
We thank all reviewers for careful reading & positive comments, including R1: “that different algorithms can be1

categorized based on relatively simple metrics is surprising & interesting”; R2: “the results...are highly significant and2

novel and relevant to the NeurIPS community”; R3: “creative and thought-provoking approach which may inspire future3

other ‘virtual experiments’ of the kind”; R4: “this work has great potential for high impact in systems and computational4

neuroscience”. We now address major reviewer concerns below. FHow biological are the architectures, task, &5

learning rules evaluated ...? Why these particular choices? (R1,R2,R3,R4): We chose NN architecture types &6

training datasets that have been shown in comp. neurosci. literature to make good models of neural response patterns7

in primate electrophysiology & human fMRI data. We test learning rules that have competitive ML performance8

that cannot be ruled out by performance characteristics alone (e.g. simple hebbian rules). We use supervised &9

self-supervised learning objectives (without need for Imagenet category labels), & a range of different specific NN10

architectures, to model the fact that the loss function & architecture best suited to understanding a given brain area are11

generally partially, but far from exactly, known. Our work’s goal is to identify statistics that will allow identification of12

the learning rule, invariant across the variability due to these types of unknowns. R3, good point about varying datasets13

/ architecture classes. We’ve obtained results for shallow architectures with CIFAR-10 dataset – biologically, perhaps14

interpretable as expanding project scope to simpler non-primate (e.g. mouse) visual systems. We also have results for15

networks trained on auditory stimuli, using the AudioSet dataset – showing our approach holds across multiple sensory16

modalities with the same classifier. Will include these results in revision. We hope in the future to also broaden scope17

to e.g. RL models, as suggested by R1. F“... suspicious that [discrimination power] is driven by differences in18

Imagenet performance...” (R4): Important question. As shown in Fig S1, all learning rules except feedback alignment19

(FA) have high overlap in performance across hyperparameters; performance differences due to architecture swamp20

those from learning rule, e.g. FA aside, Alexnet with best learning rule performs � Resnet-34 with worst learning21

rule. Thus, performance is a highly confounded indicator of learning rule, a key point we should have emphasized,22

so will move to main text as R2 suggests. Also, we want to address experimental situations where performance is23

not directly measurable (animal behavior is often harder than e-phys!); & to allow for the possibility of unsupervised24

learning objectives not optimized for specific performance goals. Thus, it is important & nontrivial to identify features25

that are robust across architecture & objective fns, & have direct physical analogues in experimental measurement.26

F“The authors [show] that certain statistics are more informative than others ... not clear why this should be27

the case?” (R4): The primary intuition that certain aggregate statistics could be useful for separating learning rules28

comes from studying the learning dynamics of single layer perceptrons, where activation mean is a typical choice [eg.29

Werfel et al. 2004]. But in deep NNs, no theory yet allows us to derive optimal statistics mathematically, motivating our30

empirical approach. We thus included a variety of potential observables that might more robustly characterize non-linear31

network effects, & thus enable the classifier to discount differences when needed. Ideally in the future we can combine32

better theory with our method to sharpen feature design. We will improve discussion of this in revision. F“...neurons33

have recurrent dynamics, experiments here [only use feedforward] models... architecture is intrinsically tied to34

the learning algorithm!” (R4): We have tested our approach on recurrent convolutional models [Nayebi et al. 2018,35

Schrimpf et al. 2019] – just not at such large scale as the included results, since such networks are very resource-36

intensive. However, outcomes don’t change conclusions at all, will include what we have in revision. Importantly: a37

main takeaway of our paper is that architecture is in some sense not necessarily intrinsically tied to the learning rule;38

otherwise, we would not have been able to reliably separate learning rules across the range of architectures considered.39

F“Relatedly, you use Adam & SGD+Momentum ...Discriminating learning rate seems like a different question40

of discriminating learning algorithms.” (R4): First-order learning rules are basically characterized by two choices,41

namely how parameter updates are made as a function of (1) (high-dimensional) direction of gradient tensor, & (2) the42

magnitude of gradient tensor. Item (2) is directly tied to learning rate policy, & as adaptive methods can yield significant43

(if hard to predict) differences in trainability across various architectures & datasets, learning rate policy is an integral44

part of the learning rule. Our choice of candidate rules tested the ability of our approach to handle variation of both45

aspects. F“Does discriminability change when initializing from relatively good weights, rather than random?”46

(R4): While we’re not exactly sure how to initialize from good weights in a task agnostic way (we used standard best47

practices for init), we did examine training the classifier solely on different portions of training trajectory, including48

only using late-time checkpoints after network performance stabilized – this somewhat approximates idea of using49

“good” weights. We found largely consistent results (Fig. S4). Interesting question for follow up work! F“Can50

a model trained with one set of hyperparameters generalize...?” (R4): In all reported results, we widely varied51

not only architecture & loss function, but also learning hyperparameters such as learning rates/regularizations (see52

supplement for details). We then considered two types of classifier accuracy evaluations. First, we performed standard53

cross-validation, e.g. random non-overlapping train/test splits. High accuracy here shows classifiers work across new54

mixed combinations of architecture, objective function, & learning hyperparameters. We also performed tests that held55

out entire classes of input types, to explore strong generalization. For example, we did architecture hold-outs, training56

on some architectures then testing on others, & our method still performed well in this crucial case (Fig 2b). Also57

see Figs. S2-3 for other such generalization tests. FOther comments (R1-R4): We cannot address all remaining58

comments due to space limitations, but will address them in revision, especially R2’s stylistic suggestions.59


