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Abstract

Important insights towards the explainability of neural networks reside in the char-
acteristics of their decision boundaries. In this work, we borrow tools from the field
of adversarial robustness, and propose a new perspective that relates dataset features
to the distance of samples to the decision boundary. This enables us to carefully
tweak the position of the training samples and measure the induced changes on the
boundaries of CNNs trained on large-scale vision datasets. We use this framework
to reveal some intriguing properties of CNNs. Specifically, we rigorously confirm
that neural networks exhibit a high invariance to non-discriminative features, and
show that the decision boundaries of a DNN can only exist as long as the classifier
is trained with some features that hold them together. Finally, we show that the
construction of the decision boundary is extremely sensitive to small perturbations
of the training samples, and that changes in certain directions can lead to sudden
invariances in the orthogonal ones. This is precisely the mechanism that adversarial
training uses to achieve robustness.

1 Introduction

The set of points that partitions the input space onto labeled regions is known as the decision boundary
of a classifier. Describing how a classifier creates such boundaries is crucial for its explainability.
Interestingly, even when deep networks succeed on a task, their high vulnerability to imperceptible
perturbations [1, 2] implies that their boundaries lie alarmingly close to any input sample. This
unintuitive behaviour contradicts the common belief that a successful classifier should be invariant to
non-discriminative information of its input data. However, it seems that such perturbations are not
irrelevant signals, but rather discriminative features of the training set [3, 4].

In that sense, explaining the mechanisms that construct the decision boundary of deep neural networks
is key to understand the dynamics of adversarial training [5]. This training scheme only differs from
standard training in that it slightly perturbs the training samples during optimization. However, these
small changes can utterly change the geometry of these classifiers [6].

An example of such change can be seen in Fig. 1, which shows the minimal perturbations – constrained
to lie on a low and a high frequency subspace – required to flip the decision of a network. The norm of
the perturbations measures the distance (margin) to the decision boundary in these subspaces. Clearly,
reaching the boundary using high frequency perturbations requires much more energy than using
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Figure 1: Minimal adversarial perturbations constrained to lie in different DCT frequency bands
(8 � 8 subspaces taken from the top left and bottom right of the 224 � 224 DCT matrix) for a
ResNet-50 trained (left), and adversarially trained (right) on ImageNet.

low frequency ones [7]. But surprisingly, when the network is adversarially trained [5], the largest
increase in margin happens in the high frequency subspace. Note that, on the standard network, this
distance is already much greater than the size of the training perturbations. Based on this observation,
we pose the following questions:

1. How is the margin in different directions related to the features in the training data?
2. How can very small perturbations significantly change the geometry of deep networks?

In this work, we propose a novel approach to answer these questions. In particular, we develop
a new methodology to construct a local summary of the decision boundary of a neural network
from margin observations along a sequence of orthogonal directions. This framework permits to
carefully tweak the properties of the training samples and measure the induced changes on the
boundaries of convolutional neural networks (CNNs) trained on synthetic and large-scale vision
datasets (e.g., ImageNet). The main contributions of our work are the following:

1. We provide a new perspective on the relationship between the distance of a set of samples to
the boundary, and the discriminative features used by a network. We empirically support
our findings by extensive evaluations on both synthetic and real datasets.

2. Via a series of carefully designed experiments, we rigorously confirm the “common belief”
that CNNs tend to behave as ideal classifiers and are approximately invariant to non-
discriminative features of a dataset.

3. We further show that the construction of the decision boundary is extremely sensitive to the
position of the training samples, such that very small perturbations in certain directions can
utterly change the decision boundaries in some orthogonal directions.

4. Finally, we demonstrate that adversarial training exploits this training sensitivity and invari-
ance bias to build robust classifiers.

We believe that the perspective proposed in this paper can have implications in future research on
explainability and robustness, as it gives a new way to measure and understand decision boundaries.
This new framework can be used to shed light onto the dynamics and inductive bias of deep learning.

Related work Since the publication of [8], a big body of research has focused on understanding
the inductive bias of deep networks as a way to explain generalization in deep learning [9, 10].
Remarkably, for linear classifiers, optimizing a logistic loss using gradient descent is equivalent to
maximizing margin in the input space [11]. Furthermore, for deep networks, some recent results
suggest that margin is maximized in the logit space [12].

Interestingly, recent works have established the link between adversarial perturbations and discrim-
inative features of the training sets [3, 4, 13]. This has led to the conjecture that, in most datasets,
there exist robust and non-robust features that neural networks exploit to construct their decision
boundaries. What exactly are these features, and how do networks construct these boundaries is
however not addressed by these authors. In this sense, the authors of [14] argue that the excessive
invariance in the boundaries introduced by adversarial training can explain its induced decrease in
accuracy. In this work, we shed light on these phenomena by describing the strong inductive bias
of the networks towards invariance to non-discriminative features, and the sensitivity of training to
small perturbations.
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The geometric properties of the decision boundaries of deep networks have previously been studied,
mainly focused on their curvature [6, 15], and their decision region topology [15, 16]. From a robust-
ness perspective, the distance to the boundary has been exploited to detect adversarial examples [17]
and predict generalization gap [18, 19]. Furthermore, the unusual robustness of deep networks
in certain frequencies [7, 20, 21] has recently been described. In this work, however, we give a
constructive explanation for this phenomenon based on the role of dataset features in shaping the
margins along different frequencies.

2 Proposed framework

Let f : RD ! RL be the final layer of a neural network (i.e., logits), such that, for any input x 2 RD,
F (x) = argmaxk fk(x) represents the decision function of that network, where fk(x) denotes the
kth component of f(x) that corresponds to the kth class. The decision boundary between classes k
and ‘ of a neural network is the set Bk;‘(f) = fx 2 RD : fk(x)� f‘(x) = 0g (in general, we will
omit the dependency with k; ‘ for simplicity). Unless stated otherwise, we assume that all networks
are trained using a cross-entropy loss function and some variant of (stochastic) gradient descent.
We also assume that training has been conducted for many epochs, and that it has approximately
converged to a local minimum of the loss, achieving 100% accuracy on the training data [8]1.

In this work, we study the role that the training set T = f(x(i); y(i))gN−1
i=0 has on the boundary B(f).

Specifically, we propose to use adversarial proxies to measure the distribution of distances to the
decision boundary along a sequence of well defined subspaces. The main quantities of interest are:
Definition 1 (Minimal adversarial perturbations). Given a classifier F , a sample x 2 RD, and a
sub-region of the input space S � RD, we define the (‘2) minimal adversarial perturbation of x in S
as �S(x) = argminδ∈S k�k2 s.t. F (x+ �) 6= F (x):

In general, we will use �(x) to refer to �RD (x).
Definition 2 (Margin). The magnitude k�S(x)k2 is the margin of x in S.

Our main objective is to obtain a local summary of B(f) around a set of observation samples
O = fx(i)gM−1

i=0 by measuring their margin in a sequence of distinct subspaces fSjgR−1
j=0 . In practice,

we use a subspace-constrained version of DeepFool [22]2 to approximate the margins in each Sj .

In the adversarial robustness literature, DeepFool is generally regarded as one of the most efficient
methods to identify minimal adversarial perturbations. Because we want to measure margin, norm-
constrained attacks like PGD [5] are not suitable for our study. Besides, more complex attacks like
C&W [23], or, even, using unconstrained gradient descent in the input space, are computationally
much more demanding and harder to tune than DeepFool. Since they in general find very similar
adversarial perturbations as DeepFool, we decided to opt for DeepFool in our work.

3 Margin and discriminative features

As known from previous studies on the robustness of deep learning [24], the distance from a sample to
the boundary of a neural network can greatly vary depending on the search direction. This behaviour
is generally translated into classifiers with small margins along some directions, and large margins
along the others. In this section, we show that the small margin directions are associated with
discriminative directions, and we provide a constructive procedure to identify them. This helps us to
shed new light into the inductive bias of the training dynamics of neural networks.

3.1 Evidence on synthetic data

We want to show that neural networks only construct boundaries along discriminative features, and
that they are invariant in every other direction3. To this end, we generate a balanced training set

1In general all details of our experiments are listed in the Supp. material.
2We do not enforce the [0; 1]D box constraints on the adversarial images, as we are not interested in finding

“plausible” adversarial perturbations, but in measuring the distance to B(f).
3This is indeed a desired property for any classification method, but note that for neural networks the

existence of adversarial examples contests the idea of it being a reasonable assumption.
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T1(�; � ) by independently samplingN pointsx ( i ) = U (x ( i )
1 � x ( i )

2 ) such thatx ( i )
1 = �y ( i ) and

x ( i )
2 � N (0; � 2I D � 1), where� denotes the concatenation operator,� > 0 the feature size, and

D = 100. The labelsy( i ) are uniformly sampled fromf� 1; +1g. The multiplication by a random
orthonormal matrixU 2 SO(D) is performed to avoid any possible bias of the classi�er towards
the canonical basis. Note that this is a linearly separable dataset with a single discriminative feature
parallel tou 1 (i.e., �rst row of U ), and all other dimensions �lled with non-discriminative noise.

To evaluate our hypothesis, we train a heavily overparameterized multilayer perceptron (MLP) with
10 hidden layers of 500 neurons using SGD (test:100%). Table 1 shows the margin statistics
on the linearly separable directionu 1; its orthogonal complementspanf u 1g? ; a �xed random
subspace of dimension S,Srand � RD ; and a �xed random subspace of the same dimensionality, but
orthogonal tou 1, Sorth � spanf u 1g? . From these values we can see that along the direction where
the discriminative feature lies, the margin is much smaller than in any other direction. Therefore, we
can see that the classi�cation function of this network is only creating a boundary inu 1 with median
margin�=2, and that it is approximately invariant inspanf u 1g? .

Table 1: Margin statistics of an MLP trained on
T1(� = 5 ; � = 1) along different directions (N =
10; 000, M = 1 ; 000, S = 3 ).

u 1 spanf u 1g? SORTH SRAND

5-PERC. 1:74 4:85 30:68 17:21
MEDIAN 2:50 12:36 102:0 27:90
95-PERC. 3:22 31:60 229:5 80:61

Comparing the margin values forSorth andSrand
we see that, if the observation basis is not
aligned with the features exploited by the net-
work, the margin measurements might not be
able to separate the small and large margin di-
rections. Indeed, sinceSorth is orthogonal to the
only discriminative directionu 1 we see that the
margin values reported in this region are much
higher than those reported inSrand. The reason
for this is that the margin required to �ip the la-
bel of a classi�er in a randomly selected subspace is of the order of

p
S=D with high probability [24],

and hence the non-trivial correlation of a random subspace with the discriminative features will
always hide the differences between small and large margin directions.

Finally, the �uctuations in the values and the fact that the classi�er is not completely invariant
to spanf u 1g? might indicate that the network has built a complex boundary. However, similar
�uctuations and �nite values inspanf u 1g? would also be expected, even if the model was linear by
construction and was perfectly separating the training data4.

3.2 Evidence on real data

In contrast to the synthetic data, where the discriminative features are known by construction, the
exact description of the features presented inreal datasets is usually not known. In order to identify
these features and understand their connection to the local construction of the decision boundaries, we
apply the proposed framework on standard computer vision datasets, and investigate if deep networks
trained on real data also present high invariance along the non-discriminative directions of the dataset.

In our study, we train multiple networks on MNIST [25] and CIFAR-10 [26], and for ImageNet [27]
we use several of the pretrained networks provided by PyTorch [28]5. Let W; H; C denote the width,
height, and number of channels of the images in those datasets, respectively. In our experiments we
use the 2-dimensional discrete cosine transform (2D-DCT) [29] basis of sizeH � W to generate the
observation subspaces. In particular, letD 2 RH � W � H � W denote the 2D-DCT generating tensor,
such thatvec(D (i; j; :; :) 
 I C ) represents one basis element of the image space. We generate the
subspaces by samplingK � K blocks from the diagonal of the DCT tensor using a sliding window
with step-sizeT: Sj = spanf vec (D (j � T + k; j � T + k; :; :) 
 I C ) k = 0 ; : : : ; K � 1g:

The sliding window on the diagonal of the DCT gives a good trade-off between visualization abilities
in simple one-dimensional plots, and a diverse sampling of the spatial spectrum of natural images,
with a well-de�ned gradient �owing from low to high frequencies6. The DCT has a long application
tradition in image processing due to its good approximation of the decorrelating transform (KLT) [30].

4In Sec. A of Supp. material we provide a theoretical characterization of this effect for a linear classi�er.
5Experiments on more CNNs (with similar �ndings) are presented in Sec. I of Supp. material.
6See Sec. I of Supp. material for a similar analysis including off-diagonal subspaces.
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(a) MNIST (Test:99:4%) (b) CIFAR-10 (Test:93:0%) (c) ImageNet (Test:76:2%)

(d) MNIST �ipped (Test:99:3%) (e) CIFAR-10 �ipped (Test:91:2%) (f) ImageNet �ipped (Test:68:1%)

Figure 2: Margin distribution of test samples in subspaces taken from the diagonal of the DCT (low
to high frequencies). The thick line indicates the median values of the margin, and the shaded points
represent its distribution.Top: (a) MNIST (LeNet) [25], (b) CIFAR-10 (DenseNet-121) [31] and
(c) ImageNet (ResNet-50) [32]Bottom: (d) MNIST (LeNet), (e) CIFAR-10 (DenseNet-121) and (f)
ImageNet (ResNet-50) trained on frequency “�ipped” versions of the standard datasets.

Furthermore, in previous studies on the robustness of deep networks to different frequencies, the
DCT was also the basis of choice [7] because it avoids dealing with complex subspaces.

We observe in practice that the DCT basis is also quite aligned to the features of these datasets, and
hence it can give precise information about the discriminative features exploited by the networks. A
more aligned basis with respect to the discriminative features would probably show a sharper transition
between low and high margins. However, �nding such network-agnostic bases is a challenging task
without knowing the featuresa priori. The DCT is not perfectly feature-aligned, but it seems to be
a good choice for comparing different architectures, especially if we compare its results to those
obtained using a random orthonormal basis where differences in margin cannot be identi�ed (c.f.
Sec. N in Supp. material).

The margin distribution of the evaluated test samples is presented in the top of Fig. 2. For MNIST and
ImageNet, the networks present a strong invariance along high frequency directions and small margin
along low frequency ones. We will later show that this is related to the fact that these networks mainly
exploit discriminative features in the low frequencies of these datasets. Notice, however, that for
CIFAR-10 dataset the margin values are more uniformly distributed; an indication that the network
exploits discriminative features across the full spectrum as opposed to the human vision system [33].

3.2.1 Adaptation to data representation

Towards verifying that the proposed framework can capture the relation between the data features
and the local construction of the decision boundaries, we must �rst ensure that the direction of the
observed invariance (large margin) is related to the features presented in the dataset, rather than being
just an effect of the network itself.

Figure 3: “Flipped” image examples from Ima-
geNet.Top: original. Bottom: “�ipped”.

Based on our observation that the margin tends
to be small in low frequency directions and
large in high frequency ones, we choose to
carefully tweak the representation of the data,
such that the low frequencies are swapped with
the high frequencies. In practice, ifD de-
notes the forward DCT transform operator, the
new image representationx 0 is expressed as
x 0 = D � 1(
ip( D(x ))) , where
ip corresponds
to one horizontal and one vertical �ip of the
DCT transformed image (see Fig. 3). Thus, if
the direction of the resulting margin is strongly
related to the data features, the constructed decision boundaries should also adapt to this new data
representation, and the margin along the invariant directions (high frequencies) should swap with the
margin of the discriminative ones (low frequencies). Informally speaking, the margin distribution
should “�ip”.
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