
A Sub-sums of Uniform Samples

Sampling uniformly requires many samples to obtain high precision anywhere in the region of interest
(Fig. 2, Top). In this work we have taken advantage the summing function in neurons, combined
with pruning, so as to be able to consider all 2k sub-sums of k samples (Fig. 2, Middle). However,
we conjecture that a similar effect appears with sub-sums of uniform samples (Fig. 2, Bottom, but
observe the large offset): For example, it suffices that 2 among k samples x1 and x2 are within ε of
each other so that for all other samples x3, x3 + x1 and x3 + x2 are within ε of each other too.

B Variations and Improvements

Remark B.1. Sampling from Pε is easy using the inverse CDF: To obtain a sample from Pε in [α, β],
first draw a uniform sample u ∼ U [0, 1] then return α(β/α)u.

Remark B.2. The sampling procedure can be made independent of ε by sampling from P (v) =
ln 1

γ /v(ln v)2 for 0 ≤ v ≤ γ with γ = 2
3 . It is easy to see that c in the proof becomes (ln γ/ ln(εγ2))2,

leading to a slightly worse bound m = Ω̃((ln 1
ε)2 · ln 1

δ). For P (v) ∝ [v ln 1
v (ln(ln 3

v))2]−1 we get
the same bound m = Ω̃(ln 1

ε · ln
1
δ) as in Lemma 9.

Remark B.3. Instead of using batch sampling and Lemma C.12, we can ‘recycle’ samples in a
different way, which removes the leading factor 16 at the expense of a larger second order term. See
Appendix D.

Remark B.4. What if wmax is not known? A simple trick is to take wmax = 2j+1 with j ∼ P (j) ∝
1/(j ln2(j + 1)). Then the total number of samples required to obtain M∗i samples in layer i for the
a priori unknown w∗max is O(M∗i logw∗max log2 logw∗max).

Remark B.5. In practice, weights are often initialized uniformly in [−O(
√

1/n),+O(
√

1/n)],
where n is the layer width, potentially somehow averaged over two layers, i.e. weights are initially
very small. All our initializations need some large weights but only very few (O(log n) outside this
interval), most weights are very small too. We could even eliminate the large weights and limit our
sampling procedure to weights in this interval, but sample O(

√
n) times more weights to reconstruct

large weights.

Remark B.6. Extreme case: Pruning ‘Boolean’ networks. The difficulty of pruning can be easily
seen for ‘Boolean’ networks with a Heaviside transition function and binary inputs, and Boolean
weights everywhere. Then, the network G should need only twice as many weights as the target
network, but can still represent exponentially many functions. It is then clear that not only “Pruning
really is all you need,” but also that “Pruning is as hard as learning.”

C Technical Results

Proof of Lemma 1.

11

Figure 2: y-axis: Difference between two consecutive points on the x-axis. Top: 1000 uniform samples in [0,
1], x-axis is sample value (previous work); Middle: 15 hyperbolic samples in [0, 1], each point is one of 215

possible sub-sums, x-axis is the sub-sums (this work); Bottom: Like Middle, but with uniform samples in [0, 1]
(future work?).

12

Proof. For all x ∈ X , for a layer i:

‖Fi(x)− Ĝi(x)‖2
(a)
= ‖fi(Fi−1(x))− ĝi(Ĝi−1(x))‖2

=

 ∑
j∈[ni]

(σi(W
∗
i,jFi−1(x))− σi(Ŵi,jĜi−1(x)))2

1/2

(b)
≤ λi‖W ∗i Fi−1(x)− ŴiĜi−1(x)‖2
(c)
≤ λi‖Ŵi(Fi−1(x)− Ĝi−1(x))‖2 + λi‖(W ∗i − Ŵi)Fi−1(x)‖2
(d)
≤ λi‖Ŵi‖2 ‖Fi−1(x)− Ĝi−1(x)‖2 + λi‖W ∗i − Ŵi‖2 ‖Fi−1(x)‖2
(e)
≤ λi‖Ŵi‖2‖Fi−1(x)− Ĝi−1(x)‖2 + λmax

√
nini−1εwwmax

√
niFmax(x)

≤ λi‖Ŵi‖2‖Fi−1(x)− Ĝi−1(x)‖2 + εwλmaxn
3/2
maxFmax(x)

(f)
≤ εweiλmaxn

3/2
maxFmax(x)

i∏
u=1

max{1, λu‖Ŵu‖2}

where (a) follows from the definition of Fi and Ĝi, (b) follows from |σi(x)−σi(y)| ≤ λi|x−y| by the
definition of λi, (c) follows from the Minkowski inequality, (d) follows from ‖Mv‖2 ≤ ‖M‖2‖v‖2
applied to both terms, (e) is by assumption that |w∗ − ŵ| ≤ εw and ‖M‖2 ≤ c

√
ab for any

M ∈ [−c, c]a×b, and finally (f) follows from Corollary C.10, using ‖F0(x)−Ĝ0(x)‖2 = 0. Therefore

‖F (x)− Ĝ(x)‖2 = ‖F`(x)− Ĝ`(x)‖2 ≤ εwe`λmaxn
3/2
maxFmax(x)

∏̀
i=1

max
{

1, λi‖Ŵi‖2
}

and taking εw as in the theorem statement proves the result.

Lemma C.1 (Bound on positive sequences). Assuming x0 ≥ 0, and if, for all t = 0, 1, . . ., xt ≤
atxt−1 + bt with at ≥ 0 and bt ≥ 0, then

∀τ s.t. |{at < 1 + 1/τ}t∈[T]| ≤ τ we have xT ≤ e (x0 + c)

T∏
t∈[T]

at≥1+1/τ

at

with c = min

{
τ max

t
bt, max

t

bt
at − 1

}
.

Proof. First, observe that τ ≥ 0, with τ = 0 iff T = 0. Let ãt = max{at, 1 + 1/τ}. Then

c = min

{
τ max

t
bt, max

t

bt
at − 1

}
= max

t

bt
max{1/τ, at − 1}

= max
t

bt
ãt − 1

.

Define yt = ãtyt−1 + (ãt − 1)c and y0 = x0. Then we have yt + c = ãt (yt−1 + c) and so
by recurrence yT + c = (y0 + c)

∏T
t=1 at and thus yT ≤ (y0 + c)

∏T
t=1 ãt. Now, observe that

yt ≥ ãtyt−1 + bt ≥ 0 and so by recurrence with base case y0 = x0, xT ≤ yT .

Furthermore∏
t∈[T]

ãt ≤
∏

t:at<1+1/τ

(1 + 1/τ)
∏

t:at≥1+1/τ

at ≤ (1 + 1/τ)τ
∏

t:at≥1+1/τ

at ,

noting that (1 + 1/τ)τ ≤ e.

Remark C.2. The factor e should be 1 if mint at ≥ 1 + 1/τ .

Remark C.3. τ = T is always feasible.

Remark C.4. If mint at ≥ 2, then τ = 1 is feasible.

13

Corollary C.5 (Feasible τ for Lemma C.1). In the context of Lemma C.1, for all x > 1 taking
τ = max{1/(x− 1), |{at < x}t∈[T]|} is feasible.

Proof. Take y = 1/(x − 1), so x = 1 + 1/y and τ = max{y, |{at < 1 + 1/y}t|}. Thus
|{at < 1 + 1/τ}t| ≤ |{at < 1 + 1/y}t| ≤ τ as required.

Remark C.6. If 1 < mint at ≤ x then taking τ = 1/(x− 1) is feasible.

Remark C.7. Taking τ = max{1, |{at < 2}t|} is feasible.

Remark C.8. For ϕ = (1 +
√

5)/2 ≤ 1.62, taking τ = max{ϕ, |{at < ϕ}t|} is feasible.

Remark C.9. If mint at > 1 then τ = 1/(mint at − 1) is feasible (but useful only if mint at ≥
1 + 1/T).

Corollary C.10 (Simpler bound on positive sequences). Assuming x0 = 0, and if, for all t = 0, 1, . . .,
xt ≤ atxt−1 + bt with at ≥ 0 and bt ≥ 0, then

xT ≤ eT max
t
bt

T∏
t∈[T]

max{1, at} .

Proof. Follows from Lemma C.1 with τ = T which is always feasible and observing that∏
t:at≥1+1/T at ≤

∏
t max{1, at}, and that c ≤ τ maxt bt = T maxt bt.

Lemma C.11 (Product of weights). Let probability densities Pv(v) := c/v for v ∈ [a, b] and
0 < a < b with normalization c := 1/ ln b

a . Let weight w := v · v′ with v and v′ both sampled from
Pv . Then Pw(w) ≥ c/2w for w ∈ [a′, b′], where Pw is the probability density of w, and a′ := a

√
ab

and b′ := b
√
ab.

Note that w may be outside of [a′, b′], but at least half of the time is inside [a′, b′]. The lemma implies
that the bound in Lemma 9 also applies to the product of two weights, only getting a factor of 2 worse.
Note that the scaling ranges b

a = b′

a′ are the same.

Proof. ln v is uniformly distributed in [ln a, ln b]: indeed, taking y = ln v, we have Py(y) =

Pv(v)/dydv = c. Let us scale and shift this to t := c(2 ln v − ln ab) ∈ [−1,+1] and similarly t′ :=

c(2 ln v′ − ln ab) ∈ [−1,+1]. Then Pt(t) = Pv(v)/ dtdv = c
v/

2c
v = 1

2 for t ∈ [−1,+1], and same for
t′. Let u := t+ t′ ∈ [−2,+2]. The sum of two uniformly distributed random variables is triangularly
distributed: Pu(u) = 1

2 (1− 1
2 |u|). Using w = v · v′ we can write u = t+ t′ = 2c(lnw − ln(ab)).

Then Pw(w) = Pu(u) dudw = 1
2 (1 − 1

2 |u|)
2c
w . For |u| ≤ 1 this is ≥ c/2w. Finally |u| ≤ 1 iff

| lnw − ln(ab)| ≤ 1/2c iff lnw R ln ab∓ 1
2 ln b

a iff w ∈ [a′, b′].

Lemma C.12 (Filling k categories each with at least n samples). Let Pc be a categorical distribution
of at least k ∈ N (mutually exclusive) categories {1, 2, . . . k, . . .} such that the first k categories have
probability at least c and at most 1/2, that is, if X ∼ Pc, then c ≤ Pc(X = j) ≤ 1/2 for all j ∈ [k].
Let (Xi)i∈[M] be a sequence of M random variables sampled i.i.d. from Pc. For all δ ∈ (0, 1), for
all n ∈ N, if

M =

⌈
2

c

(
n+ ln

k

δ

)⌉
then with probability at least 1 − δ each category j ∈ [k] contains at least n samples, i.e., |{Xi =
j}i∈[M]| ≥ n.

Proof. Let cj ≥ c be the probability of category j ∈ [k]. Using the Chernoff-Hoeffding theorem on
the Bernoulli random variable JXi = jK, —where JtestK is the indicator function and equals 1 if test
is true, 0 otherwise— with Mcj − x = n ≥ 0, that is, x = Mcj − n, for each category j ∈ [k] we

14

have

P

(
M∑
i=1

(1− JXi = jK) > M(1− cj) + x

)
≤ exp

(
− x2

2Mcj(1− cj)

)

P

(
M∑
i=1

JXi = jK < Mc− x

)
≤ exp

(
− x2

2Mcj(1− cj)

)

P

(
M∑
i=1

JXi = jK < n

)
≤ exp (−(Mcj/2− n))

and the condition (1− cj) ≥ 1/2 is satisfied. Name Ej the event “the category j ∈ [k] contains fewer
than n samples,” then P (Ej) ≤ exp(−(Mc/2−n)). Then, using a union bound, the probability that
any of the k categories contain fewer than n samples is at most

P (E1 ∨ E2 ∨ . . . Ek) ≤
k∑
j=1

P (Ej) ≤ k exp (−(Mc/2− n))

and since M ≥ 2
c

(
n+ ln k

δ

)
P (E1 ∨ E2 ∨ . . . Ek) ≤ δ ,

1− P (E1 ∨ E2 ∨ . . . Ek) ≥ 1− δ ,
which proves the claim.

D Sample recycling

Theorem D.1 (ReLU sampling bound #2). Theorem 3 holds simultaneously also with

Mi =

⌈
2k′
(
nini−1 + 4 max{ni, ni−1} ln

2k′N∗

δ

)⌉
and all other quantities are unchanged.

Proof. Step 1 and 2. Same as for Theorem 3.

Step 2’. Sample recycling. Let

m =

⌈
8k′ ln

k′

δw

⌉
, k′ = log3/2

3wmax

εw
, k =

⌈
log3/2

2wmax

εw

⌉
,

where m is the number of neurons that need to be sampled according to Corollary 10 to εw-
approximate one target weight with probability at least 1−δw, and k is an upper bound on the number
of unit bits of the corresponding mask. One neuron with some pruned weights cannot be shared to
approximate two target weights at the same time, which means we need at least 2knini−1 neurons (k
for each ŵ+, and k for each ŵ−). For a specific target weight w∗, out of m ≥ 2k sampled neurons,
only at most 2k of them are actually used to approximate the target weight; all others are ‘discarded’.
But discarding them is wasteful, because only the product weight on the same input/output as the
target weight has been filtered by Corollary 10 (via Lemma 9); all other product weights are still inde-
pendent samples since their values have not been queried by any process. Each intermediate neuron
is connected in input and output with ni + ni−1 weights, but it contains exactly only min{ni, ni−1}
independent product weight samples, since each input weight and each output weight can be used at
most as one independent product weight sample. Algorithm 1 shows that we can use all of them and,
following the algorithm’s notation and the assumption that ni ≥ ni−1, that for each j we only need
m + 2(k − 1)ni−1 sampled neurons, that is, only nim + 2(k − 1)nini−1 for the whole layer. To
also cover the case ni−1 > ni, we need to sample max{ni, ni−1}m+ 2(k − 1)nini−1 neurons to
ensure that every target weight of layer i can be decomposed into 2k product weights, each based on
m independent product weight samples.

Step 3. Network approximation. For the guarantee to hold simultaneously over all ŵ+ and ŵ−,
using a union bound we can take δw = δ/(2N∗). Finally the claim follows from Lemma 1 and noting
that k ≤ k′.

15

Remark D.2. Observe that even though the factor in front of m is larger than for Theorem 3, (also
` N∗ in the log) we gain a constant factor 8 in front of the leading term nini−1k.
Example D.3. Under the same conditions as Example 5, Theorem D.1 gives Mi/n

2
max ≤ 144, and

under the same conditions as Example 6 we have Mi/n
2
max ≤ 574. 4

Therefore, since both Theorem 3 and Theorem D.1 hold simultaneously, we can take:

Mi = min

{⌈
16k′

(
nini−1 + ln

2k′`

δ

)⌉
,⌈

2k′
(
nini−1 + 4 max{ni, ni−1} ln

2k′N∗

δ

)⌉}
to ensure that, with probability at least 1− δ,

sup
x∈X
‖F (x)− Ĝ(x)‖2 ≤ ε .

Algorithm 1 Recycling samples. We assume that ni ≥ ni−1, otherwise the loops and the increments
need to be exchanged.

1 # Sample recycling at layer i.
2 for j= 1 to ni: # Assumes ni ≥ ni−1
3 # Discard old samples and generate fresh ones.
4 M = sample m fully-connected intermediate neurons
5 for d = 1 to ni−1:
6 # These indices ensure that
7 # * all target weights are approximated,
8 # * no input weight and no output weight is used for more
9 # than one target weight.

10 idx_in = d
11 idx_out = (d+j) % ni
12 w∗ = W ∗[idx_in, idx_out]
13 # ‘Call’ to the golden-ratio decomposition (Corollary 10)
14 # using the provided samples M.
15 # It returns the set K ⊆ M of sampled neurons used to decompose w∗.
16 # Only uses weights at the indices idx_in and idx_out of the neurons

in M.
17 # The indexes above ensure that no weight in M already has idx_in and
18 # idx_out zeroed out.
19 K+ = GRD+(M, idx_in, idx_out, w∗) # Corollary 10 for ŵ+

20 K- = GRD-(M, idx_in, idx_out, w∗) # Corollary 10 for ŵ−

21 # These samples cannot be reused for other neurons, put them aside.
22 M = M \ (K+ ∪ K-)
23
24 # Zero-out the input and output weights that the GRD has filtered,
25 # as they are not independent samples anymore and cannot be reused.
26 for n in M:
27 n.ins[idx_in] = 0
28 n.outs[idx_out] = 0
29
30 # Fill up M to have m intermediate neurons.
31 M_new = sample |K+|+|K-| new independent neurons # |K+|+|K-| ≤ 2k
32 M = M ∪ M_new # such that |M| = m

16

E List of Notation

Symbol Explanation
N natural numbers {1, 2, . . .}
` ∈ N number of network layers
n ∈ N` vector of the number of neurons
nmax ∈ N maximum number of neurons per layer
i ∈ [`] layer index
j ∈ [ni] index of jth neuron in layer i
F a target network
G the large network to be pruned
Ĝ the network G after pruning
Fmax(X) maximum absolute activation of any non-final neuron on all inputs of interest in F
w ∈ [−wmax, wmax] some weight
wmax ∈ R+ max norm of the weights
w∗ ∈ [−wmax, wmax] a weight of the target network F
W ∗ weights of the target network
z+

out, z
+

in, z
−
out, z

−
in actual individual weights of the network G

ŵ+, ŵ−, ŵ virtual individual weights of the network Ĝ
ε > 0 output accuracy
1− δ ∈ [0, 1] high probability
σ : R→ R activation function
σ vector of ` activation functions
λi Lipschitz factor of σi
k ∈ N number of ‘bits’ to represent a weight
m ∈ N number of neurons sampled per target weight
M ∈ N number of neurons sampled per intermediate layer
x ∈ [−xmax, xmax]n0 network input
xmax ∈ R+ max norm of the inputs
P probability
A(`,n,σ) architecture of a network
v vector
b binary mask vector
b binary mask
Fi output of layer i of the target network given network inputs
G the big network i
Ĝi subnetwork of the big network, approximating F
fi layer functions of target network given layer inputs
ĝi same as fi for Ĝ
Pε 1/v distribution
pw≥0 1/v distribution
pw ±1/v distribution
pw× 1/v product distribution
p+ product distribution of z+

out and z+

in
p− product distribution of z−out and z−in

17

