, T = 1)
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Figure S7: Grid MNIST (M = 500, K = 8, T = 3)
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I.2 MNIST “flipped”
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Figure S8: Diagonal MNIST “flipped” (M = 1, 000, K = 8, T = 1)
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Figure S9: Grid MNIST “flipped” (M = 500, K = 8, T = 3)

I.3 CIFAR-10
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Figure S10: Diagonal CIFAR-10 (M = 1, 000, K = 8, T = 2)
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Figure S11: Grid CIFAR-10 (M = 500, K = 8, T = 4)

I.4 CIFAR-10 “flipped”
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Figure S12: Diagonal CIFAR-10 “flipped” (M = 1, 000, K = 8, T = 2)
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Figure S13: Grid CIFAR-10 “flipped” (M = 500, K = 8, T = 4)
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I.5 ImageNet
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Figure S14: Diagonal ImageNet (M = 500, K = 16, T = 16)
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Figure S15: Grid ImageNet (M = 250, K = 16, T = 28)
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I.6 ImageNet “flipped”
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Figure S16: Diagonal ImageNet “flipped” (M = 500, K = 16, T = 16)
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Figure S17: Grid ImageNet “flipped” (M = 250, K = 16, T = 28)

J Adversarial training parameters

Table S6 shows the performance and adversarial training parameters of the different networks used in
the paper. Note that the hyperparameters of these networks were not optimized in any form during this
work. Instead they were selected from a set of best practices from the DAWNBench submissions that
have been empirically shown to give a good trade-off in terms of convergence speed and performance.
Again, as stated in Section G, especially for the non-standard datasets (e.g., “flipped” datasets), the
final performance might not be the best reflection of the highest achievable performance or robustness
of a given architecture, since no further hyperparameter tuning was applied.

Table S6: Performance and attack parameters of multiple networks adversarially trained using
`2-PGD. The training parameters are similar to the ones of Table S2. For ImageNet we use the
adversarially trained ResNet-50 provided by [3].

DATASET NETWORK
STANDARD
TEST ACC.

ADV.
TEST ACC. EPOCHS

`2 BALL
RADIUS

STEPS

MNIST LENET 98.32% 76.01%
25 2 7RESNET-18 98.89% 80.26%

MNIST
FLIPPED

LENET 98.29% 74.68%
25 2 7RESNET-18 98.75% 81.97%

CIFAR-10
VGG-19 73.76% 50.15%

50 1 7RESNET-18 82.20% 52.38%
DENSENET-121 82.90% 54.86%

CIFAR-10
FLIPPED

VGG-19 71.39% 35.64%
50 1 7RESNET-18 73.64% 37.24%

DENSENET-121 78.32% 42.32%

IMAGENET RESNET-50 57.90% 35.16 – 3 20
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K Description of L2-PGD attack on frequency “flipped” data

Adversarial training [4] is the de-facto method used to improve the robustness of modern deep
classifiers. It consists in the approximation of the robust classification problem minf maxδ∈C L(f(x+
δ)) with an alternating algorithm that solves the outer maximization using a variant of stochastic
gradient descent, and the inner maximization using some adversarial attack (e.g., PGD). The constraint
set C ⊆ RD encodes the “imperceptibility” of the perturbation.

In our case, when dealing with natural images coming from the standard datasets (i.e., MNIST,
CIFAR-10 and ImageNet) we use the standard `2 PGD attack to approximate the inner maximization.
This attack consists in the solution of arg maxδ∈C L(f(x+ δ) using projected steepest descent, i.e.,
iterating

δn+1 = PC
(
δn + α

∇δL(f(x+ δn)

‖∇δL(f(x+ δn)‖2

)
,

where C = {δ ∈ RD : ‖δ‖22 ≤ ε, 0 � δ � 1}. The projection operator PC : RD → RD can
efficiently be implemented as

PC(x) = clip[0,1]

(
min{‖δ‖2, ε}

δ

‖δ‖2

)
,

where

[clip[0,1] (x)]i =


0 [x]i ≤ 0

[x]i [x]i < 0 ≤ 1

1 [x]i > 1

.

However, when we train using “flipped” data we need to make sure that we also transform the
constraint set C. Indeed, recall that the goal of training with “flipped” datasets is to check that
the margin distribution approximately follows the data representation. Adversarial training tries to
maximize the loss of the classifier by finding a worst-case example inside a constrained search space
that is parameterized in terms of some properties of the input data (e.g., distance to a sample, or color
box constraints). For this reason, if our goal is to check what happens when we only change the
data representation but keep the same training scheme, it is important to make sure that adversarial
training has the same search space regardless of the data representation. The flipping operator is
reversible, which means we can always go back to our initial representation. Hence, by respecting the
constraints over the initial representation, we make sure that the resulted adversarial examples in the
new representation will still satisfy the constraints when reversed to the initial representation (image
space). We achieve this reparameterization efficiently by modifying the projection operator on PGD.

Let x̂ = DT
DCT flip (DDCTx) denote a frequency “flipped” data sample. The `2 PGD attack on this

representation solves arg maxδ̂∈Ĉ L(f(x̂+ δ̂), where Ĉ =
{
δ̂ ∈ RD : DT

DCT flip
(
DDCTδ̂

)
∈ C
}

.
Therefore, the new “flipped” PGD algorithm becomes

δ̂n+1 = PĈ

(
δ̂n + α

∇δ̂L(f(x̂+ δ̂n)

‖∇δ̂L(f(x̂+ δ̂n)‖2

)
,

where PĈ can be efficiently implemented using Dykstra’s projection algorithm [5]. This is, start with
x̂0 = x̂, p̂0 = q̂0 = 0 and update by

ŷk = min {‖x̂k + p̂k‖2, ε}
x̂k + p̂k

‖x̂k + p̂k‖2
ˆ̂pk+1 = x̂k + p̂k − ŷk
xk+1 = clip[0,1]

(
DT

DCT flip (DDCT(ŷk + q̂k))
)

x̂k+1 = DT
DCT flip (DDCTxk+1)

q̂k+1 = ŷk + q̂k − x̂k+1.

The sequence (x̂k) converges to PĈ(x̂). In our experiments we use 5 iterations of the algorithm as
these are enough to achieve a small projection error.
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L Spectral decomposition on frequency “flipped” data

Following the results presented in Section 4.2, we now show in Figure S18 the spectral decomposition
of the adversarial perturbations crafted during adversarial training for the frequency “flipped” CIFAR-
10 dataset on a DenseNet-121 network. In contrast to the spectral decomposition of the perturbations
on CIFAR-10 (left), the energy of the frequency “flipped” CIFAR-10 perturbations (right) remains
concentrated in the high part of the spectrum during the whole training process, and has hardly any
presence in the low frequencies. In other words, the frequency content of the `2-PGD adversarial
perturbations also “flips” (c.f. Section K and M).
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(a) CIFAR-10 adversarially trained model.
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(b) Frequency “flipped” CIFAR-10 adversarially
trained model.

Figure S18: Energy decomposition in subspaces of the DCT diagonal of adversarial perturbations
used during adversarial training (`2 PGD with ε = 1) on 1,000 (a) CIFAR-10 and (b) frequency
“flipped” CIFAR-10 training samples per epoch for a DenseNet-121. The plot shows 95-percentile of
energy.
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M Margin distribution for adversarially trained networks

We show here the margin distribution on the diagonal of the DCT for different adversarially trained
networks on multiple datasets using the setup specified in Section J. We also show the median margin
for the same M samples on a grid from the DCT.

The first thing to notice for the standard datasets is that, for every network and dataset, there is a huge
increase along the high-frequency directions, when compared to the margins observed in Section I.
Apart from these, similarly to the observations of Section I, the margins on both train and test samples
are very similar, with the differences in the values being quite minimal, while again the trend of the
margins with respect to subspaces of different frequencies (increasing from low to high frequencies)
is similar in both the grid and the diagonal evaluations. Finally, in every evaluation (diagonal or
grid) and for every data set (train or test), “flipping” the representation of the data results in “flipped”
margins as well; even for the case of CIFAR-10 where for standard training (Figure S12) the “flipping”
was not obvious due to the quite uniform distribution of the margin.
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Figure S19: Diagonal MNIST adversarially trained (M = 1, 000, K = 8, T = 1)
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Figure S20: Grid MNIST adversarially trained (M = 500, K = 8, T = 3)
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M.2 MNIST “flipped”
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Figure S21: Diagonal MNIST “flipped” adversarially trained (M = 1, 000, K = 8, T = 1)
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Figure S22: Grid MNIST “flipped” adversarially trained (M = 500, K = 8, T = 3)
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Figure S23: Diagonal CIFAR-10 adversarially trained (M = 1, 000, K = 8, T = 2)
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Figure S24: Grid CIFAR-10 adversarially trained (M = 500, K = 8, T = 4)
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Figure S25: Diagonal CIFAR-10 “flipped” adversarially trained (M = 1, 000, K = 8, T = 2)
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Figure S26: Grid CIFAR-10 “flipped” adversarially trained (M = 500, K = 8, T = 4)
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M.5 ImageNet
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Figure S27: Diagonal ImageNet adversarially trained (M = 500, K = 16, T = 16)
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Figure S28: Grid ImageNet adversarially trained (M = 250, K = 16, T = 28)

N Margin distribution on random subspaces

Finally we show the same evaluation of Section I performed using a random orthonormal basis
instead of the DCT basis to demonstrate that the choice of basis is indeed important to identify the
discriminative and non-discriminative directions of a network. Indeed, from Figure S29 it is clear
that a random basis is not valid for this task as the margin in any random subspace is of the same
order with high probability [6].
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Figure S29: Margin distribution of test samples in subspaces taken from a random orthonormal matrix
arranged as a tensor of the same dimensionality as the DCT tensor. Subspaces are taken from the
diagonal with the same parameters as before. Top: (a) MNIST (LeNet), (b) CIFAR-10 (DenseNet-
121) Bottom: (d) MNIST (LeNet) and (e) CIFAR-10 (DenseNet-121) trained on frequency “flipped”
versions of the standard datasets.
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