
Minimax Value Interval for Off-Policy Evaluation
and Policy Optimization

Nan Jiang
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801

nanjiang@illinois.edu

Jiawei Huang
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801

jiaweih@illinois.edu

Abstract

We study minimax methods for off-policy evaluation (OPE) using value functions
and marginalized importance weights. Despite that they hold promises of over-
coming the exponential variance in traditional importance sampling, several key
problems remain:
(1) They require function approximation and are generally biased. For the sake of
trustworthy OPE, is there anyway to quantify the biases?
(2) They are split into two styles (“weight-learning” vs “value-learning”). Can we
unify them?
In this paper we answer both questions positively. By slightly altering the deriva-
tion of previous methods (one from each style [1]), we unify them into a single
value interval that comes with a special type of double robustness: when either
the value-function or the importance-weight class is well specified, the interval is
valid and its length quantifies the misspecification of the other class. Our interval
also provides a unified view of and new insights to some recent methods, and we
further explore the implications of our results on exploration and exploitation in
off-policy policy optimization with insufficient data coverage.

1 Introduction

A major barrier to applying reinforcement learning (RL) to real-world applications is the difficulty of
evaluation: how can we reliably evaluate a new policy before actually deploying it, possibly using
historical data collected from a different policy? Known as off-policy evaluation (OPE), the problem
is genuinely difficult as the variance of any unbiased estimator—including the popular importance
sampling methods and their variants [2, 3]—inevitably grows exponentially in horizon [4].

To overcome this “curse of horizon”, the RL community has recently gained interest in a new family
of algorithms [e.g., 5], which require function approximation of value-functions and marginalized
importance weights and provide accurate evaluation when both function classes are well-specified (or
realizable). Despite that fast progress is made in this direction, several key problems remain:

• The methods are generally biased since they rely on function approximation. Is there anyway we
can quantify the biases, which is important for trustworthy evaluation?

• The original method by Liu et al. [5] estimates the marginalized importance weights (“weight”)
using a discriminator class of value-functions (“value”). Later, Uehara et al. [1] swap the roles of
value and weight to learn a Q-function using weight discriminators. Not only we have two styles of
methods now (“weight-learning” vs “value-learning”), each of them also ignores some important
components of the data in their core optimization (see Sec. 3 for details). Can we have a unified
method that makes effective use of all components of data?

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

In this paper we answer both questions positively. By modifying the derivation of one method from
each style [1], we unify them into a single value interval, which automatically comes with a special
type of double robustness: when either the weight- or the value-class is well specified, the interval
is valid and its length quantifies the misspecification of the other class (Sec. 4). Each bound is
computed from a single optimization program that uses all components of the data, which we show
is generally tighter than the naïve intervals developed from previous methods. Our derivation also
unifies several recent OPE methods and reveals their simple and direct connections; see Table 1 in the
appendix. Furthermore, we examine the potential of applying these value bounds to two long-standing
problems in RL: reliable off-policy policy optimization under poor data coverage (i.e., exploitation),
and efficient exploration. Based on a simple but important observation, that poor data coverage can
be treated as a special case of importance-weight misspecification, we show that optimizing our lower
and upper bounds over a policy class corresponds to the well-established pessimism and optimism
principles for these problems, respectively (Sec. 5).

On Statistical Errors We assume exact expectations and ignore statistical errors in most of the
derivations, as our main goal is to quantify the biases and unify existing methods. In Appendix L we
show how to theoretically handle the statistical errors by adding generalization error bounds to the
interval. That said, these generalization bounds are typically loose for practical purposes, and we
handle statistical errors by bootstrapping in the experiments (Section 4.4) and show its effectiveness
empirically. We also refer the readers to concurrent works that provide tighter and/or more efficient
computation of confidence intervals for related estimators [6, 7].

2 Preliminaries

Markov Decision Processes An infinite-horizon discounted MDP is specified by (S,A, P,R, γ, s0),
where S is the state space, A is the action space, P : S × A → ∆(S) is the transition function
(∆(·) is probability simplex), R : S ×A → ∆([0, Rmax]) is the reward function, and s0 is a known
and deterministic starting state, which is w.l.o.g.1 For simplicity we assume S and A are finite
and discrete but their cardinalities can be arbitrarily large. Any policy2 π : S → A induces a
distribution of the trajectory, s0, a0, r0, s1, a1, r1, . . . , where s0 is the starting state, and ∀t ≥ 0,
at = π(st), rt ∼ R(st, at), st+1 ∼ P (st, at). The expected discounted return determines the
performance of policy π, which is defined as J(π) := E[

∑∞
t=0 γ

trt |π]. It will be useful to define
the discounted (state-action) occupancy of π as dπ(s, a) :=

∑∞
t=0 γ

tdπt (s, a), where dπt (·, ·) is
the marginal distribution of (st, at) under policy π. dπ behaves like an unnormalized distribution
(‖dπ‖1 = 1/(1− γ)), and for notational convenience we write Edπ [·] with the understanding that

Edπ [f(s, a, r, s′)] :=
∑
s∈S,a∈A d

π(s, a) Er∼R(s,a),s′∼P (s,a)[f(s, a, r, s′)].

With this notation, the discounted return can be written as J(π) = Edπ [r].

The policy-specific Q-function Qπ satisfies the Bellman equations: ∀s ∈ S, a ∈ A, Qπ(s, a) =
Er∼R(s,a),s′∼P (s,a)[r + γQπ(s′, π)] =: (T πQπ)(s, a), where Qπ(s′, π) is a shorthand for
Qπ(s′, π(s′)) and T π is the Bellman update operator. It will be also useful to keep in mind that

J(π) = Qπ(s0, π). (1)

Data and Marginalized Importance Weights In off-policy RL, we are passively given a dataset
and cannot interact with the environment to collect more data. The goal of OPE is to estimate J(π)
for a given policy π using the dataset. We assume that the dataset consists of i.i.d. (s, a, r, s′) tuples,
where (s, a) ∼ µ, r ∼ R(s, a), s′ ∼ P (s, a). µ ∈ ∆(S × A) is a distribution from which we draw
(s, a), which determines the exploratoriness of the dataset. We write Eµ[·] as a shorthand for taking
expectation w.r.t. this distribution. The strong i.i.d. assumption is only meant to simplify derivation
and presentation, and does not play a crucial role in our results as we do not handle statistical errors.

A concept crucial to our discussions is the marginalized importance weights. Given any π, if µ(s, a) >

0 whenever dπ(s, a) > 0, define wπ/µ(s, a) := dπ(s,a)
µ(s,a) . When there exists (s, a) such that µ(s, a) =

0 but dπ(s, a) > 0, wπ/µ does not exist (and hence cannot be realized by any function class). When

1When s0 ∼ d0 is random, all our derivations hold by replacing q(s0, π) with Es0∼d0 [q(s0, π)].
2Our derivation also applies to stochastic policies.

2

it does exist, ∀f , Edπ [f(s, a, r, s′)] = Ewπ/µ [f(s, a, r, s′)] := Eµ[wπ/µ(s, a)f(s, a, r, s′)], where

Ew[·] := Eµ[w(s, a) · (·)]

is a shorthand we will use throughout the paper, and µ is omitted in Ew[·] since importance weights
are always applied on the data distribution µ. Finally, OPE would be easy if we knew wπ/µ, as

J(π) = Edπ [r] = Ewπ/µ [r]. (2)

Function Approximation Throughout the paper, we assume access to two function classes Q ⊂
(S × A → R) and W ⊂ (S × A → R). To develop intuition, they are supposed to model Qπ
and wπ/µ, respectively, though most of our main results are stated without assuming any kind of
realizability. We use C(·) to denote the convex hull of a set. We also make the following compactness
assumption so that infima and suprema we introduce later are always attainable.

Assumption 1. We assume Q andW are compact subsets of RS×A.

3 Related Work

Minimax OPE Liu et al. [5] proposed the first minimax algorithm for learning marginalized
importance weights. When the data distribution (e.g., our µ) covers dπ reasonably well, the method
provides efficient estimation of J(π) without incurring the exponential variance in horizon, a major
drawback of importance sampling [2, 4, 3]. Since then, the method has sparked a flurry of interest in
the RL community [8, 9, 10, 11, 12, 13, 14, 15].

While most of these methods solve for a weight-function using value-function discriminators and
plug into Eq.(2) to form the final estimate of J(π), Uehara et al. [1] recently show that one can flip
the roles of weight- and value-functions to approximate Qπ . This is also closely related to the kernel
loss for solving Bellman equations [16]. As we will see, when we keep model misspecification in
mind and derive upper and lower bounds of J(π) (as opposed to point estimates), the two types of
methods merge into almost the same value intervals—except that they are the reverse of each other,
and at most one of them is valid in general (Sec. 4.3).

Drawback of Existing Methods One drawback of both types of methods is that some important
components of the data are ignored in the core optimization. For example, “weight-learning” [e.g.,
5, 14] completely ignores the rewards r in its loss function, and only uses it in the final plug-in step.
Similarly, “value-learning” [MQL of 1] ignores the initial state s0 until the final plug-in step [see also
16]. In contrast, each of our bounds is computed from a single optimization program that uses all
components of the data, and we show the advantage of unified optimization in Table 1 and App. E.

Double Robustness Our interval is valid when either function class is well-specified, which can be
viewed as a type of double robustness. This is related to but different from the usual notion of double
robustness in RL [17, 3, 18, 19], and we explain the difference in App. C.

AlgaeDICE Closest related to our work is the recently proposed AlgaeDICE for off-policy policy
optimization [20]. In fact, one side of our interval recovers a version of its policy evaluation
component. Nachum et al. [20] derive the expression using Fenchel duality [see also 21], whereas
we provide an alternative derivation using basic telescoping properties such as Bellman equations
(Lemmas 1 and 4). Our results also provide further justification for AlgaeDICE as an off-policy policy
optimization algorithm (Sec. 5), and point out its weakness for OPE (Sec. 4) and how to address it.

4 The Minimax Value Intervals

In this section we derive the minimax value intervals by slightly altering the derivation of two recent
methods [1], one of “weight-learning” style (Sec. 4.1) and one of “value-learning” style (Sec. 4.2),
and show that under certain conditions, they merge into a single unified value interval whose validity
only relies on either Q orW being well-specified (Sec. 4.3). While we focus on the discounted &
behavior-agnostic setting in the main text, in Appendix M we describe how to adapt to other settings
such as when behavior policy is available or in average-reward MDPs.

3

4.1 Value Interval for Well-specified Q and MisspecifiedW

We start with a simple lemma that can be used to derive the “weight-learning” methods, such as the
original algorithm by Liu et al. [5] and its behavior-agnostic extension by Uehara et al. [1]. Our
derivation assumes realizable Q but arbitraryW .
Lemma 1 (Evaluation Error Lemma for Importance Weights). For any w : S ×A → R,

J(π)− Ew[r] = Qπ(s0, π) + Ew[γQπ(s′, π)−Qπ(s, a)]. (3)

Proof. By moving terms, it suffices to show that J(π)−Qπ(s0, π) = Ew[r+γQπ(s′, π)−Qπ(s, a)],
which holds because both sides equal 0.

“Weight-learning” in a Nutshell The “weight-learning” methods aim to learn a w such that J(π) ≈
Ew[r]. By Lemma 1, we may simply find w that sets the RHS of Eq.(3) to 0. Of course, this
expression depends on Qπ which is unknown. However, if we are given a function class Q that
captures Qπ , we can find w (over a classW) that minimizes

sup
q∈Q
|Lw(w, q)|, where Lw(w, q) := q(s0, π) + Ew[γq(s′, π)− q(s, a)]. (4)

This derivation implicitly assumes that we can find w such that Lw(w, q) ≈ 0 ∀q ∈ Q, which is
guaranteed when wπ/µ ∈ W . WhenW is misspecified, however, the estimate can be highly biased.
Although such a bias can be somewhat quantified by the approximation guarantee of these methods
(see Remark 3 for details), we show below that there is a more direct, elegant, and tighter approach.

Derivation of the Interval Again, suppose we are givenQ such thatQπ ∈ Q.3 Then from Lemma 1,

J(π) = Qπ(s0, π) + Ew[r + γQπ(s′, π)−Qπ(s, a)]

≤ sup
q∈Q

{
q(s0, π) + Ew[r + γq(s′, π)− q(s, a)]

}
. (5)

For convenience, from now on we will use the shorthand

L(w, q) := q(s0, π) + Ew[r + γq(s′, π)− q(s, a)], (6)

and the upper bound is then supq∈Q L(w, q). The lower bound is similar:

J(π) ≥ inf
q∈Q

{
q(s0, π) + Ew[r + γq(s′, π)− q(s, a)]

}
= inf
q∈Q

L(w, q). (7)

To recap, an arbitrary w will give us a valid interval [infq∈Q L(w, q), supq∈Q L(w, q)], and we may
search over a classW to find a tighter interval4 by taking the lowest upper bound and the highest
lower bound:

J(π) ≤ inf
w∈W

sup
q∈Q

L(w, q) =: UBw, J(π) ≥ sup
w∈W

inf
q∈Q

L(w, q) =: LBw. (8)

It is worth keeping in mind that the above derivation assumes realizable C(Q). Without such an
assumption, there is no guarantee that J(π) ≤ UBw, J(π) ≥ LBw, or even LBw ≤ UBw. Below
we establish the conditions under which the interval is valid (i.e., LBw ≤ J(π) ≤ UBw) and tight
(i.e., UBw − LBw is small).

Properties of the Interval Intuitively, ifQ is richer, it is more likely to be realizable, which improves
the interval’s validity. If we further makeW richer, the interval becomes tighter, as we are searching
over a richer space to suppress the upper bound and raise the lower bound. We formalize these
intuitions with the theoretical results below. Notably, our main results do not require any explicit
realizability assumptions and hence are automatically agnostic. All proofs of this section can be
found in App. A.

3This condition can be relaxed to Qπ ∈ C(Q) due to the affinity of L(w, ·).
4We cannot search over the unrestricted (tabular) class when the state space is large, due to overfitting. In

contrast, the value bounds derived in this paper only optimize over restricted Q andW classes, allowing the
bound computed on a finite sample to generalize when Q andW have bounded statistical complexities; see
Appendix L for related discussions.

4

Theorem 2 (Validity). Define Lw(w, q) := q(s0, π) + Ew[γq(s′, π)− q(s, a)]. We have

UBw − J(π) ≥ inf
w∈W

sup
q∈Q

Lw(w, q −Qπ), J(π)− LBw ≥ inf
w∈W

sup
q∈Q

Lw(w,Qπ − q).

As a corollary, when Qπ ∈ C(Q), the interval is valid, i.e., UBw ≥ J(π) ≥ LBw.

Lw(w, q − Qπ) and Lw(w,Qπ − q) can be viewed as a measure of difference between Qπ and
q, as they are essentially linear measurements of q − Qπ (note that Lw(w, ·) is linear) with the
measurement vector determined by w. Therefore, if C(Q) contains close approximation of Qπ , then
UBw will not be too much lower than J(π) and LBw will not be too much higher than LBw, and the
degree of realizability of C(Q) determines to what extent [LBw,UBw] is approximately valid.

Even if valid, the interval may be useless if UBw � LBw. Below we show that this can be prevented
by having a well-specifiedW .
Theorem 3 (Tightness). UBw−LBw ≤ 2 infw∈W supq∈Q |Lw(w, q)|. As a corollary, when wπ/µ ∈
W , we have UBw ≤ LBw.
Remark 1 (Interpretation of Theorem 3). UBw ≤ LBw does not imply UBw = LBw, as UBw and
LBw may lose their upper/lower bound semantics without realizable C(Q). An interval that is both
tight and valid can only be implied from Theorems 2 and 3 together.
Remark 2 (Point estimate). If a point estimate is desired, we may output 1

2 (UBw + LBw), and under
Qπ ∈ C(Q) we can assert that its error is bounded by infw∈W supq∈Q |Lw(w, q)|. This coincides
with the guarantee of MWL under the same assumption [1, Theorem 2]. Furthermore, if we simply
output UBw or LBw (the latter being the policy-evaluation component of Fenchel AlgaeDICE [20])5,
the approximation guarantee will be twice as large since they only incur one-sided errors.
Remark 3 (Naïve interval). As we alluded to earlier, the approximation guarantee of Uehara et al.
[1, Theorem 2] can be used to derive an interval that is also valid under realizable C(Q); see Table 1
for details. In App. E, we show that such an interval is never tighter than ours under realizable C(Q).
Remark 4 (Regularization). In App. F we derive the regularized version of the interval via Fenchel
transformations, similar to [20, 21].

4.2 Value Interval for Well-specifiedW and Misspecified Q

Similar to Sec. 4.1, we now derive the interval for the case of realizable C(W). We also base our
entire derivation on the following simple lemma, which can be used to derive the “value-learning”
method.
Lemma 4 (Evaluation Error Lemma for Value Functions). For any q : S ×A → R,

J(π)− q(s0, π) = Edπ [r + γq(s′, π)− q(s, a)]. (9)

Proof. J(π) = Edπ [r], and Edπ [q(s, a)−γq(s′, π)] = q(s0, π) due to Bellman equation for dπ .

“Value-learning” in a Nutshell MQL [1] seeks to find q such that q(s0, π) ≈ J(π). Using Lemma 4,
this can be achieved by finding q that sets the RHS of Eq.(9) to 0, and we can use a classW that
realizes wπ/µ to overcome the difficulty of unknown dπ , similar to how we handle the unknown Qπ
in Sec. 4.1. While the method gives an accurate estimation when both Q andW are well-specified,
below we show how to derive an interval to quantify the bias due to misspecified Q.

Derivation of the Interval If we are givenW ⊂ (S ×A → R) such that wπ/µ ∈ W , then6

J(π) ≤ q(s0, π) + sup
w∈W

Ew[r + γq(s′, π)− q(s, a)] = sup
w∈W

L(w, q). (10)

J(π) ≥ q(s0, π) + inf
w∈W

Ew[r + γq(s′, π)− q(s, a)] = inf
w∈W

L(w, q). (11)

Again, an arbitrary q yields a valid interval, and we may search over a class Q to tighten it:
J(π) ≤ inf

q∈Q
sup
w∈W

L(w, q) =: UBq, J(π) ≥ sup
q∈Q

inf
w∈W

L(w, q) =: LBq. (12)

Properties of the Interval We characterize the interval’s validity and tightness similar to Sec. 4.1.
5See Appendix D for how to translate between the two papers’ notations.
6As before, this condition can be relaxed to wπ/µ ∈ C(W).

5

Theorem 5 (Validity). Define Lq(w, q) := Ew[r + γq(s′, π)− q(s, a)].

UBq − J(π) ≥ inf
q∈Q

sup
w∈W

Lq(w − wπ/µ, q), J(π)− LBq ≥ inf
q∈Q

sup
w∈W

Lq(wπ/µ − w, q).

As a corollary, when wπ/µ ∈ C(W), the interval is valid, i.e., UBw ≥ J(π) ≥ LBw.

Again, the validity of the interval is controlled by the realizability of C(W), defined as the best
approximation of wπ/µ ∈ W where the difference between wπ/µ and any w is measured by Lq(w −
wπ/µ, q) and Lq(wπ/µ − w, q) (which are linear measurements of w − wπ/µ).

Theorem 6 (Tightness). UBq−LBq ≤ 2 infq∈Q supw∈W |Lq(w, q)|. As a corollary, when Qπ ∈ Q,
we have UBq ≤ LBq.

4.3 Unification

So far we have obtained two intervals:

C(Q) realizable:
{

UBw = infw supq L(w, q),

LBw = supw infq L(w, q),
C(W) realizable:

{
UBq = infq supw L(w, q),

LBq = supq infw L(w, q),

where L(w, q) = q(s0, π) + Ew[r + γq(s′, π) − q(s, a)]. Taking a closer look, UBw and LBq are
almost the same and only differ in the order of optimizing q and w, and so are UBq and LBw. It turns
out that ifW and Q are convex, these two intervals are precisely the reverse of each other.
Theorem 7. IfW and Q are compact and convex sets, we have UBw = LBq, UBq = LBw.

This result implies that we do not need to separately consider these two intervals. Neither do we need
to know which one of Q andW is well specified. We just need to do the obvious thing, which is to
compute UBw(= LBq) and UBq(= LBw), and let the smaller number be the lower bound and the
greater one be the upper bound. This way we get a single interval that is valid when either Q orW is
realizable (Theorems 2 and 5), and tight when both are. Furthermore, by looking at which value is
lower, we can tell which class is misspecified (assuming one of them is well-specified), and this piece
of information may provide guidance to the design of function approximation.

The Non-convex Case When Q and W are non-convex, the two intervals are still related in an
interesting albeit more subtle manner: the two “reversed intervals” are generally tighter than the
original intervals, but they are only valid under stronger realizability conditions. See proofs and
further discussions in App. B.
Theorem 8. When Qπ ∈ Q, J(π) ∈ [UBq,LBq] ⊆ [LBw,UBw]. When wπ/µ ∈ W ,
J(π) ∈ [UBw,LBw] ⊆ [LBq,UBq].

4.4 Empirical Verification of Theoretical Predictions

We provide preliminary empirical results to support the theoretical predictions, that
(1) which bound is the upper bound depends on the expressivity of function classes (Sec. 4.3), and
(2) our interval is tighter than the naïve intervals based on previous methods (App.E).
We conduct the experiments in CartPole, with the target policy being softmax over a pre-trained
Q-function with temperature τ (behavior policy is τ = 1.0). We use neural nets for Q and W ,
and optimize the losses using stochastic gradient descent ascent (SGDA);7see App. G for more
details. Fig. 1 demonstrates the interval reversal phenomenon, where we compute LBq(≈ UBw) and
UBq(≈ LBw) for Q-networks of different sizes while fixing everything else. As predicted by theory,
UBq > LBq when Q is small (hence poorly specified), and the interval is flipped as Q increases.

Fig. 3 (left) compares the interval lengths between our interval and that induced by MQL under
different sample sizes,8and we see the former is significantly tighter than the latter. However, Fig. 3

7Neural nets induce non-convex classes, violating Theorem 7’s assumptions. However, such non-convexity
may be mitigated by having an ensemble of neural nets, or in the recently popular infinite-width regime [22].
Also, SGDA is symmetric w.r.t. w and q, and our implementation can be viewed as heuristic approximations of
UBq & LBw and UBw & LBq, resp., so we treat UBq ≈ LBw and UBw ≈ LBq in Sec. 4.4.

8We compare to the interval induced by MQL ([LBq
′,UBq

′] in Table 1), as Uehara et al. [1] reported that
MQL is more stable and performs better than MWL in discounted problems.

6

Figure 1: (Left) The
interval reversal phe-
nomenon; see Sec. 4.4.

Figure 2: (Right) Policy
optimization under non-
exploratory data; see
Sec. 5.3 for details.

Figure 3: Comparison
of interval length and
validity ratio between
our interval and that
of MQL as a func-
tion of sample size; see
App. G.3 for more de-
tails. All error bars show
twice standard errors. 30 40 50 100 150

of Trajectories

20

40

60

80

100

120
In

te
rv

al
 L

en
gt

h

Target Policy = 1.5

30 40 50 100 150
of Trajectories

0.6

0.7

0.8

0.9

1.0

Va
lid

ity
 R

at
io

Target Policy = 1.5

[LBq, UBq] With Bootstrapping
[LB′q, UB′q] With Bootstrapping
[LBq, UBq] Without Bootstrapping
[LB′q, UB′q] Without Bootstrapping

(right) reveals that when the sample size is small, our new interval is too aggressive and fails to
contain J(π) with a significant chance. This is also expected as our theory does not handle statistical
errors, and validity guarantee can be violated due to data randomness especially in the small sample
regime. While a theoretical investigation of the statistical errors (beyond the use of generalization
error bounds in App. L which can be loose) is left to future work, we empirically test a popular
heuristic of bootstrapping intervals (App.G.3), and show that after bootstrapping our interval becomes
100% valid, while its length has only increased moderately especially in the large sample regime.

5 On Policy Optimization with Insufficient Data Coverage

OPE is not only useful as an evaluation method, but can also serve as a crucial component for
off-policy policy optimization: if we can estimate the return J(π) for a class of policies Π, then
in principle we may use arg maxπ∈Π J(π) to find the best policy in class. However, our interval
gives two estimations of J(π), an upper bound and a lower bound. Which one should we optimize?
Traditional wisdom in robust MDP literature [e.g., 23] suggests pessimism, i.e., optimizing the lower
bound for the best worst-case guarantees. But which side of the interval is the lower bound?

As Sec.4.3 indicates, every expression could be the upper bound or the lower bound, depending on
the realizability of Q andW . So the question becomes: which one of the function classes is more
likely to be misspecified?

RL with Insufficient Data Coverage Even if W and Q are chosen with maximum care, the
realizability ofW faces one additional and crucial challenge compared to Q: if the data distribution
µ itself does not cover the support of dπ , then wπ/µ may not even exist and henceW will be poorly
specified whatsoever. Since the historical dataset in real applications often comes with no exploratory
guarantees, this scenario is highly likely and remains as a crucial yet understudied challenge [24, 11].
In this section we analyze the algorithms that optimize the upper and the lower bounds whenW is
poorly specified. For convenience we will call them9

MUB-PO: arg max
π∈Π

UBπw, MLB-PO: arg max
π∈Π

LBπw, (13)

where MUB-PO/MLB-PO stand for minimax upper (lower) bound policy optimization. MLB-PO is
essentially Frenchel AlgaeDICE [20], so our results provide further justification for this method. On
the other hand, while MUB-PO may not be appropriate for exploitation, it exercises optimism and
may be better applied to induce exploration, that is, collecting new data with the policy computed by
MUB-PO may improve the data coverage.

9We make the dependence of UBw and LBw on π explicit since we consider multiple policies in this section.

7

5.1 Case Study: Exploration and Exploitation in a Tabular Scenario

To substantiate the claim that MUB-PO/MLB-PO induce effective exploration/exploitation, we
first consider a scenario where the solution concepts for exploration and exploitation are clearly
understood, and show that MUB-PO/MLB-PO reduce to familiar algorithms.

Setup Consider an MDP with finite and discrete state and action spaces. Let S̃ ⊂ S be a subset of the
state space, and s0 ∈ S̃. Suppose the dataset contains n transition samples from each s ∈ S̃, a ∈ A
with n→∞ (i.e., the transitions and rewards in S̃ are fully known), and 0 samples from s /∈ S̃.

Known Solution Concepts In such a simplified setting, effective exploration can be achieved by
(the episodic version of) the well-known Rmax algorithm [25, 26], which computes the optimal policy
of the Rmax-MDP: this MDP has the same transition dynamics and reward function as the true MDP
M on states with sufficient data (S̃), and the “unknown” states are assumed to have self-loops with
Rmax rewards, making them appealing to visit and thus encouraging exploration. Similarly, when the
goal is to output a policy with the best worst-case guarantee (exploitation), one simply changes Rmax

to the minimally possible reward (“Rmin”, which is 0 for us). Below we show that MUB-PO and
MLB-PO in this setting precisely correspond to the Rmax and the Rmin algorithms, respectively.

Proposition 9. Consider the MDP and the dataset described above. LetW = [0, |S̃×A|1−γ]S×A and
Q = [0, Rmax/(1− γ)]S×A. In this case, MUB-PO reduces to Rmax, and MLB-PO reduces to Rmin.

Despite the intuitiveness of the statement, the proof is quite involved and requires repeated applications
of the results established in Sec. 4; we refer interested readers to App. I for proof details.

5.2 Guarantees in the Function Approximation Setting

We give more general guarantee in the function approximation setting. For simplicity we do not
consider e.g., approximation/estimation errors, and incorporating them is routine [27, 28, 29].

Exploitation with Well-specified Q We start with the guarantee of MLB-PO.
Proposition 10 (MLB-PO). Let Π be a policy class, and assume Qπ ∈ C(Q) ∀π ∈ Π. Let
π̂ = arg maxπ∈Π LBπw. Then, for any π ∈ Π, J(π̂) ≥ LBπw. As a corollary, for any π s.t. wπ/µ ∈ W ,
J(π̂) ≥ J(π), that is, we compete with any policy whose importance weight is realized byW .

Exploration with (Less) Well-specified Q We then provide the exploration guarantee of MUB-PO,
which is an “optimal-or-explore” statement, that either the obtained policy is near-optimal (to be
defined below), or it will induce effective exploration. Perhaps surprisingly, our results suggest that
MUB-PO for exploration might be significantly more robust against misspecified Q than MLB-PO
for exploitation.

The key idea behind the agnostic result is the following: instead of competing with maxπ∈Π J(π) as
the optimal value under the assumption that Qπ ∈ C(Q),∀π ∈ Π (the same assumption as MLB-PO),
we aim at a less ambitious notion of optimality under a substantially relaxed assumption; without any
explicit assumption on Q, we directly compete with maxπ∈Π:Qπ∈C(Q) J(π). In words, we compete
with any policy whose Q-function is realized by C(Q). WhenQπ ∈ C(Q) for π = arg maxπ∈Π J(π),
we compete with the usual notion of optimal value. However, even if some (or most) policies’ Q-
functions elude C(Q), we can still compete with whichever policy whose Q-function is captured by
C(Q). A similar notion of optimality has been used by Jiang et al. [30], and indeed their algorithm is
closely related to MUB-PO, which we discuss in App. J.4.

We state a short version of MUB-PO’s guarantee, with the full version deferred to App. J.
Proposition 11 (MUB-PO, short ver.). Let Π be a policy class. Let π̂ = arg maxπ∈Π UBπw. Assum-
ing ‖q‖∞ ≤ Rmax/(1− γ) ∀q ∈ Q, we have for any w ∈ W ,

‖w · µ− dπ̂‖1 ≥
(1− γ)

(
maxπ∈Π:Qπ∈C(Q) J(π)− J(π̂)

)
2Rmax

.

Recall that w ∈ W is supposed to model the importance weight that coverts data µ to the occupancy
of some policy, e.g., wπ/µ · µ = dπ. The proposition states that either π̂ is near-optimal, or it will
induce an occupancy that cannot be accurately modeled by any importance weights in W when

8

applied on the current data distribution µ. Hence, if W is very rich and models all distributions
covered by µ, then π̂ must visit new state-actions or it must be near-optimal.

5.3 Preliminary Empirical Results

While we would like to test MLB-PO and MUB-PO in experiments, the joint optimization of π,w, q is
very challenging and remains an open problem [20]. Similar to Nachum et al. [20], we try a heuristic
variant of MLB-PO and MUB-PO that works in near-deterministic environments; see App. K for
details. As Fig. 5 shows, when the behavior policy is non-exploratory (τ = 0.1 yields a nearly
deterministic policy), MLB-PO can reliably achieve good performance despite the lack of explicit
regularization towards the behavior policy, whereas DQN is more unstable and suffers higher variance.
MUB-PO, on the other hand, fails to achieve a high value—which is also expected from theory—but
is able to induce exploration in certain cases. We defer more detailed results and discussions to
App. K due to space limit.

6 Conclusions and Open Problems

We derive a minimax value interval for off-policy evaluation. The interval is valid as long as either
the importance-weight or the value-function class is well specified, and its length quantifies the
misspecification error of the other class. Our highly simplified derivations only take a few steps from
the basic Bellman equations, which condense and unify the derivations in existing works. When
applied to off-policy policy optimization in face of insufficient data coverage, which is an important
scenario of practical concerns, optimizing our lower and upper bounds over a policy class can induce
effective exploitation and exploration, respectively.

We conclude the paper with open problems for future work:

• We handled sampling errors via bootstrapping in the experiments. Are there statistically more
effective and computationally more efficient solutions?

• MLB-PO and MUB-PO exhibit promising statistical properties but require difficult optimization.
Can we develop principled and practically effective strategies for optimizing these objectives?

• The double robustness of our interval protects against the misspecification of either Q orW , but
still requires one of them to be realizable to guarantee validity. Is it possible at all to develop
an interval that is always valid, and whose length is allowed to depend on the misspecification
errors of both Q andW? If impossible, can we establish information-theoretic hardness, and does
reformulating the problem in a practically relevant manner help circumvent the difficulty?

Answering these questions will be important steps towards reliable and practically useful off-policy
evaluation.

Broader Impact

This work is largely of theoretical nature, trying to unify existing methods and pointing out their
connections, with minimal proof-of-concept simulation experiments. Therefore, we do not foresee
direct broader impact. That said, an important motivation for this work is to equip RL with off-line
evaluation methods that rely on as few assumptions as possible, and in the long term this should
contribute to a more trustworthy framework for applying RL to real-world tasks, where reliable
evaluation is indispensable. We warn, however, that even though we aim at a less ambitious goal
of producing a valid interval (whose length may not go to 0 as sample size increases), we still
require unverifiable assumptions (realizability of C(Q) or C(W)). Therefore, the value intervals
produced by this and subsequent papers should be interpreted and treated with care and not taken
as-is in application scenarios. There are also several important aspects of building practically useful
confidence intervals that are ignored in this paper (since we are still in the early stage of theoretical
investigations), such as the handling of statistical errors and possible confoundedness in the data,
which need to be addressed by future works before these methods can be readily deployed in
applications.

9

Acknowledgments and Disclosure of Funding

This project is partially supported by a Microsoft Azure University Grant. The authors thank Jinglin
Chen for pointing out several mistakes/typos in an earlier draft of the paper.

References
[1] Masatoshi Uehara, Jiawei Huang, and Nan Jiang. Minimax Weight and Q-Function Learning

for Off-Policy Evaluation. In Proceedings of the 37th International Conference on Machine
Learning (ICML-20), 2020.

[2] Doina Precup, Richard S Sutton, and Satinder P Singh. Eligibility Traces for Off-Policy Policy
Evaluation. In Proceedings of the 17th International Conference on Machine Learning, pages
759–766, 2000.

[3] Nan Jiang and Lihong Li. Doubly Robust Off-policy Value Evaluation for Reinforcement Learn-
ing. In Proceedings of The 33rd International Conference on Machine Learning, volume 48,
pages 652–661, 2016.

[4] Lihong Li, Rémi Munos, and Csaba Szepesvári. Toward minimax off-policy value estimation.
In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics,
2015.

[5] Qiang Liu, Lihong Li, Ziyang Tang, and Dengyong Zhou. Breaking the curse of horizon:
Infinite-horizon off-policy estimation. In Advances in Neural Information Processing Systems,
pages 5361–5371, 2018.

[6] Yihao Feng, Tongzheng Ren, Ziyang Tang, and Qiang Liu. Accountable off-policy evaluation
with kernel bellman statistics. In Proceedings of the 37th International Conference on Machine
Learning (ICML-20), 2020.

[7] Bo Dai, Ofir Nachum, Yinlam Chow, Lihong Li, Csaba Szepesvari, and Dale Schuurmans.
CoinDICE: Off-Policy Confidence Interval Estimation. In Advances in neural information
processing systems, 2020.

[8] Tengyang Xie, Yifei Ma, and Yu-Xiang Wang. Towards optimal off-policy evaluation for rein-
forcement learning with marginalized importance sampling. In Advances in Neural Information
Processing Systems 32, pages 9665–9675. 2019.

[9] Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. Dualdice: Behavior-agnostic estimation
of discounted stationary distribution corrections. In Advances in Neural Information Processing
Systems 32. 2019.

[10] Yao Liu, Pierre-Luc Bacon, and Emma Brunskill. Understanding the curse of horizon in off-
policy evaluation via conditional importance sampling. In Proceedings of the 37th International
Conference on Machine Learning (ICML-20), 2020.

[11] Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Off-policy policy gradient
with state distribution correction. In Proceedings of the 35th Conference on Uncertainty in
Artificial Intelligence (UAI-19), 2019.

[12] Mark Rowland, Anna Harutyunyan, Hado van Hasselt, Diana Borsa, Tom Schaul, Rémi Munos,
and Will Dabney. Conditional importance sampling for off-policy learning. 108:45–55, 2020.

[13] Peng Liao, Predrag Klasnja, and Susan Murphy. Off-policy estimation of long-term average
outcomes with applications to mobile health. arXiv preprint arXiv:1912.13088, 2019.

[14] Ruiyi Zhang, Bo Dai, Lihong Li, and Dale Schuurmans. Gendice: Generalized offline estimation
of stationary values. In International Conference on Learning Representations, 2019.

[15] Shangtong Zhang, Bo Liu, and Shimon Whiteson. GradientDICE: Rethinking Generalized
Offline Estimation of Stationary Values. In Proceedings of the 37th International Conference
on Machine Learning (ICML-20), 2020.

10

[16] Yihao Feng, Lihong Li, and Qiang Liu. A kernel loss for solving the bellman equation. In
Advances in Neural Information Processing Systems, pages 15430–15441, 2019.

[17] Miroslav Dudík, John Langford, and Lihong Li. Doubly Robust Policy Evaluation and Learning.
In Proceedings of the 28th International Conference on Machine Learning, pages 1097–1104,
2011.

[18] Nathan Kallus and Masatoshi Uehara. Efficiently breaking the curse of horizon: Double
reinforcement learning in infinite-horizon processes. arXiv preprint arXiv:1909.05850, 2019.

[19] Ziyang Tang, Yihao Feng, Lihong Li, Dengyong Zhou, and Qiang Liu. Harnessing infinite-
horizon off-policy evaluation: Double robustness via duality. ICLR 2020(To appear), 2020.

[20] Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Al-
gaedice: Policy gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019.

[21] Ofir Nachum and Bo Dai. Reinforcement learning via fenchel-rockafellar duality. arXiv preprint
arXiv:2001.01866, 2020.

[22] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in neural information processing systems, pages
8571–8580, 2018.

[23] Arnab Nilim and Laurent El Ghaoui. Robust control of markov decision processes with uncertain
transition matrices. Operations Research, 53(5):780–798, 2005.

[24] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In International Conference on Machine Learning, pages 2052–2062,
2019.

[25] Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm for
near-optimal reinforcement learning. The Journal of Machine Learning Research, 3:213–231,
2003.

[26] Sham Machandranath Kakade. On the sample complexity of reinforcement learning. PhD thesis,
University of College London, 2003.

[27] Rémi Munos and Csaba Szepesvári. Finite-time bounds for fitted value iteration. Journal of
Machine Learning Research, 9(May):815–857, 2008.

[28] Amir-massoud Farahmand, Csaba Szepesvári, and Rémi Munos. Error Propagation for Approx-
imate Policy and Value Iteration. In Advances in Neural Information Processing Systems, pages
568–576, 2010.

[29] Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement
learning. In Proceedings of the 36th International Conference on Machine Learning, pages
1042–1051, 2019.

[30] Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E. Schapire.
Contextual decision processes with low Bellman rank are PAC-learnable. In International
Conference on Machine Learning, 2017.

[31] J v Neumann. Zur theorie der gesellschaftsspiele. Mathematische annalen, 100(1):295–320,
1928.

[32] Maurice Sion et al. On general minimax theorems. Pacific Journal of mathematics, 8(1):
171–176, 1958.

[33] Cameron Voloshin, Hoang M Le, Nan Jiang, and Yisong Yue. Empirical study of off-policy
policy evaluation for reinforcement learning. arXiv preprint arXiv:1911.06854, 2019.

[34] Nan Jiang. CS 598: Notes on Rmax exploration. University of Illinois at Urbana-Champaign,
2018. http://nanjiang.cs.illinois.edu/files/cs598/note7.pdf.

11

http://nanjiang.cs.illinois.edu/files/cs598/note7.pdf

[35] Alfred Müller. Integral probability metrics and their generating classes of functions. Advances
in Applied Probability, 29(2):429–443, 1997.

[36] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[37] Mengdi Wang. Primal-dual π learning: Sample complexity and sublinear run time for ergodic
markov decision problems. arXiv preprint arXiv:1710.06100, 2017.

12

Table 1: Comparison of the upper and lower bounds of J(π) obtained by different OPE meth-
ods. Rows 1,2,4,5 are the bounds derived in this paper, and Rows 3,6 (with ′) are their naïve
counterparts obtained by the approximation guarantees of previous methods, which are looser (see
Appendix E). ŵ (and q̂) is the w (and q) that attains the infimum in the rest of the expression, e.g.,
ŵ := arg minw supq |Lw(w, q)|. The red terms highlight why the naïve bounds are loose. All
expressions with subscript “w” are valid upper or lower bounds when C(Q) is realizable, and those
with “q” are derived assuming realizable C(W).
Lw(w, q) := q(s0, π) + Ew[γq(s′, π)− q(s, a)]. Lq(w, q) := Ew[r + γq(s′, π)− q(s, a)].
Our loss L(w, q) = Ew[r] + Lw(w, q) = q(s0, π) + Lq(w, q).

Expression Remark

UBw infw supq

(
Ew[r] + Lw(w, q)

)
New

LBw supw infq

(
Ew[r] + Lw(w, q)

)
Fenchel AlgaeDICE [20]

UBw
′

LBw
′ Eŵ[r]± infw supq |Lw(w, q)| MWL [1]

see also Liu et al. [5], Zhang et al. [14]

UBq infq supw

(
q(s0, π) + Lq(w, q)

)
= LBw with convex Q andW

LBq supq infw

(
q(s0, π) + Lq(w, q)

)
= UBw with convex Q andW

UBq
′

LBq
′ q̂(s0, π)± infq supw |Lq(w, q)| MQL [1]

A Proofs of Section 4

Proof of Theorem 2. Let w1 denote the w that attains the infimum in UBw.10

UBw − J(π) = sup
q∈Q

L(w1, q)− L(w1, Q
π) (Lemma 1: ∀w, J(π) = L(w,Qπ))

≥ inf
w∈W

sup
q∈Q
{L(w, q)− L(w,Qπ)}

= inf
w∈W

sup
q∈Q

Lw(w, q −Qπ). (Ew[r] terms cancel)

Similarly, let w2 denote the w that attains the supremum in LBw,

J(π)− LBw = L(w2, Q
π)− inf

q∈Q
L(w2, q) ≥ inf

w∈W
sup
q∈Q
{L(w,Qπ)− L(w, q)}.

The corollary follows because ∀w, both supq∈Q{L(w, q) − L(w,Qπ)} and supq∈Q{L(w,Qπ) −
L(w, q)} are non-negative when Qπ ∈ C(Q), noting that L(w, ·) is affine.

Proof of Theorem 3.

UBw − LBw = inf
w∈W

sup
q∈Q

L(w, q)− sup
w∈W

inf
q∈Q

L(w, q)

= inf
w,w′∈W

{
sup
q∈Q

L(w, q)− inf
q∈Q

L(w′, q)

}
≤ inf

w∈W

{
sup
q∈Q

L(w, q)− inf
q∈Q

L(w, q)

}
. (constraining w = w′)

Noting that L(w, q) = Ew[r] + Lw(w, q),

sup
q∈Q

L(w, q)− inf
q∈Q

L(w, q) = sup
q∈Q

Lw(w, q)− inf
q∈Q

Lw(w, q) ≤ 2 sup
q∈Q
|Lw(w, q)|.

When wπ/µ ∈ W , UBw ≤ LBw follows from the fact that Lw(wπ/µ, q) ≡ 0, ∀q.

10Point-wise supremum is lower semi-continuous, i.e., supq∈Q L(w, q) is lower semi-continuous in w and
hence the infimum is attainable.

13

Proof of Theorem 5. Let q1 denote the q that attains the infimum in UBq.

UBq − J(π) = sup
w∈W

L(w, q1)− L(wπ/µ, q1) (∀q, J(π) = L(wπ/µ, q))

≥ inf
q∈Q

sup
w∈W
{L(w, q)− L(wπ/µ, q)}.

Similarly, let q2 denote the q that attains the supremum in LBq,

J(π)− LBq = L(wπ/µ, q2)− inf
w∈W

L(w, q2) ≥ inf
q∈Q

sup
w∈W
{L(wπ/µ, q)− L(w, q)}.

The corollary follows because ∀q, both supw∈C(W){L(w, q) − L(wπ/µ, q)} and
supw∈C(W){L(wπ/µ, q)− L(w, q)} are non-negative when wπ/µ ∈ C(W).

Proof of Theorem 6.

UBq − LBq = inf
q∈Q

sup
w∈W

L(w, q)− sup
q∈Q

inf
w∈W

L(w, q)

= inf
q,q′∈Q

{
sup
w∈W

L(w, q)− inf
w∈W

L(w, q′)

}
≤ inf

q∈Q

{
sup
w∈W

L(w, q)− inf
w∈W

L(w, q)

}
. (constraining q = q′)

Note that L(w, q) = q(s0, π) + Lq(w, q), therefore,

sup
w∈W

L(w, q)− inf
w∈W

L(w, q) = sup
w∈W

Lq(w, q)− inf
w∈W

Lq(w, q) ≤ 2 sup
w∈W

|Lq(w, q)|.

When Qπ ∈ Q, UBq ≤ LBq follows from the fact that Lq(w,Qπ) ≡ 0, ∀w.

Proof of Theorem 7. Since L(w, q) is bi-affine—which implies that it is convex-concave—by the
minimax theorem [31, 32], the order of inf and sup are exchangeable.

B Relationships between the Intervals in the Non-convex Case

When Q andW are non-convex, Theorem 7 no longer holds but the intervals derived in Sec. 4.1
and 4.2 are still related in an interesting albeit more subtle manner; as stated in Theorem 8, the two
“reversed intervals” are generally tighter than the original intervals, but they are only valid under
stronger realizability conditions.

Below we provide the proof of Theorem 8.

Proof of Theorem 8. We only prove the first statement under Qπ ∈ Q, and the proof for the second
statement under wπ/µ ∈ W is similar and omitted. First of all, [UBq,LBq] ⊆ [LBw,UBw] holds
without assumingQπ ∈ Q, as sup inf(·) ≤ inf sup(·). Hence it suffices to show J(π) ∈ [UBq,LBq].

To prove this statement, we go back to Lemma 1, which states J(π) = L(w,Qπ) holds for arbitrary
w. Therefore,

sup
w∈W

L(w,Qπ) = J(π) = inf
w∈W

L(w,Qπ).

Now if we have Q such that Qπ ∈ Q, we immediately have

inf
q∈Q

sup
w∈W

L(w, q) ≤ sup
w∈W

L(w,Qπ) = J(π) = inf
w∈W

L(w, q) ≤ sup
q∈Q

inf
w∈W

L(w, q).

This completes the proof. Compared to the derivation in Sec. 4.1, we have changed the order in
which Q andW are introduced. As a consequence, we need to optimize q ∈ Q over the objectives
supw∈W L(w, q) and infw∈W L(w, q) which are no longer affine in q (due to supw∈W and infw∈W).
For this reason, Qπ ∈ C(Q) is no longer sufficient to guarantee the validity of the interval, and we
need the stronger condition Qπ ∈ Q.

14

In Theorem 8 we provide tighter intervals with stronger realizability assumptions (e.g., Qπ ∈ Q
instead of Qπ ∈ C(Q)). Below we show that such assumptions are necessary, that when we only have
Qπ ∈ C(Q) but not Qπ ∈ Q, the tighter interval [UBq,LBq] can be invalid. Similar conclusions
hold for [UBw,LBw] which we do not go over in detail.

Proposition 12. There exists an MDP, a target policy π, a data distribution µ, and function classes
Q andW satisfying Qπ /∈ Q but Qπ ∈ C(Q), where [UBq,LBq] is invalid.

Proof. We consider the deterministic MDP in Figure 4 with 3 states and 2 actions. s0 is the only
initial state, and s2 is an absorbing state. r(s, a) equals 1 if and only if s = s0 and a = a0, otherwise
0. We consider uniform policy π, i.e. π(si|aj) = 0.5 for all i ∈ {0, 1, 2}, j ∈ {0, 1}. Let µ be the
uniform distribution over S ×A.

s0 s1 s2
a1 a1

a0 a0 a0/a1

r(s0, a1)=0 r(s1, a1)=0

r(s2, a0/a1)=0r(s1, a0)=0r(s0, a0)=1

Figure 4: The MDP used in the proof of Proposition 12.

We construct Q so that it contains two functions q1 and q2, defined as:

q1(s, a) = Qπ(s, a) + ε · I[s = s1], q2(s, a) = Qπ(s, a)− ε · I[s = s1],

for some ε > 0. It is easy to verify that Qπ /∈ Q but Qπ = 1
2 (q1 + q2) ∈ C(Q). Also letW be

W =

{
1

1− γ
· f(s, a)

Eµ[f(s, a)]
: f ∈ [0, |S × A|]S×A

}
We pick out two elements w1, w2 fromW:

w1(s, a) =
6I[s = s0, a = a1]

1− γ
, w2(s, a) =

6I[s = s1, a = a1]

1− γ
.

Let L(w, q) := q(s0, π) + Ew[r + γq(s′, π)− q(s, a)], and

sup
w∈W

L(w, q1)− J(π) = sup
w∈W

L(w, q1)−Qπ(s0, π) ≥ L(w1, q1)−Qπ(s0, π)

=q1(s0, π) + Ew1
[r + γq1(s′, π)− q1(s, a)]−Qπ(s0, π)

=
r(s0, a1) + γ(1

2q1(s1, a0) + 1
2q1(s1, a1))− q1(s0, a1)

1− γ
=

γε

1− γ
> 0.

sup
w∈W

L(w, q2)− J(π) = sup
w∈W

L(w, q2)−Qπ(s0, π) ≥ L(w2, q2)−Qπ(s0, π)

=q2(s0, π) + Ew2
[r + γ(q2(s′, π))− q2(s, a)]−Qπ(s0, π)

=
r(s1, a1) + γ(1

2q2(s2, a0) + 1
2q2(s2, a1))− q2(s1, a1)

1− γ
=

ε

1− γ
> 0.

Therefore, infq∈Q supw∈W L(w, q) − J(π) = min{supw∈W L(w, q1), supw∈W L(w, q2)} > 0,
which implies that the lower bound is invalid. The upper bound can be shown to be invalid in a
similar manner.

15

C On Double Robustness

Our interval is valid when either function class is well-specified, which can be viewed as a type
of double robustness. This is related to but different from the usual notion of double robustness in
RL [17, 3, 18, 19]: classical doubly robust methods are typically “meta”-estimators and require a
value-function whose estimation procedure is unspecified, and the double robustness refers to the fact
that the estimation is unbiased and/or enjoys reduced variance if the given value-function is accurate.
In comparison, our double robustness gives weaker guarantees (valid interval, as opposed to accurate
point estimates) but also requires much weaker assumptions (well-specified function class as opposed
to an accurate function), so it is important not to confuse the two types of double robustness.

D On AlgaeDICE’s Notations

In this section, we clarify the difference between the notations in AlgaeDICE [20] and ours.

We take the objective in their Eq.(15) as an example (maxπ is dropped):
min

ν:S×A→R
max

ζ:S×A→R
(1− γ)Es0∼µ0,a0∼π(s0)[ν(s0, a0)]

+ E(s,a)∼dD,s′∼T (s,a),a′∼π(s′)[(γν(s′, a′) + r(s, a)− ν(s, a)) · ζ(s, a)− α · f(ζ)].

As we can see, if we choose α = 0, the above is almost precisely our UBq (= LBw with convex
classes): their T is our P ; their ν is our q; their ζ is our w; their ν(s0, a0) term corresponds
to our q(s0, π) as we assume deterministic initial state w.l.o.g. (see our Footnote 1); they take
expectation over the finite sample dD while we assume exact expectation over µ (from which D can
be sampled; see also Appendix L for related discussions on generalization errors); finally, they derive
the expression using fully expressive function classes S ×A → R, where our derivation always uses
restricted function classes Q andW .

Other than the above items, the only remaining difference is in the normalization convention: we
define J(π) and dπ (and hence wπ/µ and w) all in a unnormalized manner, whereas they take the
normalized versions, which is why the expression still differs by a factor of (1− γ).

E Comparison to Naïve Intervals

We discuss in further details here why our upper and lower bounds are tighter than the naïve ones
from previous works (see Table 1 and Remark 3). We compare UBq and UBq

′ as an example, and
the situation for the other pairs of bounds are similar.

Recall that the upper bound derived from MQL [1] is

UBq
′ = q̂(s0, π) + inf

q∈Q
sup
w∈W

∣∣∣Ew[Lq(w, q)]
∣∣∣, (14)

where Lq(w, q) := Ew[r + γq(s′, π) − q(s, a)], and q̂ = arg minq∈Q supw∈W

∣∣∣Lq(w, q)
∣∣∣. In

comparison, our bound is

UBq = inf
q∈Q

sup
w∈W

(
q(s0, π) + Lq(w, q)

)
. (15)

Both bounds are valid upper bounds with realizable C(Q). Below we show that our upper bound is
never higher than its naïve counterpart (this result does not require realizable Q).
Proposition 13. UBq ≤ UBq

′.

Proof.

UBq = inf
q∈Q

(
q(s0, π) + sup

w∈W
Lq(w, q)

)
≤ q̂(s0, π) + sup

w∈W
Lq(w, q̂) (16)

≤ q̂(s0, π) + sup
w∈W

|Lq(w, q̂)| (17)

= q̂(s0, π) + inf
q∈Q

sup
w∈W

|Lq(w, q)| = UBq
′.

16

Remark 5. As we can see, the tightness of UBq comes from two sources: (1) that we perform a
unified optimization and put q(s0, π) inside infq∈Q (reflected in Eq.(16)), and (2) that we do not need
the absolute value in our objective (reflected in Eq.(17)). On the other hand, ifW is symmetric—that
is, −w ∈ W,∀w ∈ W—then we only enjoy the first kind of tightness.11

Remark 6. UBq = UBq
′ requires supw∈W Lq(w, q̂) = supw∈W |Lq(w, q̂)| as a necessary condi-

tion. Similarly, one can show that LBq = LBq
′ requires − infw∈W Lq(w, q̂) = supw∈W |Lq(w, q̂)|.

Therefore, as long as
− sup
q∈Q

inf
w∈W

Lq(w, q) 6= inf
q∈Q

sup
w∈W

Lq(w, q),

at least one side of our interval will be strictly tighter than before.

F Regularization

Here we show how to introduce regularization into our intervals in a way similar to [20].

Derivation using Fenchel–Legendre Transformation We exemplify how to adapt the derivation
in Sec. 4.1 to obtain the regularized interval in Sec. 4.1; the adaptation of Sec. 4.2 is similar which
we leave to the readers. Our derivation uses Fenchel-Legendre transformation in a way similar to
[20, 21]: we assume that f : R→ R has a convex conjugate f∗ (i.e., f∗(x∗) = supx{x ·x∗− f(x)})
that satisfies f∗(0) = 0. Below we show that by inserting such an f∗ into the derivation, we can
obtain an interval that uses f as the regularization function.

J(π) = Qπ(s0, π) + Es,a∼µ
[
f∗
(
Er,s′|s,a

[
r + γQπ(s′, π)−Qπ(s, a)

])]
(T Qπ = Qπ and f∗(0) = 0)

= Qπ(s0, π) + Es,a∼µ
[

sup
x

(
x · Er,s′|s,a

[
r + γQπ(s′, π)−Qπ(s, a)

]
− f(x)

)]
≥ Qπ(s0, π) + Es,a∼µ

[
w(s, a) · Er,s′|s,a

[
r + γQπ(s′, π)−Qπ(s, a)

]
− f(w(s, a))

]
(Replace x for each (s, a) by w(s, a) using an arbitrary w ∈ W)

= Qπ(s0, π) + Eµ
[
w(s, a) ·

(
r + γQπ(s′, π)−Qπ(s, a)

)
− f(w(s, a))

]
.

Although f may be nonlinear, it is only applied to w and the entire expression is still affine in Qπ , so
we can replace Qπ with infq∈Q as before:

J(π) ≥ inf
q∈Q

q(s0, π) + Eµ
[
w(s, a) ·

(
r + γQπ(s′, π)−Qπ(s, a)

)
− f(w(s, a))

]
.

Since it holds for arbitrary w, we take supw∈W and obtain the lower bound:

J(π) ≥ sup
w∈W

(
inf
q∈Q

L(w, q)− Eµ[f(w(s, a))]

)
. (18)

Similarly, the upper bound (under Qπ ∈ C(Q)) is

J(π) ≤ inf
w∈W

(
sup
q∈Q

L(w, q) + Eµ[f(w(s, a))]

)
. (19)

Properties of the Regularized Interval From the above derivation, we see that the regularized
interval is valid when Qπ ∈ C(Q), which is the same condition needed for the validity of the
unregularized interval in Sec. 4.1. One may naturally wonder what their relationship is, and the
answer is very simple: adding any nontrivial regularization loosens the interval.

To see this, first notice that Eq.(18) and (19) differ from LBw and UBw by a term Eµ[f(w(s, a))]:
such a term is subtracted from the lower bound and added to the upper bound. Now recall that our
derivation crucially relies on f∗(0) = 0. A direct consequence is that f must be non-negative, as
f∗(0) = infx f(x). Therefore, the regularization increases the upper bound and decreases the lower
bound, which makes the interval looser. The tightest bound is obtained without any regularization,
i.e., LBw and UBw, which corresponds to f ≡ 0, whose convex conjugate is

f∗(x∗) =

{
0, x = 0;

+∞, x 6= 0.
11This is because Lq(w, q) is linear in w, and Eq.(17) becomes an identity.

17

Figure 5: Example training curves averaged over 10 seeds. Error bars show twice the standard errors.
The curves have been smoothed with a window size corresponding to 20 q-w alternations. Top:
The difference between behavior policy and target policy is relatively small, and UBq > LBq. The
interval [LBq,UBq] is significantly tighter than [LBq

′,UBq
′]. Bottom: Target policy is significantly

different from the behavior policy, and realizing the importance weight is challenging. In this case, a
reversed interval is observed, i.e. UBq < LBq.

G OPE Experiments

G.1 Environment and Behavior & Target Policies

We conduct experiments in the CartPole environment with γ = 0.99. Following Uehara et al. [1],
we modify the reward function and add small Gaussian noise to transition dynamics to make OPE
more challenging in this environment.12 To generate the behavior and the target policies, we apply
softmax on a near-optimal Q-function trained via the open source code13 of DQN with an adjustable
temperature parameter τ :

π(a|s) ∝ exp(
Q(s, a)

τ
). (20)

The behavior policy πb is chosen as τ = 1.0, and we use other values of τ for target policies.
To collect the dataset, we truncate the generated trajectories at the 1000-th time step. For those
terminated within 1000 steps, we pad the rest of the trajectories with the terminal states. We treat
µ = dπ and approximate such a data distribution by weighting each data point (s, a, r, s′) with a
weight γt, where t is the time step s is observed. All experiments generate datasets of 200 trajectories
except for the interval length comparison (Fig. 3), where the sample size is indicated on the x-axis.
We report average results over 10 seeds in all the OPE experiments, and show twice the standard
errors as error bars which correspond to 95% confidence intervals.

G.2 Details of the Algorithms

We compare UBq and LBq to UBq
′ and LBq

′ in Table 1. We use Multilayer Perceptron (MLP) to
construct Q andW . The detailed specification of Q will be given later. ForW , the ideal choice
denoted byWα is defined as:

Wα =
{
w(·, ·) =

α|f(·, ·)|
Eµ[|f |]

∣∣∣f ∈ MLP
}
.

Note that normalizing with Eµ[|f |] allows us to directly control the expectation of any w ∈ W to
be α, and we use α = 25/(1− γ) throughout the OPE experiments. However, directly optimizing
overWα is quite unstable, and we consider the following relaxation of our upper and lower bounds:

12Many policies are indistinguishable under the original 0/1 reward function, so we define an angle-dependent
reward function that takes numerical values. We also add random noise to make the transitions stochastic.

13https://github.com/openai/baselines

18

https://github.com/openai/baselines

fixing any q ∈ Q, for any w ∈ Wα, we relax the Ew[r + γq(s′, π)− q(s, a)] term in UBq as

Ew
[
r + γq(s′, π)− q(s, a)

]
=Eµ

[
(r + γq(s′, π)− q(s, a))

α|f |
Eµ[|f |]

]
≤Eµ

[
(r + γq(s′, π)− q(s, a))

α|f |I[r + γq(s′, π)− q(s, a) > 0]

Eµ[|f |]

]
, (21)

where I[·] = 1 if the predicate is true, and 0 otherwise. So essentially we turn each f into a
weighting function w that evaluates to α|f |I[r+γq(s′,π)−q(s,a)>0]

Eµ[|f |] on each data point (s, a, r, s′). Such
a relaxation helps stabilize training and results in a looser upper bound compared to UBq, which is
still valid as long as UBq is a valid upper bound. We similarly relax the lower bound by replacing
I[r + γq(s′, π)− q(s, a) > 0] with I[r + γq(s′, π)− q(s, a) < 0].

In addition, although optimizing MQL loss with Wα can converge, we find that using the same
relaxation can further stabilize training and lead to better results. Therefore, we adopt this trick in the
calculation of UBq

′ and LBq
′ as well.

We use a 32×32 MLP (with tanh activation) to parameterize q (except in Fig 1 where the architecture
is indicated on the x-axis) and use a one-hidden-layer MLP with 32 units for f (which produces
w). Moreover, we clip q in the interval [Rmin

1−γ − δ,
Rmax

1−γ], where Rmin = 0.0, Rmax = 3.0, δ = 20.
We use stochastic gradient descent ascent (SGDA) with minimatches for optimization, and alternate
between q and w every 500 and 50 iterations, respectively. The learning rates are both fixed as 0.005,
and each minibatch consists of 500 transition tuples. The normalization factor in the relaxed objective
is approximated on the minibatch. During the q-optimization phases, the weights w (which depends
on q through the indicators) is treated as a constant and does not contribute to the gradients, but is
re-computed every time q is updated. See example training curves in Fig. 5.

G.3 Bootstrapping Intervals

To account for statistical errors in our interval, we sample the dataset with replacement to generate 20
bootstrapped datasets with the same size as the original dataset. Then, we run our algorithms on those
new datasets and record the upper/lower bounds. We pick the k-th largest (smallest) upper (lower)
bound as the final upper (lower) bound, and for figures shown here we use k = 1. We report interval
lengths and validity ratios averaged over 10 runs.

G.4 On Comparison to MQL

The comparison in Fig. 3 should be interpreted carefully. This figure is used to demonstrate the
theoretical predictions in App. E, where the two methods use the same Q and W classes. Note
that our choice of W class in this experiment, Wα, comes with a hyperparameter α that adjusts
the magnitude of the functions in the class, and we choose a fairly large value of α = 25/(1 − γ)
for stability of optimization. (A more principled optimization approach is also an interesting future
direction, which may allow us to choose a much smaller value of α for our intervals.) The loss of
MQL, on the other hand, is homogeneous in w ∈ W hence the algorithm is invariant to the rescaling
ofW . Therefore, the value of α has no effect on the training process and merely determines the
length of the interval in a straightforward manner (i.e., when we change α, MQL’s interval length
scales linearly with α, and its center does not move). To this end, the α for MQL could have been
tuned to obtain a tighter yet still valid interval, although this is difficult in practice as we do not have
the groundtruth value to tune α against (otherwise OPE would not be necessary; see discussions in
[33]). Nevertheless, we reiterate that Fig. 3 is only meant to empirically illustrate the theoretical
predictions of App. E, and to compare the two methods fairly the value of α should be tuned for
MQL in some fashion, which we do not investigate in this paper.

19

H Sanity-Check Experiments

In App. G we introduced several tricks to stabilize the difficult minimax optimization problems
associated with our intervals. While the tricks have worked out empirically in CartPole, we would
like to further understand the legitimacy and the consequences of these tricks.

The major modification is the relaxation in Eq.(21), where we allow w ∈ W to depend not only
on (s, a) but also on the randomness of (r, s′). A potential caveat is that, if the transition or
reward function are stochastic, given two tuples (s1, a1, r1, s

′
1) and (s2, a2, r2, s

′
2), it is possible

that w(s1, a1) 6= w(s2, a2) if s1 = s2, a1 = a2 but r1 6= r2 or s′1 6= s′2. In comparison, without
the relaxation in Eq.(21), we shall always have w(s1, a1) = w(s2, a2). While we may hardly find
two identical state-action pairs in continuous tasks, the issue still exists if we observe states that are
considered close to each other by the function approximatorW . Therefore, we hypothesize that this
relaxation may make the interval loose when the environment is highly stochastic, and an ideal way
to test this hypothesis is to conduct an experiment in a tabular environment because (1) it is easy to
find tabular environments with sufficient stochasticity, and (2) we can afford to implement a more
faithful version of our algorithm in the tabular setting, which could be unstable and even diverge in
the function-approximation setting.

Experiment Setup Given the above considerations, we conduct additional experiments in Taxi,
a tabular environment with 2000 states and 6 actions. We parameterize Q with |S| × |A| bounded

variables, i.e., Q =
[
Rmin

1−γ ,
Rmax

1−γ

]S×A
. As forW , we consider three different function classes:

Wα
1 ={w(s, a) =

αf(s, a)I[r + γQ(s′, π)−Q(s, a) > 0]

E(s̃,ã,r̃,s̃′)∼µ[f(s̃, ã)]
,∀(s, a) ∈ S ×A}

∪ {w(s, a) =
αf(s, a)I[r + γQ(s′, π)−Q(s, a) < 0]

E(s̃,ã,r̃,s̃′)∼µ[f(s̃, ã)]
,∀(s, a) ∈ S ×A}

Wα
2 ={w(s, a) =

αf(s, a)I[Er,s′|s,a[r + γQ(s′, π)−Q(s, a)] > 0]

E(s̃,ã)∼µ[f(s̃, ã)]
,∀(s, a) ∈ S ×A}

∪ {w(s, a) =
αf(s, a)I[Er,s′|s,a[r + γQ(s′, π)−Q(s, a)] < 0]

E(s̃,ã)∼µ[f(s̃, ã)]
,∀(s, a) ∈ S ×A}

Wα
3 ={w(s, a) =

αf(s, a)

E(s̃,ã)∼µ[f(s̃, ã)]
,∀(s, a) ∈ S ×A}

where f can take independent values in different (s, a) (i.e., we use a tabular representation for f).
We only constrain f to be positive but do not clip its value; during the training processes its value is
usually bounded.

As we can see,Wα
1 precisely corresponds to the relaxation in Eq.(21), where we replaced the MLP

f with a tabular f . We compare it to two alternatives: Wα
2 and Wα

3 : in Wα
2 , we first integrate

out the randomness in Er,s′|s,a so that w does not depend on (r, s′), but still keep the modification
related to the use of indicator function I[. . . > 0] that avoids negativity. This indicator trick is further
removed in Wα

3 , where we have a completely faithful implementation of the original algorithm.
When optimizing withWα

1 andWα
2 , we adopt SGDA and alternate between optimizing Q and w

every 250 iterations. The learning rate for both Q and w are 5e-3, and the batch size is 500. When
optimizing with Wα

3 , we found that SGDA can lead to unstability, and we instead update Q and
w synchronously at each training iteration. (As a side note, synchronous updates fail in CartPole
experiments.) We use the whole dataset in each iteration, and the learning rate is fixed to 5e-3.

The results are showed in Figure 6. As we can see, the dependence of w on (r, s′) indeed result in a
looser bound asymptotically. Moreover, the use of the indicator trick does not make the interval loose
in this case, while it converges more slowly than synchronously updating Q and w withWα

3 . The
looseness ofWα

1 suggests that our optimization strategy in Appendix G is not general enough, and it
will be important to investigate more principled optimization strategies that directly work with the
original optimization problem without the relaxation in Eq.(21).

20

Figure 6: Comparison between experiments on Taxi with different function classes. Average over
3 seeds. Red Curves: Upper/Lowers bound usingWα

1 . Blue Curves: Upper/Lower bounds using
Wα

2 . Green Curves: Upper/Lower bounds usingWα
3 .

I Rmax / Rmin

Here we review the concept of Rmax and Rmin in detail, and provide the proof of Proposition 9. We
first recall the setup of Sec. 5.1:

Setup Consider an MDP with finite and discrete state and action spaces. Let S̃ ⊂ S be a subset of the
state space, and s0 ∈ S̃. Suppose the dataset contains n transition samples from each s ∈ S̃, a ∈ A
with n→∞ (i.e., the transitions and rewards in S̃ are fully known), and 0 samples from s /∈ S̃.

Rmax and Rmin In such a simplified setting, effective exploration can be achieved by (the episodic
version of) the well-known Rmax algorithm [25, 26], which computes the optimal policy of the
Rmax-MDP Mmax, defined as (S,A, PMmax

, RMmin
, γ, s0), where14

PMmax(s, a) =

{
P (s, a), if s ∈ S̃
I[s′ = s], if s /∈ S̃ , RMmax(s, a) =

{
R(s, a), if s ∈ S̃
Rmax, if s /∈ S̃ .

In words, Mmax is the same as the true MDP M on states with sufficient data, and the remaining
“unknown” states are assumed to have self-loops with Rmax immediate rewards, making them
appealing to visit and thus encouraging exploration. The theoretical guarantee for the policy computed
by Rmax is an optimal-or-explore statement [see e.g., 34], that either the optimal policy of Mmax is
near-optimal in trueM , or its occupancy measure must visit states outside S̃ , with a mass proportional
to its suboptimality. Similarly, when the goal is to exploit, that is, to output a policy with the best
worst-case guarantee, one simply needs to change the Rmax in the Rmax-MDP to the minimally
possible reward value (which is 0 in our setting), and we call this MDP Mmin.

Remark 7. In the simplified setting above, the states outside S̃ receive no data at all. In the more
general case where S̃ is still under-explored but every state receives any least 1 data point, it is not
difficult to show that both MUB-PO and MLB-PO reduce to the certainty-equivalent solution, and
can overfit to the poor estimation of transitions and rewards in states with few data points. Such a
degenerate behavior may be prevented by regularizing w and prohibiting any highly spiked w (e.g.,
regularizing with Eµ[w2], which measures the effective sample size of importance weighted estimate
induced by w), or by bootstrapping and taking data randomness into consideration during policy
optimization.

Proof of Proposition 9. LetM be the space of all MDPs that are consistent with the given dataset.
Let Mmax and Mmin be the Rmax and Rmin MDPs, resp., and it is clear that Mmax,Mmin ∈M.

MLB-PO Reduces to Rmin To show that MLB-PO reduces to Rmin, it suffices to prove that
for every π : S → A, LBπw = JMmin(π). Since Q is the tabular function space and always

14With a slight abuse of notations, in this section we treat R : S ×A → [0, Rmax] as a deterministic reward
function for convenience.

21

realizable (regardless of the true MDP M), LBπw is a valid lower bound, i.e., LBπw ≤ J(π). Since
all MDPs inM could be the true M , it must hold that LBπw ≤ JMmin(π). It suffices to show that
LBπw ≥ JMmin(π).

Recall that
LBπw = sup

w∈W
inf
q∈Q
{q(s0, π) + Ew[r + γq(s′, π)− q(s, a)]} .

Since Q is the unrestricted tabular function space, we may represent q ∈ Q as a |S × A| vector
where each coordinate q(s, a) can take values between [0, Rmax/(1 − γ)] independently. Now
note that for any s′ /∈ S̃, a′ ∈ A, q(s′, a′) as a decision variable may only appear as the γq(s′, π)
term in the objective and can never appear as q(s0, π) or −q(s, a). Since W only contains non-
negative functions, L(w, q) is non-decreasing in q(s′, π), and infq∈Q can always be attained when
q(s′, a′) = 0, ∀s′ /∈ S̃, a′ ∈ A. For any w ∈ W , let qw denote such a q ∈ Q that achieves the inner
infimum, and

LBπw = sup
w∈W
{qw(s0, π) + Ew[r + γqw(s′, π)− qw(s, a)]}.

Next, consider the discounted occupancy of π in Mmin, denoted as dπMmin
. Define

w0(s, a) := I[s ∈ S̃]
dπMmin

(s, a)

1/|S̃ × A|
.

Let q0 = qw0
. Now, since w0 ∈ W ,

LBπw ≥ q0(s0, π) + Ew0
[r + γq0(s′, π)− q0(s, a)]

= q0(s0, π) +
1

|S̃ × A|

∑
s∈S̃,a∈A

w0(s, a)(R(s, a) + γEs′∼P (s,a)[q0(s′, π)]− q0(s, a))

= q0(s0, π) +
∑

s∈S̃,a∈A

dπMmin
(s, a)(R(s, a) + γEs′∼P (s,a)[q0(s′, π)]− q0(s, a))

=
∑

s∈S̃,a∈A

dπMmin
(s, a)R(s, a) +

∑
s∈S,a∈A

ν(s, a)q0(s, a),

where

ν(s, a) := I[s = s0, a = π(s0)] + γ
∑

s′∈S̃,a′∈A

dπMmin
(s′, a′)P (s|s′, a′)− I[s ∈ S̃]dπMmin

(s, a).

Note that∑
s∈S̃,a∈A

dπMmin
(s, a)R(s, a) =

∑
s∈S̃,a∈A

dπMmin
(s, a)R(s, a) +

∑
s/∈S̃,a∈A

dπMmin
(s, a) · 0 = JMmin

(π),

so it suffices to show that
∑
s∈S,a∈A ν(s, a)q0(s, a) = 0, which we establish in the rest of this proof.

Recall that q0(s, a) = 0 for any s /∈ S̃ . So
∑
s∈S,a∈A ν(s, a)q0(s, a) =

∑
s∈S,a∈A ν

′(s, a)q0(s, a),
where

ν′(s, a) := I[s = s0, a = π(s0)] + γ
∑

s′∈S,a′∈A
dπMmin

(s′, a′)PMmin
(s|s′, a′)− dπMmin

(s, a).

This is because ν and ν′ exactly agree on the value in s ∈ S̃, and only differ on s /∈ S̃. To see this,
consider any s ∈ S̃, a ∈ A. ν and ν′ agree on the first and the last terms. They also agree on the
second term for the summation variables s′ ∈ S̃, a′ ∈ A, as P (s|s′, a′) = PMmin

(s|s′, a′) (the MDP
Mmin has the true transition probabilities on states with sufficient data). So the only difference is

γ
∑

s′ /∈S̃,a′∈A

dπMmin
(s′, a′)PMmin

(s|s′, a′).

However, this term must be zero, because for any s ∈ S̃, s′ /∈ S̃, PMmin(s|s′, a′) = 0, as the
construction of Mmin guarantees that no states outside S̃ will ever transition back to S̃ . Now that we
conclude ν(s, a)q0(s, a) = ν′(s, a)q0(s, a), the fact that it is zero is obvious: ν′ ≡ 0, which follows
directly from the Bellman equation for discounted occupancy in MDP Mmin. This completes the
proof of LBπw = JMmin

(π).

22

MUB-PO Reduces to Rmax The proof for UBπw = JMmax(π) is similar. Using the same argument
as above, we know that UBπw ≥ JMmax(π) and it suffices to show that UBπw ≤ JMmax(π).

Recall that

UBπw = inf
w∈W

sup
q∈Q
{q(s0, π) + Ew[r + γq(s′, π)− q(s, a)]} .

Next, we consider the discounted occupancy of π in Mmax, denoted as dπMmax
. Define w0 as (we

recycle the symbol from the previous part of the proof)

w0(s, a) := I[s ∈ S̃]
dπMmax

(s, a)

1/|S̃ × A|
.

and q0 as

q0 := arg max
q∈Q
{q(s0, π) + Ew0 [r + γq(s′, π)− q(s, a)]} .

With the same argument as the Rmin case, we can always have q0(s, a) = Rmax

1−γ ,∀s /∈ S̃, a ∈ A.

Since w0 ∈ W ,

UBπw ≤ q0(s0, π) + Ew0
[r + γq0(s′, π)− q0(s, a)]

= q0(s0, π) +
1

|S̃ × A|

∑
s∈S̃,a∈A

w0(s, a)(R(s, a) + γEs′∼P (s,a)[q0(s′, π)]− q0(s, a))

= q0(s0, π) +
∑

s∈S̃,a∈A

dπMmax
(s, a)(R(s, a) + γEs′∼P (s,a)[q0(s′, π)]− q0(s, a))

= q0(s0, π) + JMmax(π)−
∑

s/∈S̃,a∈A

dπMmax
(s, a)Rmax

+
∑

s∈S̃,a∈A

dπMmax
(s, a)(γEs′∼P (s,a)[q0(s′, π)]− q0(s, a)).

The last step follows from the fact that in Mmax, all s 6∈ S̃ are absorbing states with Rmax rewards.
Now that we have extracted out JMmax

(π), it suffices to show that the remaining terms cancel.

To show the cancellation, we will use two properties of the Mmax construction: (1) For any s /∈ S̃,
q0(s, a) − γEs′∼PMmax (s,a)[q0(s′, π)] = Rmax

1−γ −
γRmax

1−γ = Rmax (because PMmax
(s, a) is a point

mass on s), and (2) for any s ∈ S̃, PMmax
(s, a) = P (s, a). Using these, we may rewrite the

remaining terms as

q0(s0, π)−
∑

s/∈S̃,a∈A

dπMmax
(s, a)Rmax +

∑
s∈S̃,a∈A

dπMmax
(s, a)(γEs′∼P (s,a)[q0(s′, π)]− q0(s, a))

=q0(s0, π) +
∑

s∈S,a∈A
dπMmax

(s, a)(γEs′∼PMmax (s,a)[q0(s′, π)]− q0(s, a)).

This is 0 due to the Bellman equation for occupancy dπMmax
in the MDP Mmax (which we have also

used in Lemma 4).

J Additional Proofs, Results, and Discussions of Section 5

J.1 Proof of Proosition 10

It suffices to show that J(π̂) ≥ LBπ̂w, which follows directly from Theorem 2: LBπw is a valid lower
bound for any π ∈ Π due to the realizability of Q. The corollary holds because for π with wπ/µ
realized byW , Theorems 2 and 3 guarantee that J(π) = LBπw.

23

J.2 Full Version of Proposition 11 and Proof

Proposition 14 (Full version of Proposition 11). Let Π be a policy class. Let π̂ = arg maxπ∈Π UBπw.
Then, for any w ∈ W ,

IPM(w · µ, dπ̂;F) ≥ max
π∈Π:Qπ∈C(Q)

J(π)− J(π̂),

where

• (w · µ)(s, a) := w(s, a) · µ(s, a),

• IPM(ν1, ν2;F) := supf∈F |Eν1 [f]− Eν2 [f]|,

• F := {T πq − q : q ∈ Q, π ∈ Π}.

As a corollary, if we further assume ‖q‖∞ ≤ Rmax/(1− γ),∀q ∈ Q,

‖w · µ− dπ̂‖1 ≥
(1− γ)

(
maxπ∈Π:Qπ∈C(Q) J(π)− J(π̂)

)
2Rmax

.

To interpret the result, recall that w ∈ W is supposed to model an importance weight function that
coverts the data distribution to the occupancy measure of some policy, e.g., wπ/µ · µ = dπ. The
proposition states that either π̂ is near-optimal, or it will induce an occupancy measure that cannot be
accurately modeled by any importance weights inW when applied on the current data distribution µ.
The distance15 between the two distributions dπ and w · µ is measured by the Integral Probability
Metric [35] defined w.r.t. a discriminator class F , and can be relaxed to the looser but simpler `1
distance. Therefore, if we have a richW class that models all distributions covered by µ, then π̂ must
visit new areas in the state-action space or it must be near-optimal.

Below we give the proof of Proposition 14, which reuses many results established in Sec. 4.

Proof of Proposition 14. Fixing any π ∈ Π such that Qπ ∈ C(Q):
J(π)− J(π̂) ≤ UBπw − J(π̂) (UBw is valid upper bound as Qπ realized by C(Q))

≤ UBπ̂w − J(π̂). (π̂ optimizes UBπw)

Recall that UBπ̂w = infw∈W supq∈Q L(w, q; π̂), so for any w ∈ W , UBπ̂w ≤ supq∈Q L(w, q; π̂). On
the other hand, for any q, J(π̂) = L(wπ̂/µ, q). Now let qw := arg maxq∈Q L(w, q; π̂). For any
w ∈ W ,

max
π∈Π:Qπ∈Q

J(π)− J(π̂) ≤ UBπ̂w − J(π̂)

≤ L(w, qw; π̂)− L(wπ̂/µ, qw; π̂)

= Ew[r + γqw(s′, π̂)− qw(s, a)]− Ewπ̂/µ [r + γqw(s′, π̂)− qw(s, a)]

≤ |Ew[T π̂qw − qw]]− Ewπ̂/µ [T π̂qw − qw]|.
The main statement immediately follows by noticing that π̂ ∈ Π, qw ∈ Q, hence T πqw − qw ∈ F .
The `1-distance corollary follows from relaxing IPM using Hölder’s inequality for the `1 and `∞
pair.

J.3 Alternative Guarantee for MLB-PO

Proposition 10 shows that MLB-PO puts the heavy expressivity burden on Q and is agnostic against
misspecifiedW . When data has sufficient coverage andW is highly expressive, we can similarly
show that optimizing LBπq performs robust exploitation and is agnostic against misspecified Q.
Proposition 15 (Exploitation with expressive W). Let Π be a policy class, and assume wπ/µ ∈
C(W) ∀π ∈ Π. Let π̂ = arg maxπ∈Π LBπq . Then, for any π ∈ Π,

J(π̂) ≥ LBπq .

As a corollary, for any π such that Qπ ∈ Q, we have J(π̂) ≥ J(π), that is, we compete with any
policy whose value function can be realized by Q.

The proof is similar to that of Proposition 10 and hence omitted.
15w · µ may be unnormalized, but this does not affect our results.

24

Figure 7: Expected return and IPM of the learned policies as a function of training iterations in the
policy optimization experiments. Results in this figure are averaged over 5 random seeds. Top row:
Behavior policy is τ = 0.1; Bottom row: Behavior policy is τ = 1.0.

J.4 Connection between MUB-PO and OLIVE [30]

A complete algorithm for exploration usually involves multiple iterations data collection and policy
re-computation, and we only show that MUB-PO performs one such iteration effectively. There are
further design choices needed to complete MUB-PO into a full algorithm. For example, one may
repeatedly collect new data using the policy computed by MUB-PO and merge it with the data from
previous rounds. However, it is difficult to analyze the algorithm theoretically: the realizability of
C(W) depends on µ, but µ itself dynamically changes over the execution of the algorithm due to data
pooling, and any realizability-type assumptions such as wπ/µ ∈ W are no longer static and cannot
appear in an a priori guarantee.

One interesting way to avoid this difficulty is to use a special class of importance weights W:
instead of w that depends on (s, a), consider w that is (s, a)-independent and is indicator function
of the identity of the dataset. That is, the supw∈W in UBπw chooses among the datasets collected
in different rounds, and takes expectation w.r.t. only one of them (without reweighting within the
dataset), essentially avoiding data pooling. The resulting algorithm is very similar to a parameter-free
variant16 of the OLIVER algorithm by Jiang et al. [30, Algorithm 3], which has been shown to enjoy
low-sample complexities in a wide range of low-rank environments.

K Policy Optimization Experiments

In this section, we report the policy optimization results in CartPole environment. Due to the difficulty
of optimization, we follow Nachum et al. [20] and consider the following simplified heuristic version

16The original OLIVER algorithm requires the approximation error ofQ as an input, which can be avoided
by replacing its constrained optimization step with an unconstrained one similar to MUB-PO.

25

of MUB-PO and MLB-PO, which mostly applies in near-deterministic environments:

arg max
π

max
q
q(s0, π)− βEµ[|r + γq(s′, π)− q(s, a)|] (Simplified MUB-PO)

arg max
π

min
q
q(s0, π) + βEµ[|r + γq(s′, π)− q(s, a)|] (Simplified MLB-PO)

Here β is a hyperparameter (similar to the role of α in the OPE experiments) that controls the level of
pessimism in MLB-PO and optimism in MUB-PO. We parameterize the policy π(·|s) using a 32×32
MLP with a softmax layer.

For MUB-PO, we update q and π iteratively every 500 iterations. As for the lower bound, in order
to avoid the policy becoming greedy so quickly, we only update π once before alternating to Q.
Besides, we also report the results of DQN [36] for comparison. Among all the experiments, we
fix the learning rate as 5e−3 and the batch size as 500. All the Q-functions are parameterized by a
32×32 MLP.

Moreover, we also record the IPM of each algorithms during training, defined as:

IPM = max
f∈F

∣∣∣E(s,a)∼dπb [f(s, a)]− E(s,a)∼dπ [f(s, a)]
∣∣∣.

The IPM score measures the difference of the state-action visitation between the behavior policy and
the policy we are optimizing, which is inspired by Proposition 14 and reflects whether π explores
new states and actions outside the coverage of dπb . In practice, F is constructed by 50 randomly
initialized 32×32 MLPs.

In Fig. 7, we report the results with different behavior policies: τ = 0.1 (behavior policy is nearly
deterministic) and τ = 1.0 (behavior policy is more exploratory). For MLB-PO and MUB-PO,
we use β = 1/(1 − γ) and β = 3/(1 − γ) in τ = 0.1 and τ = 1.0, respectively. In both cases,
MLB-PO delivers good performance as expected, and when data is non-exploratory (τ = 0.1) it
outperforms DQN. Notably, MLB-PO does not use explicit regularization towards behavior policy as
many popular algorithms do. MUB-PO, on the other hand, fails to obtain a policy of high return, but
the IPM scores show that it can induce an occupancy significantly different from dπb , which is what
our theory anticipated (Proposition 14).

L Handling Statistical Errors based on Generalization Error Bounds

In this section we briefly explain how to construct a confidence bound that is valid with high probabil-
ity in the presence of sampling errors due to only having access to a finite dataset. We emphasize that
the construction based on generalization error bounds is typically loose for practical purposes and this
section only serves as a conceptual illustration. We will use UBw := infw∈W supq∈Q L(w, q) as an
example and the other upper/lower bounds can treated similarly. Let ÛBw denote the sample-based
approximation of UBw:

ÛBw = inf
w∈W

sup
q∈Q

L̂(w, q) := q(s0, π) + ED[w(s, a)(r + γq(s′, π)− q(s, a))].

where D is a dataset with n i.i.d. data points (s, a, r, s′) sampled as (s, a) ∼ µ, r ∼ R(s, a), s′ ∼
P (s, a). We assume W and Q have bounded ranges of output values, that is, there exists two
constants CW , CQ > 0, such that, w ∈ W , q ∈ Q, ‖w‖∞ ≤ CW , ‖q‖∞ ≤ CQ. As a result,

|L(w, q)| ≤|q(s0, π)|+ Eµ[|w(s, a)|(r + γ|q(s′, π)|+ |q(s, a)|)]

≤CQ +
CW

1− γ
(1 + (1 + γ)CQ) := Lmax.

In the following, we will use Lmax as a shorthand for the upper bound of |L(w, q)|.
According to standard results for Rademacher complexity, we have with probability 1− δ, for any
w ∈ W and q ∈ Q,

L(w, q) ≤ L̂(w, q) + 2R̂D(W,Q) + 6Lmax

√
log 2

δ

2n
. (22)

26

where R̂D(W,Q) := Eσ[sup(w,q)∈W×Q
1
n

∑
(s,a,r,s′)∈D σiL

(s,a,r,s′)(w, q)] is the empirical
Rademacher complexity ofW ×Q w.r.t. sample D, which can be computed from data.

We define (w∗, q∗) = arg minw∈W maxq∈Q L(w, q) and (ŵ∗, q̂∗) = arg minw∈W maxq∈Q L̂(w, q)
and use qŵ∗ to denote arg maxq∈Q L(w, q)(ŵ∗, q). Then, we have:

UBw =L(w∗, q∗) ≤ L(ŵ∗, qŵ∗) (23)

≤L̂(ŵ∗, qŵ∗) + 2R̂D(W,Q) + 6Lmax

√
log 2

δ

2n

≤L̂(ŵ∗, q̂∗) + 2R̂D(W,Q) + 6Lmax

√
log 2

δ

2n

=ÛBw + 2R̂D(W,Q) + 6Lmax

√
log 2

δ

2n
. (24)

Eq.(24) implies that, for a fixed policy π, with probability 1−δ, when UBw is a valid upper bound (for

example, when Qπ is realizable), then we can guarantee that ÛBw + 2R̂D(W,Q) + 6Lmax

√
log 2

δ

2n

is also a valid upper bound.

M Variants of Minimax Value Interval: Using Knowledge of Behavior
Policy and Finite-horizon / Average-reward Case

While we derive the intervals in infinite-horizon discounted MDPs under the behavior-agnostic setting
in the main paper, our derivations can be easily extended to other settings by replacing Lemmas 1 and
4 with their counterparts and following the same recipe. Below we briefly introduce these extensions.

M.1 Using Knowledge of the Behavior Policy

When the behavior policy that produces the data is known (e.g., πb such that µ(s, a) = µ(s)πb(a|s)),
one can derive similar intervals that use importance weighting over actions ρ := π(a|s)

πb(a|s) with the
following lemmas in place of Lemmas 1 and 4:

Lemma 16. For any w : S → R,

J(π)− Ew[ρr] = V π(s0) + Ew[γρV π(s′)− V π(s)]. (25)

Lemma 17. For any v : S → R,

J(π)− v(s0) = Edπ [r + γv(s′)− v(s)]. (26)

Following the recipe in Sec. 4 and 5, one can prove the properties of the corresponding intervals
that are analogues to the results in this paper. Note that we can also use these lemmas to derive the
counterparts of MWL and MQL for state-functions, the former of which is a variant of Liu et al. [5]’s
method; see Uehara et al. [1, Appendix A.5 and Footnote 15].

M.2 Finite-horizon Case

Finite-horizon MDPs can be modeled as infinite-horizon discounted MDPs with initial state distri-
butions (which is our setting) by including time-step as a part of the state representation, modeling
termination as absorbing states, and setting γ = 1.

M.3 Average-reward Case

The average-reward case is somewhat more different from the discounted or the finite-horizon setting,
so we go over it in more details. Suppose the Markov chain induced by π is ergodic and let dπ be its
stationary state-action distribution (note that dπ here is normalized, unlike the discounted occupancy

27

in the discounted setting). Similarly we define wπ/µ(s, a) := dπ(s,a)
µ(s,a) , and the quantity of interest is

J(π) = lim
T→∞

1

T

T−1∑
t=0

rt = Edπ [r] = Ew[r]. (27)

As before, we need two Bellman equations, one for the distribution and the other one for the value
function. The one for distribution is simple: for any q : S ×A → R,

Edπ [q(s, a)− q(s′, π)] = 0. (28)

Recall that Edπ [·] means taking expectation over (s, a) ∼ dπ, r ∼ R(s, a), s′ ∼ P (s, a). This
equation is just a re-expression of the fact that dπ is the stationary distribution induced by π.

The Bellman equation for the value function is: for any w : S ×A → R,

Ew[Qπ(s, a) + J(π)− r −Qπ(s′, π)] = 0. (29)

Since there is no initial state distribution in the average-reward case, even if Qπ is learned, one cannot
plug-in initial state distribution to obtain the estimation of J(π). Instead, J(π) itself directly appears
as a separate quantity in the Bellman equation. In fact, value functions in the average-reward case are
actually “difference of values”, which are analogues to the advantage function in the discounted case
and can be informally defined as

Qπ(s, a) = E

[∞∑
t=0

(rt − J(π))

∣∣∣∣∣ s0 = s, a0 = a, a1:∞ ∼ π

]
.

According to this definition, the “temporal difference” Qπ(s, a) − r − Qπ(s′, π) is not zero in
expectation, and a J(π) term remains, allowing J(π) to be directly manifested in the Bellman
equations.

With the above background, we are ready to state the counterparts of Lemmas 1 and 4 for the
average-reward case:
Lemma 18. For any w : S ×A → R,

J(π) = Ew[r +Qπ(s′, π)−Qπ(s, a)]. (30)

Lemma 19. For any q : S ×A → R,

J(π) = Ewπ/µ [r + q(s′, π)− q(s, a)]. (31)

The resulting intervals are {infw supq, supw infq, infq supw, supq infw}L(w, q), where L(w, q) :=
Ew[r + q(s′, π)− q(s, a)]. We note that the loss L(w, q) is highly similar to the primal-dual form of
LP for MDPs [37].

28

	Introduction
	Preliminaries
	Related Work
	The Minimax Value Intervals
	Value Interval for Well-specified Q and Misspecified W
	Value Interval for Well-specified W and Misspecified Q
	Unification
	Empirical Verification of Theoretical Predictions

	On Policy Optimization with Insufficient Data Coverage
	Case Study: Exploration and Exploitation in a Tabular Scenario
	Guarantees in the Function Approximation Setting
	Preliminary Empirical Results

	Conclusions and Open Problems
	Proofs of Section 4
	Relationships between the Intervals in the Non-convex Case
	On Double Robustness
	On AlgaeDICE's Notations
	Comparison to Naïve Intervals
	Regularization
	OPE Experiments
	Environment and Behavior & Target Policies
	Details of the Algorithms
	Bootstrapping Intervals
	On Comparison to MQL

	Sanity-Check Experiments
	Rmax / Rmin
	Additional Proofs, Results, and Discussions of Section 5
	Proof of Proosition 10
	Full Version of Proposition 11 and Proof
	Alternative Guarantee for MLB-PO
	Connection between MUB-PO and OLIVE jiang2017contextual

	Policy Optimization Experiments
	Handling Statistical Errors based on Generalization Error Bounds
	Variants of Minimax Value Interval: Using Knowledge of Behavior Policy and Finite-horizon / Average-reward Case
	Using Knowledge of the Behavior Policy
	Finite-horizon Case
	Average-reward Case

