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1 Visualize the divergence of different classes

To further analyze the improved robustness (for quantizing) of combining two weak players: shift and
add. we compare the discriminative power of AdderNet and ShiftAddNet. Specifically, we visualize
the class divergences using the t-distributed stochastic neighbor embedding (t-SNE) algorithm [4],
which is well-suited for embedding high-dimensional data for visualization in a low-dimensional
space of two or three dimensions (2/3-D). After reducing the dimensions of learned features to 2/3-D,
we are then able to analyze the discrimination among different classes, which further allows us to
compare the effectiveness of different networks. As shown in Fig. 1, the 2/3-D visualization show
that the proposed ShiftAddNet discriminate different classes better (i.e., the boundary among
different classes can be easier to identify as compared to AdderNet [2]) for both the floating point
(FP32) and fixed point (FIX8) scenarios.
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Figure 1: T-SNE visualization of the class divergences in AdderNet [2], and the proposed ShiftAddNet,
using ResNet-20 on CIFAR-10 as an example.

2 Evaluation on two more IoT datasets.

Accuracy and training costs tradeoffs. We evaluate DCNN [3] on the popular MHEALTH [1] and
USCHAD [5] IoT benchmarks. As shown in Fig. 2 (a) and (b), ShiftAddNet again consistently
outperforms the baselines under all settings in terms of efficiency-accuracy trade-offs: (1) over
AdderNet: ShiftAddNet reduces 32.8% ∼ 90.6% energy costs while resulting comparable accuracies
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Figure 2: Testing accuracy vs. energy cost comparisons on IoT datasets.

(-0.65% ∼ 9.87%); and (2) over DeepShift: ShiftAddNet achieves 7.85% ∼ 30.7% higher accuracies
while requiring 44.1% ∼ 74.7% less energy costs.

Inference costs: As shown in Fig. 2 (a), when training DCNN on IoT dataset, ShiftAddNet with
fixed shift layers (FIX32) costs 1.7 J, where AdderNet (FIX32) costs 1.9 J and DeepShift (FIX32)
costs 2.6 J, respectively, leading to 10.5% / 34.6% savings.
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