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Abstract

The goal of optimization-based meta-learning is to find a single initialization
shared across a distribution of tasks to speed up the process of learning new
tasks. Conditional meta-learning seeks task-specific initialization to better capture
complex task distributions and improve performance. However, many existing
conditional methods are difficult to generalize and lack theoretical guarantees.
In this work, we propose a new perspective on conditional meta-learning via
structured prediction. We derive task-adaptive structured meta-learning (TASML),
a principled framework that yields task-specific objective functions by weighing
meta-training data on target tasks. Our non-parametric approach is model-agnostic
and can be combined with existing meta-learning methods to achieve conditioning.
Empirically, we show that TASML improves the performance of existing meta-
learning models, and outperforms the state-of-the-art on benchmark datasets.

1 Introduction

State-of-the-art learning algorithms such as neural networks typically require vast amounts of data
to generalize well. This is problematic for applications with limited data availability (e.g. drug
discovery [3]). Meta-learning is often employed to tackle the lack of training data [17, 40, 53]. It is
designed to learn data-driven inductive bias to speed up learning on novel tasks [50, 52], with many
application settings such as learning-to-optimize [30], few-shot learning [16, 27] and hyperparameter
optimization [18]. Meta-learning methods could be broadly categorized into metric-learning [e.g.
37, 47, 53], model-based [e.g. 20, 22, 30], and optimization-based [e.g. 17, 35, 44].

We focus on optimization-based approaches, which cast meta-learning as a bi-level optimization [4,
17, 39]. At the single-task level, an “inner” algorithm performs task-specific optimization starting
from a set of meta-parameters shared across all tasks. At the “outer” level, a meta learner accrues
experiences from observed tasks to learn the aforementioned meta-parameters. These methods
seek to learn a single initialization of meta-parameters that can be effectively adapted to all tasks.
Relying on the shared initialization is challenging for complex (e.g. multi-modal) task distributions,
since different tasks may require a substantially different initialization, given the same adaptation
routine. This makes it infeasible to find a common meta-parameters for all tasks. Several recent
works [10, 15, 23, 24, 28, 44, 54, 55, 56] address the issue by conditioning such parameters on
target tasks, and demonstrate consistent improvements over unconditional meta-learning. However,
existing methods often lack theoretical guarantees on generalization performance and implements
specific conditioning principles with customized networks, which may be difficult to generalize
across different application settings.

In this paper, we offer a novel perspective on conditional meta-learning based on structured predic-
tion [6]. This enables us to propose Task-adaptive Structured Meta-Learning (TASML) – a general
framework for conditional meta-learning – by interpreting the inner algorithm as the structured
output to be predicted, conditioned on target tasks. We derive a principled estimator that minimizes
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task-specific meta-learning objectives, which weigh known training tasks based on their similarities
with the target task. The proposed framework is non-parametric and thus requires access to training
data at test time for the task-specific objectives. We introduce an efficient algorithm for TASML to
mitigate the additional computational costs associated with optimizing these task-specific objectives.
Intuitively, the proposed framework learns a target task by explicitly recalling only the most relevant
tasks from past observations, to better capture the local task distribution for improved generalization.
The relevance of previously observed tasks with respect to the target one is measured by a structured
prediction approach from [13]. TASML is model-agnostic and can easily adapt existing meta-learning
methods to achieve conditional meta-learning.

We empirically evaluate TASML on several competitive few-shot classification benchmarks, including
datasets derived from IMAGENET and CIFAR respectively. We show that TASML outperforms state-
of-the-art methods, and improves the accuracy of existing meta-learning algorithms by adapting
them into their respective conditional variants. We also investigate TASML’s trade-off between
computational efficiency and accuracy improvement, showing that the proposed method achieves
good efficiency in learning new tasks.

Our main contributions include: i) a new perspective on conditional meta-learning based on structured
prediction, ii) TASML, a conditional meta-learning framework that generalizes existing meta-learning
methods, iii) a practical and efficient algorithm under the proposed framework, and iv) a thorough
evaluation of TASML on benchmarks, outperforming state-of-the-art methods.

2 Background and Notation

For clarity, in the following we focus on meta-learning for supervised learning. However, the
discussion below and our proposed approach also apply to general learning settings.

Supervised learning. In supervised learning, given a probability distribution ρ over two spaces
X × Y and a loss ` : Y × Y → R measuring prediction errors, the goal is to find f : X → Y that
minimizes the expected risk

min
f :X→Y

E(f) with E(f) = Eρ `(f(x), y), (1)

with (x, y) sampled from ρ. A finite training set D = (xj , yj)
m
j=1 of i.i.d samples from ρ is given. A

learning algorithm typically finds f ∈ F within a prescribed set F of candidate models (e.g. neural
networks, reproducing kernel Hilbert spaces), by performing empirical risk minimization on D or
adopting online strategies such as stochastic gradient methods (SGD) (see [46] for an in-depth view
on statistical learning). A learning algorithm may thus be seen as a function Alg : D → F that maps
an input dataset D to a model f = Alg(D), where D is the space of datasets on X × Y .

Meta-learning. While in supervised settings Alg(·) is chosen a-priori, the goal of meta-learning is
to learn a learning algorithm suitable for a family of tasks. Thus, we consider a parametrization
Alg(θ, ·) : D → F for the inner algorithm, with θ ∈ Θ a space of meta-parameters and aim to solve

min
θ∈Θ

E(θ) with E(θ) = EµEρ L
(
Alg(θ,Dtr), Dval

)
. (2)

Here, ρ is a task distribution sampled from a meta-distribution µ, and Dtr and Dval are respectively
training and validation sets of i.i.d data points (x, y) sampled from ρ. The task loss L : F ×D → R
is usually an empirical average of the prediction errors on a dataset according to an inner loss `,

L(f,D) =
1

|D|
∑

(x,y)∈D

`(f(x), y), (3)

with |D| the cardinality of D. We seek the best θ∗ such that applying Alg(θ∗, ·) on Dtr achieves
lowest generalization error on Dval, among all algorithms parametrized by θ ∈ Θ. In practice, we
have access to only a finite meta-training set S = (Dtr

i , D
val
i )Ni=1 and the meta-parameters θ̂ are

often learned by (approximately) minimizing

θ̂ = argmin
θ∈Θ

1

N

N∑
i=1

L
(
Alg(θ,Dtr

i ), Dval
i

)
. (4)
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Meta-learning methods address (4) via first-order methods such as SGD, which requires access to
∇θAlg(θ,D), the (sub)gradient of the inner algorithm over its meta-parameters. For example, model-
agnostic meta-learning (MAML) [17] and several related methods [e.g. 4, 31, 39] cast meta-learning
as a bi-level optimization problem. In MAML, θ parametrizes a model fθ : X → Y (e.g. a neural
network), and Alg(θ,D) performs one (or more) steps of gradient descent minimizing the empirical
risk of fθ on D. Formally, given a step-size η > 0,

fθ′ = Alg(θ,D) with θ′ = θ − η ∇θL(fθ, D).

Inspired by MAML, meta-representation learning [9, 58] performs task adaptation via gradient descent
on only a subset of model parameters and considers the remaining ones as a shared representation.

3 Conditional Meta-Learning

Although remarkably efficient in practice, optimization-based meta-learning typically seeks a single
set of meta-parameters θ for all tasks from µ. This shared initialization might be limiting for complex
(e.g. multi-modal) task distributions: dissimilar tasks require substantially different initial parameters
given the same task adaptation routine, making it infeasible to find a common initialization [54, 56].
To address this issue, several recent works learn to condition the initial parameters on target tasks
(see Fig. 1 in Sec. 4 for a pictorial illustration of this idea). For instance, [44, 54, 56] directly learn
data-driven mappings from target tasks to initial parameters, and [24] conditionally transforms feature
representations based on a metric space trained to capture inter-class dependencies. Alternatively,
[23] considers a mixture of hierarchical Bayesian models over the parameters of meta-learning
models to condition on target tasks, while [10] preliminarily explores task-specific initialization
by optimizing weighted objective functions. However, these existing methods typically implement
specific conditional principles with customized network designs, which may be difficult to generalize
to different application settings. Further, they often lack theoretical guarantees.

Conditional Meta-learning. We formalize the conditional approaches described above as condi-
tional meta-learning. Specifically, we condition the meta-parameters θ on D by parameterizing
Alg(τ(D), ·) with τ(D) ∈ Θ, a meta-parameter valued function. We cast conditional meta-learning
as a generalization of (2) to minimize

min
τ :D→Θ

E(τ) with E(τ) = EµEρ L
(

Alg
(
τ(Dtr), Dtr

)
, Dval

)
, (5)

over a suitable space of functions τ : D → Θ mapping datasets D to algorithms Alg(τ(D), ·). While
(5) uses Dtr for both the conditioning and inner algorithm, more broadly τ may depend on a separate
dataset τ(Dcon) of “contextual” information (as recently investigated also in [15]), similar to settings
like collaborative filtering with side-information [1]. Note that standard (unconditional) meta-learning
can be interpreted as an instance of (5) with τ(D) ≡ θ, the constant function associating every dataset
D to the same meta-parameters θ. Intuitively, we can expect a significant improvement from the
solution τ∗ of (5) compared to the solution θ∗ of (2), since by construction E(τ∗) ≤ E(θ∗).

Conditional meta-learning leverages a finite number of meta-training task to learn τ : D → Θ. While
it is possible to address this problem in a standard supervised setting, we stress that meta-learning
poses unique challenges from both modeling and computational perspectives. A critical difference is
the output set: in standard settings, this is usually a linear space (namely Y = Rk), for which there
exist several methods to parameterize suitable spaces of hypotheses f : X → Rk. In contrast, when
the output space Θ is a complicated, “structured” set (e.g. space of deep learning architectures), it is
less clear how to find a space of hypotheses τ : D → Θ and how to perform optimization over them.
These settings however are precisely what the literature of structured prediction aims to address.

3.1 Structured Prediction for Meta-learning

Structured prediction methods are designed for learning problems where the output set is not a
linear space but rather a set of structured objects such as strings, rankings, graphs, 3D structures
[6, 36]. For conditional meta-learning, the output space is a set of inner algorithms parameterized by
θ ∈ Θ. Directly modeling τ : D → Θ can be challenging. A well-established strategy in structured
prediction is therefore to first learn a joint function T : Θ×D → R that, in our setting, measures the
quality of a model θ for a specific dataset D. The structured prediction estimator τ is thus defined as
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the function choosing the optimal model parameters τ(D) ∈ Θ given the input dataset D
τ(D) = argmin

θ∈Θ
T (θ,D). (6)

Within the structured prediction literature, several strategies have been proposed to model and learn
the joint function T , such as SVMStruct [51] and Maximum Margin Markov Networks [49]. However,
most methods have been designed to deal with output spaces Θ that are discrete or finite and are
therefore not suited for conditional meta-learning. To our knowledge, the only structured prediction
framework capable of dealing with general output spaces (e.g. dense set Θ of network parameters) is
the recent work based on the structure encoding loss function principle [13, 14]. This approach also
enjoys strong theoretical guarantees including consistency and learning rates. We propose to apply
such a method to conditional meta-learning and then study its generalization properties.

Task-adaptive Structured Meta-Learning. To apply [13], we assume access to a reproducing
kernel [5] k : D × D → R on the space of datasets (see (10) in Sec. 4.1 for an example). Given a
meta-training set S = (Dtr

i , D
val
i )Ni=1 and a new task D, the structured prediction estimator is

τ(D) = argmin
θ∈Θ

N∑
i=1

αi(D) L
(
Alg(θ,Dtr

i ), Dval
i

)
with α(D) = (K + λI)−1v(D) ∈ RN ,

(7)

where λ > 0 is a regularizer, αi(D) denotes the i-th entry of the vector α(D) while K ∈ RN×N
and v(D) ∈ RN are the kernel matrix and evaluation vector with entries Ki,j = k(Dtr

i , D
tr
j ) and

v(D)i = k(Dtr
i , D), respectively. We note that (7) is an instance of (6), where the joint functional T

is modelled according to [13] and learned on the meta-training set S. The resulting approach is a
non-parametric method for conditional meta-learning, which accesses training tasks for solving (7).

We refer to the estimator in (7) as Task-adaptive Structured Meta-Learning (TASML). In this formu-
lation, we seek θ to minimize a weighted meta-learning objective, where the α : D → RN can be
interpreted as a “scoring” function that measures the relevance of known training tasks to target tasks.
The structured prediction process is hence divided into two distinct phases: i) a learning phase for
estimating the scoring function α and ii) a prediction phase to obtain τ(D) by solving (7) on D. The
following remark draws a connection between TASML and unconditional meta-learning methods.
Remark 1 (Connection with standard meta-learning). The objective in (7) recovers the empirical
risk minimization for meta-learning introduced in (4) if we set αi(D) ≡ 1. Hence, methods from
Sec. 2 – such as MAML – can be interpreted as conditional meta-learning algorithms that assume all
tasks being equally related to one other.

Remark 1 suggests that TASML is compatible with most existing (unconditional) meta-learning
methods in the form of (4) (or its stochastic variants). Thus, TASML can leverage existing algorithms,
including their architectures and optimization routines, to solve the weighted meta-learning problem
in (7). In Sec. 5, we show empirically that TASML improves the generalization performance of three
meta-learning algorithms by adopting the proposed structured prediction perspective. Additionally, in
Sec. 5.5 we discuss the potential relations between (7) and recent multi-task learning (MTL) strategies
that rely on task-weighing [12, 25].

Theoretical Properties. Thanks to adopting a structured prediction perspective, we can characterize
TASML’s learning properties. In particluar, the following result provides non-asymptotic excess risk
bounds for our estimator that indicate how fast we can expect the prediction error of τ to decrease as
the number N of meta-training tasks grows.
Theorem 1 (Informal – Learning Rates for TASML). Let S = (Dtr

i , D
val
i )Ni=1 be sampled from a

meta-distribution µ and τN the estimator in (7) trained with λ = N−1/2 on S. Then, with high
probability with respect to µ,

E(τN ) − inf
τ :D→Θ

E(τ) ≤ O(N−1/4). (8)

Thm. 1 shows that the proposed algorithm asymptotically yields the best possible task-conditional
estimator for the family of tasks identified by µ, over the novel samples from validation sets. The
proof of Thm. 1 leverages recent results from the literature on structured prediction [32, 43], combined
with standard regularity assumptions on the meta-distribution µ. See Appendix A for a proof and
further discussion on the relation between TASML and general structured prediction.
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4 A Practical Algorithm for TASML

The proposed TASML estimator τ : D → Θ offers a principled approach to conditional meta-learning.
However, task-specific objectives incur additional computational cost compared to unconditional
meta-learning models like MAML, since we have to repeatedly solve (7) for each target task D, in
particular when the numberN of meta-training tasks is large. We hence introduce several adjustments
to TASML that yield a significant speed-up in practice, without sacrificing overall accuracy.

Initialization by Meta-Learning. Following the observation in Remark 1, we propose to learn
an “agnostic” θ̂ ∈ Θ as model initialization before applying TASML. Specifically, we obtain θ̂ by
applying a standard (unconditional) meta-learning method solving (4). We then initialize the inner
algorithm with θ̂, followed by minimizing (7) over the meta-parameters. In practice, the learned
initialization significantly speeds up the convergence in (7). We stress that the proposed initialization
is optional: directly applying TASML to each task using random initialization obtains similar
performance, although it takes more training iterations to achieve convergence (see Appendix C.1).

Top-M Filtering. In (7), the weights αi(D) measure the relevance of the i-th meta-training task Dtr
i

to the target taskD. We propose to keep only the top-M values from α(D), withM a hyperparameter,
and set the others to zero. This filtering reduces the computational cost of (7), by constraining training
to only tasks Dtr

i most relevant to D, The filtering process has little impacts on the final performance,
since we empirically observed that only a small percentage of tasks have large α(D), given a large
number N of training tasks (e.g. N > 105). In our experiments we chose M to be ∼ 1% of N ,
since larger values did not provide significant improvements in accuracy (see Appendix C.2 for
further ablation). We observe that TASML’s explicit dependence on meta-training tasks resembles
meta-learning methods with external memory module [45], The proposed filtering process in turn
resembles memory access rules but requires no learning. For each target task, only a small number of
training tasks are accessed for adaptation, limiting the overall memory requirements.

Task Adaptation. The output τ(D) in (7) depends on the target task D only via the task weights
α(D). We propose to directly optimize D with an additional term L(Alg(θ,D), D), which encour-
ages θ to directly exploit the training signals in target task D and achieve small empirical error on
it. The extra term may be interpreted as adding a “special” training task (D̃tr, D̃val) = (D,D), in
which the support set and query set coincides, to the meta-training set (Dtr

i , D
val
i )Ni=1

τ(D) = argmin
θ∈Θ

N∑
i=1

αi(D) L
(
Alg(θ,Dtr

i ), Dval
i

)
+ L

(
Alg(θ,D), D

)
, (9)

By construction, the additional task offers useful training signals by regularizing the model to focus
on relevant features shared among the target task and past experiences. We refer to Appendix C.3 for
an ablation study on how (9) affects test performance.

Alg. 1 implements TASML with the proposed improvements. We initialize the model with meta-
parameters θ, by solving the (unconditional) meta-learning problem in (4) over a meta-training set
S = (Dtr

i , D
val
i )Ni=1. We also learn the scoring function α according to (7) by inverting the kernel

matrix K. While this is an expensive step of up to O(N3) in complexity, sketching methods may
be used to significantly speed up the inversion without loss of accuracy [33, 42]. We stress that the
scoring function α is learned only once for all target tasks. For any target task D, we compute α(D)
and only keep the top-M tasks SM ⊂ S with largest αi(D). Lastly, we minimize (9) over SM .

4.1 Implementation Details

Reproducing Kernel on Datasets. TASML requires a positive definite kernel k : D × D → R to
learn the score function α : D → RN in (7). In this work, we take k as the Gaussian kernel of
the maximum mean discrepancy (MMD) [19] of two datasets. MMD is a popular distance metric
on datasets or distributions. More precisely, given two datasets D,D′ ∈ D and a feature map
ϕ : X → Rp on input data, we consider the kernel k : D ×D → R defined as

k(D,D′) = exp
(
− ‖ϕ̄(D)− ϕ̄(D′)‖2 /σ2

)
with ϕ̄(D) =

1

|D|
∑

(x,y)∈D

ϕ(x) (10)

where σ > 0 is a bandwidth parameter and ϕ̄(D) is the kernel mean embedding (or signature) of a
dataset D with respect to ϕ.
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Algorithm 1 TASML

Input: meta-train set S = (Dtr
i , D

val
i )Ni=1,

initial parameters θ, Filter size M , step-size η,
kernel k, regularizer λ

Meta-Train:
Compute the kernel matrix K ∈ RN×N on S
Let v : D → RN where v(·)i = k(Dtr

i , ·)
Let α(·) = (K + λI)−1v(·).
Initialize θ with (4) (Optional)

Meta-Test with target task D:
Compute task weights α(D) ∈ RN .
Get top-M tasks SM ⊂ S with highest α(D)

while not converged do
Sample a mini-batch SB ⊂ SM i.i.d.
Compute gradient∇θ of (9) over SB .
θ ← θ − η ∇θ

end while
Return θ

Figure 1: Comparing unconditioned (left) and
conditional (right) meta-learning. Unconditional
methods using a shared initialization (red dot)
may fail to adapt to dissimilar tasks (outer blue
dots, bottom left). Conditional meta-learning can
handle such setting via adaptive initialization (red
dots, bottom right).

The map ϕ plays a central role. It can be either fixed a priori or learned, depending on the application.
A good practice when working with MMD is to use a characteristic kernel [48]. In our experiments,
the Gaussian kernel in (10) led to best performance (see Appendix C.4 for other options). We note
that, more generally, ϕ could also be taken to be a joint feature map on both input and output. We
describe our choice of feature map ϕ below.

Pre-trained Feature Map. Expressive input representation plays a significant role in meta-learning,
and may be obtained via standard supervised learning (see e.g. [41, 44]). We choose the pre-trained
feature map from [44] for the kernel mean embedding ϕ̄(D) in (10) and input representation ϕ(x).

Model Architecture. As observed in Remark 1, TASML is compatible with a wide range of existing
meta-learning algorithms. In Sec. 5.3, we report on several implementations of Alg. 1, leveraging
architectures and optimization techniques from existing meta-learning methods. In addition, we
introduce LS META-LEARN, a least-squares meta-learning algorithm that is highly effective in
combination with TASML. Similar to [9], we choose an “inner” algorithm that solves a least-squares
objective `(y, y′) = ‖y − y′‖2 in closed-form. We propose to induce the task loss L in (3) by
the same least-squares objective. We note that while least-squares minimization is not a standard
approach in classification settings, it is theoretically principled (see e.g. [7, 34]) and provides a
significant improvement to classification accuracy. See Appendix B.1 for more details.

5 Experiments

We perform experiments1 on C-way-K-shot learning within the episodic formulation of [53]. In
this setting, train-validation pairs (Dtr, Dval) are sampled as described in Sec. 2. Dtr is a C-class
classification problem withK examples per class. Dval contains samples from the same C classes for
estimating model generalization and training meta-learner. We evaluate the proposed method against a
wide range of meta-learning algorithms on three few-shot learning benchmarks: the miniIMAGENET,
tieredIMAGENET and CIFAR-FS datasets. We consider the commonly used 5-way-1-shot and
5-way-5-shot settings. For training, validation and testing, we sample three separate meta-datasets
Str, Sval and Sts, each accessing a disjoint set of classes (e.g. no class in Sts appears in Str or Sval).
To ensure fair comparison, we adopt the same training and evaluation setup as [44]. Appendix B
reports further experimental details including network specification and hyperparameter choice.

1TASML implementation is available at https://github.com/RuohanW/Tasml
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Table 1: Classification Accuracy of meta-learning models on miniIMAGENET and tieredIMAGENET.

ACCURACY (%)
miniIMAGENET tieredIMAGENET

UNCONDITIONAL METHODS 1-SHOT 5-SHOT 1-SHOT 5-SHOT

MAML [17] 48.70± 1.84 63.11± 0.92 51.67± 1.81 70.30± 0.8
IMAML [39] 49.30± 1.88 - - -
REPTILE [35] 49.97± 0.32 65.99± 0.58 - -
R2D2 [9] 51.90± 0.20 68.70± 0.20 - -
CAVIA [58] 51.82± 0.65 65.85± 0.55 - -
(QIAO ET AL.) [38] 59.60± 0.41 73.74± 0.19 - -
META-SGD [31](LEO FEAT.) 54.24± 0.03 70.86± 0.04 62.95± 0.03 79.34± 0.06

CONDITIONAL METHODS

(JERFEL ET AL.) [23] 51.46± 1.68 65.00± 0.96 - -
HSML [56] 50.38± 1.85 - - -
MMAML [54] 46.1± 1.63 59.8± 1.82 - -
CAML [24] 59.23± 0.99 72.35± 0.71 - -
LEO [44] 61.76± 0.08 77.59± 0.12 66.33± 0.05 81.44± 0.09
LEO (LOCAL) [44] 60.37± 0.74 75.36± 0.44 65.11± 0.72 79.70± 0.59
TASML (OURS) 62.04± 0.52 78.22± 0.47 66.42± 0.37 82.62± 0.31

Table 2: Classification Accuracy of meta-learning models on CIFAR-FS.

1-SHOT 5-SHOT

MAML [17] 58.9± 1.9 71.5± 1.0
R2D2 [9] 65.3± 0.2 79.4± 0.1
PROTONET(RESNET12 FEAT.) [47] 72.2± 0.7 83.5± 0.5
METAOPTNET [29] 72.0± 0.7 84.2± 0.5
TASML 74.6± 0.7 85.1± 0.4

5.1 Experiments on IMAGENET derivatives

We compared TASML with a representative set of baselines on classification accuracy. Unconditional
methods include MAML [17], IMAML [39], REPTILE [35], R2D2 [9], (QIAO ET AL. 2018) [38],
CAVIA [58], and META-SGD [31] (using [44]’s features). Conditional methods include (JERFELET
AL 2019) [23], HSML [57], MMAML [54], CAML [24] and LEO [44].

We include results from our local run of LEO using the official implementation. In our experiments,
we observed that LEO appeared sensitive to hyperparameter choices, and obtaining the original
performance in [44] was beyond our computational budget. For MMAML, we used the official
implementation, since [54] did not report performance on miniIMAGENET. We did not compare with
α-MAML [10] since we did not find ImageNet results nor an official implementation. Other results
are cited directly from their respective papers.

Tab. 1 reports the mean accuracy and standard deviation of all the methods over 50 runs, with each run
containing 200 random test tasks. TASML outperforms the baselines in three out of the four settings,
and achieves performance comparable to LEO in the remaining setting. We highlight the comparison
between TASML and LEO (local), as they share the identical experiment setups. The identical setups
make it easy to attribute any relative performance gains to the proposed framework. We observe
that TASML outperforms LEO (local) in all four settings, averaging over 2% improvements in
classification accuracy. The results suggest the efficacy of the proposed method.

5.2 Experiments on CIFAR-FS

The recently proposed CIFAR-FS dataset [9] is a new few-shot learning benchmark, consisting of all
100 classes from CIFAR-100 [26]. The classes are randomly divided into 64, 16 and 20 for meta-train,
meta-validation, and meta-test respectively. Each class includes 600 images of size 32× 32.
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Table 3: Effects of structured prediction on miniIMAGENET and tieredIMAGENET benchmarks.
Structured prediction (SP) improves the underlying meta-learning algorithms in all cases.

ACCURACY (%)
miniIMAGENET tieredIMAGENET

1-SHOT 5-SHOT 1-SHOT 5-SHOT

MAML (LEO FEAT.) 54.12± 1.84 67.58± 0.92 51.28± 1.81 69.80± 0.84
SP+MAML (LEO FEAT.) 58.46± 1.56 74.51± 0.75 60.89± 1.64 78.42± 0.73

LEO (LOCAL) 60.37± 0.74 75.36± 0.44 65.11± 0.72 79.70± 0.59
SP+LEO (LOCAL) 61.46± 0.69 76.54± 0.59 66.07± 0.66 80.68± 0.41

LS META-LEARN 60.19± 0.65 76.76± 0.43 64.32± 0.65 81.43± 0.55
TASML (SP + LS META-LEARN) 62.04± 0.52 78.22± 0.47 66.42± 0.37 82.62± 0.31

Tab. 2 compares TASML to a diverse set of previous methods, including MAML, R2D2, PRO-
TONETS [47] and METAOPTNETS [29]. The results clearly show that TASML outperforms previous
methods in both settings on the CIFAR-FS dataset, further validating the efficacy of the proposed
structured prediction approach.

5.3 Improvements from Structured Prediction

The task-specific objective in (9) is model-agnostic, which enables us to leverage existing meta-
learning methods, including architecture and optimization routines, to implement Alg. 1. For instance,
we may replace LS META-LEARN in Sec. 4.1 with MAML, leading to a new instance of structured
prediction-based conditional meta-learning.
Tab. 3 compares the average test accuracy of MAML, LEO and LS META-LEARN with their condi-
tional counterparts (denoted SP + METHOD) under the proposed structured prediction perspective.
For consistency with our earlier discussion, we use TASML to denote SP + LS META-LEARN,
although the framework is generally applicable to most methods. We observe that the structured
prediction variants consistently outperform the original algorithms in all experiment settings. In
particular, our approach improves MAML by the largest amount, averaging ∼6% increase in test
accuracy (e.g. from 48.70% to 52.81% for 5-way-1-shot on miniIMAGENET). TASML averages
∼ 1.5% improvements over LS META-LEARN. We highlight that the structured prediction improves
also LEO – which is already a conditional meta-learning method – by ∼1%. This suggests that our
structured prediction perspective is parallel to model-based conditional meta-learning, and might be
combined to improve performance.

5.4 Model Efficiency

A potential limitation of TASML is the additional computational cost imposed by repeatedly per-
forming the task-specific adaptation (9). Here we assess the trade-off between computations and
accuracy improvement induced by this process. Fig. 2 reports the classification accuracy of TASML
when minimizing the structured prediction functional in (9), with respect to the number of training
steps J , starting from the initialization points (J = 0) learned via unconditional meta-learning using
LS META-LEARN (refer to Tab. 3). Therefore Fig. 2 explicitly captures the additional performance
improvements resulting from structured prediction. Aside from the slight decrease in performance
on 1-shot miniIMAGENET after 50 steps, TASML shows a consistent and stable performance im-
provements over the 500 steps via structured prediction. The results present a trade-off between
performance improvements over unconditional meta-learning, and additional computational costs
from optimizing structured prediction functional in (9).

More concretely, we quantify the actual time spent on structured prediction steps for LS META-
LEARN in Tab. 4, which reports the average number of meta-gradient steps per second on a single
Nvidia GTX 2080. We note that 100 steps of structured prediction for LS META-LEARN – after
which we observe the largest improvement in general – take about 6 seconds to complete. In addition,
TASML takes ∼ 0.23s for computing α(D) given a meta-train set of 30k tasks. In applications
where model accuracy has the priority, the additional computational cost is a reasonable trade-off for
accuracy. The adaptation cost is also amortized overall future queries in the adapted model. Lastly,
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Figure 2: Average test performance over 500
TASML structured prediction steps.

(STEPS/SEC) miniIMAGENET tieredIMAGENET

LEO 7.52± 0.19 6.95± 0.47
TASML 17.82± 0.27 14.71± 0.34

Table 4: Meta-gradient steps per second on 5-shot
learning tasks

we note that other conditional meta-learning methods also induce additional computational cost over
unconditional formulation. For instance, Tab. 4 shows that LEO performs fewer meta-gradient steps
per second during training, as it incurs more computational cost for learning conditional initialization.

5.5 Comparing Structured Prediction with Multi-Task Learning

We note that TASML’s formulation (7) is related to objective functions for multi-task learning (MTL)
that also learn to weight tasks (e.g. [12, 25]). However, these strategies have entirely different
design goals: MTL aims to improve performance on all tasks, while meta-learning focuses only
on the target task. This makes MTL unsuitable for meta-learning. To better visualize this fact,
here we investigated whether MTL may be used as an alternative method to obtain task weighting
for conditional meta-learning. We tested [25] on miniIMAGENET and observed that the method
significantly underperforms TASML, achieving 56.8±1.4 for 1-shot and 68.7±1.2 for 5-shot setting.
We also observe that the performance on target tasks fluctuated widely during training with the MTL
objective function, since MTL does not prioritize the performance of the target task, nor prevent
negative transfer towards it.

6 Conclusion and Future Works

We proposed a novel perspective on conditional meta-learning based on structured prediction. Within
this context, we presented task-adaptive structured meta-learning (TASML), a general framework
that connects intimately to existing meta-learning methods via task-specific objective functions. The
proposed method is theoretically principled, and empirical evaluations demonstrated its efficacy and
effectiveness compared to the state of the art. In future work, we aim to design parametric approaches
for TASML to improve model efficiency. We also aim to investigate novel metrics that better capture
the similarity between datasets, given the key role played by the kernel function in our framework.

Broader Impact

Meta-learning aims to construct learning models capable of learning from experiences, Its intended
users are thus primarily non-experts who require automated machine learning services, which may
occur in a wide range of potential applications such as recommender systems and autoML. The
authors do not expect the work to address or introduce any societal or ethical issues.
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