
Network-to-Network Translation with
Conditional Invertible Neural Networks

–
Supplementary Material

Overview

This appendix provides supplementary material for our work Network-to-Network Translation with
cINNs. Firstly, in Sec. A, we discuss and compare computational requirements and resulting costs
of our model to other approaches, e.g. BigGAN. Next, in Sec. B, we provide a derivation of the
training objective (see Eq.(4)). Its interpretation as an information bottleneck allows for unsupervised
disentangling of shape and appearance, which is demonstrated in Sec. C and Fig. S1. Sec. D then
provides additional examples (Fig. S2) and technical details for the unpaired image translation as
presented in Fig. 8 (Sec. 4.3). Subsequently, we continue with an ablation study in Sec. E, where we
analyze the performance of our approach by replacing the conditional invertible neural network with
a multilayer perceptron. Next, Sec. F presents the architecture and training procedure of our reusable
autoencoder model g, which we used to obtain the results shown in Fig. 3, 5, 7a, 7b, S1, S4, S5 and S6.
Finally, Sec. G provides details on (i) the architecture of the cINN and (ii) the translation from BERT
to BigGAN, c.f . Sec. 4.1.

A Computational Cost and Energy Consumption

In Tab. S1 we compare computational costs of our cINN to those of BERT2, BigGAN3 and FUNIT.4
The Table shows that, once strong domain experts are available, they can be repurposed by our
approach in a time-, energy- and cost-effective way. With training costs of our cINN being two orders
of magnitude smaller than the training costs of the domain experts, the latter are amortized over all
the new tasks that can be solved by recombining experts with our approach.

Model Time [days] Hardware Energy [kWh] Cost [EUR] CO2 [kg]

our cINN ≤ 1 1 NVIDIA Titan X 14.4 3.11 4.26
BigGAN [4] 15 8 NVIDIA V100 1260.0 272.16 372.96

FUNIT [41] 14 8 NVIDIA V100 1176.0 254.02 348.10

BERT [15] 10.3 8 NVIDIA V100 865.2 186.88 256.10

Table S1: Comparison of computational costs for a single training run of different models. Energy consumption
of a Titan X is based on the recommended system power (0.6 kW) by NVIDIA5, and energy consumption of
eight V100 on the power (3.5 kW) of a NVIDIA DGX-1 system6. Costs are based on the average price of 0.216
EUR per kWh in the EU7, and CO2 emissions on the average emissions of 0.296 kg CO2 per kWh in the EU8.

2BERT requirements: https://ngc.nvidia.com/catalog/resources/nvidia:bert_
for_tensorflow/performance

3BigGAN requirements: https://github.com/ajbrock/BigGAN-PyTorch
4FUNIT requirements: https://github.com/NVlabs/FUNIT/
4Titan X Specs: https://www.nvidia.com/en-us/geforce/products/10series/

titan-x-pascal/
5DGX-1 Specs: https://docs.nvidia.com/dgx/dgx1-user-guide/

introduction-to-dgx1.html
6Electricity Prices: https://ec.europa.eu/eurostat/statistics-explained/index.

php?title=Electricity_price_statistics
7CO2 Emission Intensity: https://www.eea.europa.eu/data-and-maps/daviz/

co2-emission-intensity-5

1

https://ngc.nvidia.com/catalog/resources/nvidia:bert_for_tensorflow/performance
https://ngc.nvidia.com/catalog/resources/nvidia:bert_for_tensorflow/performance
https://github.com/ajbrock/BigGAN-PyTorch
https://github.com/NVlabs/FUNIT/
https://www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/
https://www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/
https://docs.nvidia.com/dgx/dgx1-user-guide/introduction-to-dgx1.html
https://docs.nvidia.com/dgx/dgx1-user-guide/introduction-to-dgx1.html
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_price_statistics
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_price_statistics
https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-5
https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-5

B Training Objective

Derivation of Eq. (4): For a given zΦ, we use a change of variables, v = τ−1(zΘ|zΦ), to express
the KL divergence with an integral over zΘ:

KL(p(v|zΦ)|q(v)) =

∫
v

p(v|zΦ) log
p(v|zΦ)

q(v)
(8)

=

∫
zΘ

p(τ−1(zΘ|zΦ)|zΦ)|det Jτ−1(zΘ|zΦ)|log
p(τ−1(zΘ|zΦ)|zΦ)

q(τ−1(zΘ|zΦ))
(9)

By definition of v in Eq. (3), the invertibility of τ allows us to express the conditional probability
density function p(v|zΦ) of v in terms of the conditional probability density function p(zΘ|zΦ) of
zΘ:

p(v|zΦ) = p(τ(v|zΦ)|zΦ)|det Jτ (v|zΦ)| (10)
For v = τ−1(zΘ|zΦ), the inverse function theorem then implies

p(τ−1(zΘ|zΦ)|zΦ) = p(zΘ|zΦ)|det Jτ−1(zΘ|zΦ)|−1 (11)

Using Eq. (11) in Eq. (9) gives

KL(p(v|zΦ)|q(v)) =

∫
zΘ

p(zΘ|zΦ) log
p(zΘ|zΦ)

q(τ−1(zΘ|zΦ))|det Jτ−1(zΘ|zΦ)|
(12)

= EzΘ
{
− log q(τ−1(zΘ|zΦ))− log|det Jτ−1(zΘ|zΦ)|+ log p(zΘ|zΦ)

}
(13)

Taking the expectation over zΦ results in Eq. (4).

2

x

y

Figure S1: Unsupervised disentangling of shape and appearance. Training our approach on synthetically
deformed images, τ learns to extract a disentangled shape representation v from y, which can be recombined
with arbitrary appearances obtained from x. See also Sec. C.

C Unsupervised Disentangling of Shape and Appearance

Unsupervised disentangling of shape and appearance aims to recombine shape, i.e. the underlying
spatial structure, from one image with the appearance, i.e. the style, of another image. In contrast
to Unpaired Image-to-Image translation of Sec. D, training data does not come partitioned into a
discrete set of different image domains, and in contrast to Exemplar-Guided Translation of Sec. 4.3,
the task assumes that no shape expert, e.g. a segmentation model, is available. To handle this
setting, we use the encoder Θ of the autoencoder trained on Animals also for Φ, but always apply
a spatial deformation to its inputs. Thus, the pairs (x, y) are given by (d(y), y), where y are the
original images from the Animals dataset and d is a random combination of horizontal flipping, a
thin-plate-spline transformation and cropping. The translation task then consists of the translation of
deformed encodings zΦ = Φ(d(y)) := Θ(d(y)) to the original encoding zΘ = Θ(y). After training,
we apply our translation network to original images without the transformation d. For two images x
and y, we obtain a shape representation of y from its residual v = τ−1(Θ(y)|Θ(y)) and recombine
it with the appearance of x to obtain y∗ = Λ(τ(v|Θ(x))). The results in Fig. S1 demonstrate
that our translation network succesfully learns a shape representation v, which is independent of the
appearance and can thus be recombined with arbitrary appearances, see Eq. (6). Being able to operate
completely unsupervised demonstrates the generality of our approach.

3

in

out

in

out

Figure S2: Additional examples for unpaired translation between human and animal faces as in Fig. 8. Our
approach naturally provides translations in both directions (see Sec. D). Inputs are randomly choosen test
examples from either the human or the animal data and translated to the respective other one.

photography

oil portrait

photography

anime

Figure S3: Additional examples for unpaired translation of Oil Portraits to FFHQ/CelebA-HQ and Anime to
FFHQ/CelebA-HQ. Here, we show samples where the same v is projected onto the respective dataset.

D Unpaired Image Translation

Unpaired Image-to-Image translation considers the case where only unpaired training data is available.
Following [87], let Y 0 = {y0

i }Ni=1 be a source set, and Y 1 = {y1
j }Mj=1 a target set. The goal is then to

learn a translation from source set to target set, with no information provided as to which y0
i matches

which y1
j . We formulate this task as a translation from a set indicator x := zΦ ∈ {0, 1} to an output

y, such that for zΦ = 0, y belongs to the source set Y 0, and for zΦ = 1, y belongs to the target
set. Thus, in the case of unpaired image translation, the domains are given by Dx = {0, 1} and
Dy = Y 0 ∪ Y 1, with training pairs {(0, y0

i)|i = 0, . . . , N} ∪ {(1, y1
j)|j = 0, . . . ,M}. Because the

residual v is independent of zΦ, it captures precisely the commonalities between source and target set
and therefore establishes meaningful correspondences between them. To translate y0

i , we first obtain
its residual v = τ−1(Θ(y0

i)|0), and then decode it as an element of the target set y∗ = Λ(τ(v|1)).
Note that the autoencoder g = Λ ◦Θ is always trained on the combined domain Dy = Y 0 ∪ Y 1, i.e.
a combination of the two datasets of interest.

Additional examples for unpaired translation as in Fig. 8 can be found in Fig. S2. One can see that
the viewpoint of a face is preserved upon translation, which demonstrates that v learns semantic
correspondences between the pose of faces from different dataset modalities, without any paired
data between them. The same holds for the samples in Fig. S3, where the same v is projected onto
different domains Dx.

4

x method early layer: Λ(zΘ) middle layer: Λ(zΘ) last layer of f : Λ(zΘ)

our

MLP

our

MLP

our

MLP

our

MLP

our

MLP

FID our 34.0± 0.1 23.4± 0.7 27.6± 0.1
MLP 24.2 25.6 264.0

Figure S4: Model diagnosis compared to a MLP for the translation. Synthesized samples and FID scores
demonstrate that a direct translation with a multilayer perceptron (MLP) does not capture the ambiguities of
the translation process and can thus only produce a mean image. In contrast, our cINN correctly captures the
variability and produces coherent outputs.

E Ablation Study: Replacing our cINN with an MLP

To illustrate the importance of the cINN to model ambiguities of the translation, we demonstrate
the effect of replacing our cINN with a (deterministic) multilayer perceptron (MLP) in Fig. S4.
The MLP consists of two parts: (i) an embedding part as in Tab. S3b and (ii) the architecture of a
fully-connected network which was recently used for neural scene rendering [46]. We perform the
same model diagnosis experiment as in Fig. 5, but applied to the Animals dataset. For early layers,
the translation contains almost no ambiguity and can be handled successfully by both the cINN
and the MLP. For a deeper layer of the used segmentation model f , the translation has moderate
ambiguities, as f ’s invariances w.r.t. to the input increase. This is not accurately reflected by the
multilayer perceptron, because it does not model the space of these invariances. Finally, for the last
layer of f , the MLP predicts the mean over all possible translation outputs which, due to its large
ambiguities, does not result in a meaningful translation anymore, whereas our cINN still samples
coherent translation outputs. FID scores in Tab. S4 further validate this behavior for the whole test
set.

5

Φ(x) ex
em

pl
ar
y

Figure S5: Additional examples for exemplar-guided image-to-image translation as in Fig. 7a.

F Architecture and Training of the Autoencoder g

All experiments in Sec. 4.2, the exemplar-guided image-to-image translation in Sec. 4.3 as well as
the additional results in Fig. S5 and Fig. S6 were conducted using the same (i.e. same weights and
architecture) autoencoder g, thereby demonstrating how a single model can be re-used for multiple
purposes within our framework.
For the autoencoder, we use a ResNet-101 [29] architecture as encoder Θ, and the BigGAN architec-
ture as the decoder Λ, see Tab. S2. As we do not use class information, we feed the latent code zΘ of
the encoder into a a fully-connected layer and use its softmax-activated output as a replacement for
the one-hot class vector used in BigGAN. The encoder predicts mean Θ(y)µ and diagonal covari-
ance Θ(y)σ2 of a Gaussian distribution and we use the reparameterization trick to obtain samples
zΘ = Θ(y)µ + diag(Θ(y)σ2)ε of the latent code, where ε ∼ N (0,1). For the reconstruction loss
‖·‖, we use a perceptual loss based on features of a pretrained VGG-16 network [64], and, following
[13], include a learnable, scalar output variance γ. Additionally, we use the PatchGAN discriminator
D from [33] for improved image quality. Hence, given the autoencoder loss

LV AE(Θ,Λ, γ) = Ey∼p(y)
ε∼N (0,1)

[
1

γ
‖y − Λ(Θµ(y) +

√
diag(Θσ2(y)) ε)‖+ log γ

+ KL (N (zΘ|Θµ(y),diag(Θσ2(y))‖N (0,1))

]
, (14)

and the GAN-loss

LGAN (g,D) = Ey∼p(y)
ε∼N (0,1)

[
logD(y) + log

(
1− Λ

(
Θµ(y) +

√
diag(Θσ2(y)) ε

))]
, (15)

6

Φ(x) translating Φ(x) onto target domain of AE g with different samples v ∼ q(v)

Figure S6: Additional Landscape samples, obtained by translation of the argmaxed logits (i.e. the segmentation
output) of the segmentation model from Sec. 4.2, 4.3 into the space of our autoencoder g, see Sec. 4.2, 4.3. The
synthesized examples demonstrate that our approach is able to generate diverse and realistic images from a given
label map or through a segmentation model.

the total objective for the training of g = {Θ,Λ, γ} reads:

{Θ∗,Λ∗, γ∗} = arg min
Θ,Λ,γ

max
D

[LV AE(Θ,Λ, γ) + λLGAN ({Θ,Λ, γ},D)] . (16)

This is similar to the improved image metric suggested in [20], but in contrast to their work, we use
an adaptive weight λ, computed by the ratio of the gradients of the decoder Λ w.r.t. its last layer ΛL:

λ =
‖∇ΛL

(Lrec)‖
‖∇ΛL

(LGAN)‖+δ
(17)

where the reconstruction loss Lrec is given as (c.f . Eq. (14)):

Lrec = Ey∼p(y)
ε∼N (0,1)

[
1

γ
‖y − Λ(Θµ(y) +

√
diag(Θσ2(y)) ε)‖+ log γ

]
, (18)

and a small δ is added for numerical stability.

7

RGB image x ∈ R128×128×3

Conv down→ R64×64×64

Norm, ReLU, MaxPool→ R32×32×64

3× BottleNeck→ R32×32×256

4× BottleNeck down→ R16×16×512

23× BottleNeck down→ R8×8×1024

3× BottleNeck down→ R4×4×2048

AvgPool, FC 7→ (µ, σ2) ∈ R128 × R128

(a) Encoder based on Resnet-101.

z̄ ∈ R128 ∼ N (µ,diag(σ2))
3× (FC, LReLU)→ R256

FC, Softmax→ R1000

Embed 7→ h ∈ R128

FC(z̄)→ R4×4×16·96

ResBlock(z̄,h) up→ R8×8×16·96

ResBlock(z̄,h) up→ R16×16×8·96

ResBlock(z̄,h) up→ R32×32×4·96

ResBlock(z̄,h) up→ R64×64×2·96

Non-Local Block→ R64×64×2·96

ResBlock(z̄,h) up→ R64×64×96

Norm, ReLU, Conv up→ R128×128×3

Tanh 7→ x̄ ∈ R128×128×3

(b) Decoder based on BigGAN.

Table S2: Autoencoder architecture for the CelebA and Animals datasets at resolution 128× 128.

G Implementation Details

G.1 Architecture of the conditional INN

Figure S7: A single (conditionally) invertible block used to build our cINN. We build the cINN from n = 20 of
these blocks for all of our experiments.

In our implementation, the conditional invertible neural network (cINN) consists of a sequence of
INN-blocks as shown in Fig. S7, and a non-invertible embedding module H which provides the
conditioning information. Each INN-block is build from (i) an alternating affine coupling layer
[17], (ii) an activation normalization (actnorm) layer [35], and (iii) a fixed permutation layer, which
effectively mixes the components of the network’s input. Given an input z ∈ RD and additional
conditioning information y, we pre-process the latter with a neural network H as

h = H(y), (19)
and a single conditional affine coupling layer splits z into two parts z1:d, zd+1:D and computes

z1:d, zd+1:D = split(z) (20)

z′ = concat
(
z1:d, sθ([z1:d;h])� zd+1:D + tθ([z1:d;h])

)
(21)

where sθ and tθ are implemented as simple feedforward neural networks, which process the concate-
nated input [zi:j , h] (see Tab. S3a). The alternating coupling layer ensures mixing for all components
of z:

z′′ = concat
(
sθ([z

′
d+1:D;h])� z1:d + tθ([z

′
d+1:D;h]), z′d+1:D

)
. (22)

8

input z ∈ Rd

(FC, LReLU)→ R8·d

2× (FC, LReLU)→ R8·d

(FC, LReLU)→ Rd

(a) Basic fully connected architecture.

input y ∈ Rc×h×w

n× Conv down, ActNorm, LReLU
→ R64·n×h/2n×w/2n

Flatten, FC→ Rd

(b) Embedding module H , see Eq. (19).

Table S3: (a): Architecture of the subnetworks sθ and tθ used to build the normalizing flow described in
Sec. 3, G.1. Leaky ReLU (LReLU) uses a slope parameter α = 0.01. For the cINN from Sec. 4.1, d = 268,
while for Sec. 4.2 and Sec. 4.3, d = 128. (b) Architecture of the embedding module H , which is used to pre-
process arbitrarily sized conditioning information y via h = H(y). Here, n denotes the number of downsampling
steps. If the conditioning y does not have spatial dimensionality, we replace the whole network by a simple
feedforward-architecture as in Tab. S3a.

We implement the embedding module H as a simple (convolutional) neural network, see Tab. S3b
for details regarding its architecture. Note that H does not need to be invertible as it soley processes
conditioning information. Hence, given some h = H(y), the network τ is conditionally invertible.
Usually, we train with a batch size of 10-25, which requires 4-12 GB VRAM and converges in less
than a day.

G.2 Training Details for Bert-to-BigGAN Translation

source domain x target domain y source domain x target domain y

Two people on a paddle
boat in the water

A close up of
a plant with broccoli

A close up of
a clock on a wall

A fighter jet flying
through a cloudy sky

A black bear is
walking through the woods

A glass of wine
sitting on a table

A man riding skis
down a snow covered slope

A wooden chair sitting
in front of a chair

A group of horses pulling
a carriage down a dirt

A car parked
in front of a building

Figure S8: BERT [15] to BigGAN [4] transfer: Additional examples, which demonstrate high diversity in
synthesized outputs.

Training our approach to translate between a model’s f representation zΦ = Φ(x) and BigGAN’s
latent space zΘ requires to dequantize the discrete class labels c that BigGAN is trained with. To do
so, we consider the stacked vector

z′Θ = [z̃,Wc] , (23)

consisting of z̃ ∼ N (0,1), z̃ ∈ R140, sampled from a multivariate normal distribution and c ∈
{0, 1}K , a one-hot vector specifying an ImageNet class (K = 1000 classes in total). The matrix

9

W , a part of the generator Λ, maps the one-hot vector c to h ∈ R128, i.e. h = Wc, such that z′Θ in
Eq. (23) corresponds to a synthesized image, given a pretrained generator of BigGAN. However,
as c contains discrete labels, we have to avoid collapse of τ onto a single dimension of h during
training. To this end, we pass the vector h through a small, fully connected variational autoencoder
(described in Tab. S4) and replace h by its stochastic reconstruction ĥ, which effectively performs
dequantization, such that:

zΘ =
[
z̃, ĥ
]
, with zΘ ∈ R268. (24)

Training of τ is then conducted by sampling zΘ as in Eq. (24) and minimizing the objective described
in Eq. (4), i.e. finding a mapping τ that conditionally maps zΦ and the corresponding ambiguities
v ∼ N (0,1) to g’s representations zΘ. Additional results obtained when using this approach to
conditionally translate BERT’s representation zΦ into the latent space of BigGAN (see also Sec. 4.1)
can be found in Fig. S8.

Embedding h ∈ R128

3× (FC, LReLU)→ R4096

(FC, LReLU)→ R128

µ, σ2: for each:

3× (FC, LReLU)→ R4096

(FC, LReLU)→ R128

h ∈ R128 ∼ N (µ,diag(σ2))

4× (FC, LReLU)→ R4096

(FC, LReLU)→ R128

Table S4: Training a cINN on synthetic BigGAN data requires to dequantize the discrete class information
which is used as conditioning information for the decoder. To this end, we make use of a variational autoencoder
as described in Sec. G.2, which provides a stochastic reconstruction of its input h. For Leaky ReLU, we use a
slope parameter of α = 0.01.

10

