
A Linear regression with Gaussian features

In the setting of Section 2.1, we assume X to be centered Gaussian process of covariance Σ where Σ
is a bounded symmetric semidefinite operator. AsX is not bounded a.s., we need to use the weaker set
of assumptions given in Remark 3. We thus need to compute R0 such that E

[
‖X‖2X ⊗X

]
4 R0Σ

and α,Rα such that E [〈X,Σ−αX〉X ⊗X] 4 RαΣ. We show here that these conditions are in fact
simple trace conditions on Σ, sometimes called capacity conditions [25].

Lemma 1. If X ∼ N (0,Σ) and A is a bounded symmetric operator such that Tr(ΣA) <∞,

E [〈X,AX〉X ⊗X] = 2ΣAΣ + Tr(ΣA)Σ 4
(

2‖Σ1/2AΣ1/2‖H→H + Tr(ΣA)
)

Σ .

Proof. Diagonalize Σ =
∑
i>1 λiei ⊗ ei. Then there exists independent standard Gaussian random

variables Xi, i > 0 such that X =
∑
i λ

1/2
i Xiei.

Let i, j > 1.

〈ei,E [〈X,AX〉X ⊗X] ej〉 = E [〈X,AX〉 〈ei, X ⊗Xej〉] = E
[
〈X,AX〉λ1/2

i Xiλ
1/2
j Xj

]
= λ

1/2
i λ

1/2
j

∑
k,l

Ak,lλ
1/2
k λ

1/2
l E [XiXjXkXl] .

As Xi, i > 1 are centered independent random variables, the quantity E [XiXjXkXl] is 0 in many
cases. More precisely,

• if i 6= j, the general term of the sum in non-zero only when k = i and l = j or k = j and
l = i. This gives

〈ei,E [〈X,AX〉X ⊗X] ej〉 = 2Ai,jλiλj .

• if i = j, the general term of the sum is non-zero only when k = l. This gives

〈ei,E [〈X,AX〉X ⊗X] ei〉 = λi
∑
k

Ak,kλkE
[
X2
iX

2
k

]
= λi

∑
k 6=i

Ak,kλk + 3λ2
iAi,i

= λi
∑
k

Ak,kλk + 2λ2
iAi,i .

In both cases,

〈ei,E [〈X,AX〉X ⊗X] ej〉 = 2λiλjAi,j +

(∑
k

Ak,kλk

)
λi1i=j .

Note that
Tr(AΣ) =

∑
k

〈ek,ΣAek〉 =
∑
k

λkAk,k .

Thus we get

〈ei,E [〈X,AX〉X ⊗X] ej〉 = 2λiλjAi,j + Tr(AΣ)λi1i=j
= 2 〈ei,ΣAΣej〉+ Tr(AΣ) 〈ei,Σej〉
= 〈ei, [2ΣAΣ + Tr(ΣA)Σ] ej〉 .

From this lemma with A = Id, we compute R0 = 2‖Σ‖H→H + Tr(Σ), and with A = Σ−α, we
computeRα = 2‖Σ‖1−αH→H+Tr(Σ1−α). Thus in the Gaussian case, the condition of (weak) regularity
of the features is given by Tr(Σ1−α) <∞.
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Figure 3: In blue +, evolution of ‖θn − θ∗‖2 (left) and R(θn) (right) as functions of n, for the
problems with parameters β = 1.4, δ = 1.2 (up) and β = 3.5, δ = 1.5. The orange lines represent
the curves D/nα∗ (left) and D′/nα∗+1 (right).

Simulations. We present simulations in finite but large dimension d = 105, and we check that
dimension-independent bounds describe the observed behavior. We artificially generate regression
problems with different regularities by varying the decay of the eigenvalues of the covariance Σ and
varying the decay of the coefficients of θ∗.

Choose an orthonormal basis e1, . . . , ed ofH. We define Σ =
∑d
i=1 i

−βei ⊗ ei for some β > 1 and
θ∗ =

∑d
i=1 i

−δei for some δ > 1/2. We now check the condition on α such that the assumptions (a)
and (b) are satisfied.

(a) 〈θ∗,Σ−αθ∗〉 =
∑d
i=1〈θ∗, ei〉2iβα =

∑d
i=1 i

−2δ+αβ , which is bounded independently of
the dimension d if and only if

∑∞
i=1 i

−2δ+αβ <∞⇔ −2δ + αβ < −1⇔ α < 2δ−1
β .

(b) Tr(Σ1−α) =
∑d
i=1 i

−β(1−α), which is bounded independently of the dimension d if and
only if

∑∞
i=1 i

−β(1−α) <∞⇔ −β(1− α) < −1⇔ α < 1− 1/β.

Thus the corollary gives dimension-independent convergence rates for all α < α∗ =

min
(

1− 1
β ,

2δ−1
β

)
.

In Figure 3, we show the evolution of ‖θn − θ∗‖2 andR(θn) for two realizations of SGD. We chose
the stepsize γ = 1/R0 = 1/(2‖Σ‖H→H + Tr(Σ)). The two realizations represent two possible
different regimes:

• In the two upper plots, β = 1.4, δ = 1.2. The irregularity of the feature vectors is the
bottleneck for fast convergence. We have α∗ = min

(
1− 1

β ,
2δ−1
β

)
≈ min(0.29, 1) =

0.29.
• In the two lower plots, β = 3.5, δ = 1.5. The irregularity of the optimum is the bottleneck

for fast convergence. We have α∗ = min
(

1− 1
β ,

2δ−1
β

)
≈ min(0.71, 0.57) = 0.57.
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We compare with the curves D/nα∗ and D′/nα∗+1 with hand-tuned constants D and D′ to fit
best the data for each plot. In both regimes, our theory is sharp in predicting the exponents in the
polynomial rates of convergence of ‖θn − θ∗‖2 andR(θn).

B Proof of Theorems 1 and 3

We recall here the definition of the regularity functions

ϕn(β) = E
[〈
θn − θ∗,Σ−β (θn − θ∗)

〉]
∈ [0,∞] , β ∈ R .

B.1 Properties of the regularity functions

We derive here two properties of the sequence of regularity functions ϕn, n > 1 that are useful for
the proof of Theorem 3. The first one is a simple consequence of the above definition of the regularity
function. The second property is the closed recurrence relation of the regularity functions ϕn, n > 0
associated to the iterates of SGD.

Property 1. For all n, the function ϕn is log-convex, i.e., for all β1, β2 ∈ R, for all λ ∈ [0, 1],

ϕn ((1− λ)β1 + λβ2) 6 ϕn(β1)1−λϕn(β2)λ .

Proof. The proof is based on the following lemma, that we state clearly for another use below.

Lemma 2. Let θ ∈ H. Then for all β1, β2 ∈ R, λ ∈ [0, 1],〈
θ,Σ−[(1−λ)β1+λβ2]θ

〉
6
〈
θ,Σ−β1θ

〉1−λ 〈
θ,Σ−β2θ

〉λ
.

This lemma follows from Hölder’s inequality with p = (1− λ)−1 and q = λ−1. Indeed, diagonalize
Σ =

∑
i µiei ⊗ ei. Then〈

θ,Σ−[(1−λ)β1+λβ2]θ
〉

=
∑
i

µ
−[(1−λ)β1+λβ2]
i 〈θ, ei〉2

=
∑
i

(
µ−β1

i 〈θ, ei〉2
)1−λ (

µ−β2

i 〈θ, ei〉2
)λ

6

(∑
i

µ−β1

i 〈θ, ei〉2
)1−λ(∑

i

µ−β2

i 〈θ, ei〉2
)λ

=
〈
θ,Σ−β1θ

〉1−λ 〈
θ,Σ−β2θ

〉λ
.

We now apply this lemma to prove Property 1.

ϕn((1− λ)β1 + λβ2) = E
[〈
θn − θ∗,Σ−[(1−λ)β1+λβ2] (θn − θ∗)

〉]
6 E

[〈
θn − θ∗,Σ−β1 (θn − θ∗)

〉1−λ 〈
θn − θ∗,Σ−β2 (θn − θ∗)

〉λ]
.

Using again Hölder’s inequality, we get

ϕn((1− λ)β1 + λβ2) 6 E
[〈
θn − θ∗,Σ−β1 (θn − θ∗)

〉]1−λ E [〈θn − θ∗,Σ−β2 (θn − θ∗)
〉]λ

= ϕn(β1)1−λϕn(β2)λ .

Property 2. Under the assumptions of Theorem 3, for all n, the function ϕn is finite on (−∞, α],
and if 0 6 β 6 α,

ϕn(β) 6 ϕn−1(β)− 2γϕn−1(β − 1) + γ2R
1−β/α
0 Rβ/αα ϕn−1(−1) .
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Proof. By assumption (a), ϕ0(α) = ‖Σ−α/2θ∗‖2 is finite, i.e., there exists θ ∈ H such that θ∗ =
Σα/2θ. Then for any β 6 α, θ∗ = Σβ/2

(
Σ(α−β)/2θ

)
thus ϕ0(β) = ‖Σ−β/2θ∗‖2 is finite.

Further, assume that for some n, the function ϕn−1 is finite on (∞, α]. Then we can rewrite the
stochastic gradient iteration (1) as

θn − θ∗ = (Id−γXn ⊗Xn)(θn−1 − θ∗) .

Substituting this expression in the definition of ϕn and expanding the formula, we get

ϕn(β) = E
[〈
θn − θ∗,Σ−β (θn − θ∗)

〉]
= E

[〈
(Id−γXn ⊗Xn)(θn−1 − θ∗),Σ−β(Id−γXn ⊗Xn)(θn−1 − θ∗)

〉]
= E

[〈
θn−1 − θ∗,Σ−β(θn−1 − θ∗)

〉]
(8)

− 2γE
[〈
θn−1 − θ∗,Σ−βXn ⊗Xn(θn−1 − θ∗)

〉]
(9)

+ γ2E
[〈
θn−1 − θ∗, Xn ⊗XnΣ−βXn ⊗Xn(θn−1 − θ∗)

〉]
. (10)

Note that the first term of this sum is ϕn−1(β). Further, θn−1 is computed using only
(X1, Y1), . . . , (Xn−1, Yn−1), thus it is independent of Xn. It follows that

E
[〈
θn−1 − θ∗,Σ−βXn ⊗Xn(θn−1 − θ∗)

〉]
= E

[〈
θn−1 − θ∗,Σ−βE [Xn ⊗Xn] (θn−1 − θ∗)

〉]
= E

[〈
θn−1 − θ∗,Σ−β+1(θn−1 − θ∗)

〉]
= ϕn−1(β − 1) . (11)

Finally,

E
[〈
θn−1 − θ∗, Xn ⊗XnΣ−βXn ⊗Xn(θn−1 − θ∗)

〉]
(12)

= E
[
〈θn−1 − θ∗, Xn〉2

〈
Xn,Σ

−βXn

〉]
(13)

We now assume that 0 6 β 6 α. We apply Lemma 2 with β1 = 0, β2 = α, λ = β/α:〈
Xn,Σ

−βXn

〉
6 ‖Xn‖2(1−β/α)

〈
Xn,Σ

−αXn

〉β/α
Let EXn denote the expectation with respect to Xn only, while keeping X0, . . . , Xn−1 random.
Applying Hölder’s inequality, we get

EXn
[〈
Xn,Σ

−βXn

〉
〈θn−1 − θ∗, Xn〉2

]
6 EXn

[
‖Xn‖2(1−β/α)

〈
Xn,Σ

−αXn

〉β/α 〈θn−1 − θ∗, Xn〉2
]

6 EXn
[
‖Xn‖2 〈θn−1 − θ∗, Xn〉2

]1−β/α
E
[〈
Xn,Σ

−αXn

〉
〈θn−1 − θ∗, Xn〉2

]β/α
=
〈
θn−1 − θ∗,E

[
‖Xn‖2Xn ⊗Xn

]
(θn−1 − θ∗)

〉1−β/α
×
〈
θn−1 − θ∗,E

[〈
Xn,Σ

−αXn

〉
Xn ⊗Xn

]
(θn−1 − θ∗)

〉β/α
6 R

1−β/α
0 Rβ/αα 〈θn−1 − θ∗,Σ(θn−1 − θ∗)〉 ,

where in this last step, we use the assumptions that the features X are bounded and regular, in their
weak formulation of Remark 3. Returning to the computation of (12)-(13), we get

E
[〈
θn−1 − θ∗, Xn ⊗XnΣ−βXn ⊗Xn(θn−1 − θ∗)

〉]
= E

[
EXn

[
〈θn−1 − θ∗, Xn〉2

〈
Xn,Σ

−βXn

〉]]
(14)

6 R
1−β/α
0 Rβ/αα E [〈θn−1 − θ∗,Σ(θn−1 − θ∗)〉]

= R
1−β/α
0 Rβ/αα ϕn−1(−1) . (15)

The result is obtained by putting together Equations (8)-(10), (11) and (15).
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B.2 Proof of Theorem 1

A remarkable feature of the proof that follows is that only Properties 1 and 2 of the regularity functions
are used to derive the theorem. In particular, we do not use the definition of the regularity functions
ϕn in this section.

We start with a few preliminary remarks. Using the recurrence Property 2 and that γR0 6 1,

ϕk(0) 6 ϕk−1(0)− γ (2− γR0)ϕk−1(−1)

6 ϕk−1(0)− γϕk−1(−1) .

Thus the sequence ϕk(0), k > 0 decreases, and

γϕk−1(−1) 6 ϕk−1(0)− ϕk(0) . (16)

By summing this inequality over k > 1, we get

γ

∞∑
k=0

ϕk(−1) 6 ϕ0(0) . (17)

Using again the recurrence Property 2,

ϕk(α) 6 ϕk−1(α)− 2γϕk−1(α− 1) + γ2Rαϕk−1(−1) (18)

6 ϕk−1(α) + γ2Rαϕk−1(−1) .

By summing for k = 1, . . . , n and using the bound (17),

ϕn(α) 6 ϕ0(α) + γ2Rα

n−1∑
k=0

ϕk(−1)

6 ϕ0(α) + γRαϕ0(0)

6 ϕ0(α) +
Rα
R0

ϕ0(0) . (19)

In words, the sequence ϕn(α), n > 0 is bounded by D := ϕ0(α) +
Rα
R0
ϕ0(0). As a side note, this

proves Theorem 3 for β = α.

We can now give a closed recurrence relation ϕk(0), k > 0. Using the log-convexity Property 1,

ϕk−1(0) 6 ϕk−1(−1)α/(α+1)ϕk−1(α)1/(α+1) 6 ϕk−1(−1)α/(α+1)D1/(α+1) .

Substituting in (16), we obtain

ϕk−1(0)− ϕk(0) > γϕk−1(−1)

> γD−1/αϕk−1(0)1+1/α .

This gives the wanted closed recurrence relation for ϕk(0), k > 0. It implies a decay of ϕk(0) as
follows: consider the real function f(ϕ) = 1

ϕ1/α . It is a convex function on the positive reals, with
derivative f ′(ϕ) = − 1

α
1

ϕ1+1/α . Using that a convex function is above its tangents, we obtain

f (ϕk(0))− f (ϕk−1(0)) > f ′ (ϕk−1(0)) (ϕk(0)− ϕk−1(0))

= − 1

α

1

ϕk−1(0)1+1/α
(ϕk(0)− ϕk−1(0))

>
1

α
γD−1/α .

By summing this inequality for k = 1, . . . , n, we obtain

1

ϕn(0)1/α
= f (ϕn(0)) > f (ϕ0(0)) +

1

α
γD−1/αn >

1

α
γD−1/αn .

This implies conclusion 1 of Theorem 1:

E
[
‖θn − θ∗‖2

]
= ϕn(0) 6

αα

γα
D

1

nα
. (20)
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Further,

min
06k6n

ϕk(−1) 6 min
dn/2e6k6n

ϕk(−1) 6
2

n

n∑
k=dn/2e

ϕk(−1) 6
2

n

1

γ

n∑
k=dn/2e

(ϕk(0)− ϕk+1(0)) ,

where in the last step we used (16). Telescoping the sum, we obtain

min
06k6n

ϕk(−1) 6 min
dn/2e6k6n

ϕk(−1) 6
2

n

1

γ
ϕdn/2e(0) (21)

6
2

n

1

γ

αα

γα
D

1

dn/2eα
6 2α+1 αα

γα+1
D

1

nα+1
.

Using that ϕn(−1) = 2E[R(θn)], this gives conclusion 2 of Theorem 1.

B.3 Proof of Theorem 3

We continue the proof of Theorem 1 to prove Theorem 3. By the log-convexity Property 1, for all
β ∈ [0, α],

ϕn(β) 6 ϕn(0)1−β/αϕn(α)β/α .

Using Equations (20) and (19), we obtain

ϕn(β) 6
αα−β

γα−β
D

1

nα−β
.

This proves conclusion 1 of the theorem. We now consider the case β ∈ [−1, 0). By the log-convexity
Property 1,

min
06k6n

ϕk(β) 6 min
dn/2e6k6n

ϕk(β) 6 min
dn/2e6k6n

ϕk(−1)−βϕk(0)1+β

Using that ϕk(0), k > 0 is decreasing and the inequality (21), we obtain

min
dn/2e6k6n

ϕk(−1)−βϕk(0)1+β 6 ϕdn/2e(0)1+β

(
min

dn/2e6k6n
ϕk(−1)

)−β
6 ϕdn/2e(0)1+β

(
2

n

1

γ
ϕdn/2e(0)

)−β
6

2−β

n−β
1

γ−β
ϕdn/2e(0) .

Using finally (20), we obtain conclusion 2 of the theorem

min
06k6n

ϕk(β) 6
2−β

n−β
1

γ−β
αα

γα
D

1

dn/2eα
6 2α−β

αα

γα−β
D

1

nα−β
.

C Proof of Theorems 2 and 4

We start in the case (a) where the optimum is irregular: θ∗ /∈ Σ−α/2(H). In that case, we give a lower
bound in the convergence rate by studying the expected process θn := E[θn]. Indeed, by Jensen’s
inequality,

ϕn(β) = E
[〈
θn − θ∗,Σ−β (θn − θ∗)

〉]
>
〈
θn − θ∗,Σ−β

(
θn − θ∗

)〉
. (22)

The expectation θn can be interpreted as the (non-stochastic) gradient descent on the population risk
R(θ). Indeed, by taking the expectation in (1), we obtain

θn − θ∗ = (Id−γΣ)(θn−1 − θ∗) = −(Id−γΣ)nθ∗ . (23)

Note that as γ 6 1/R0, I − γΣ is a positive definite matrix. Indeed, by the weak definition of R0 in
Remark 3,

R0Σ < E
[
‖X‖2X ⊗X

]
= E [(X ⊗X)(X ⊗X)] < E[X ⊗X]2 = Σ2 ,
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thus R0 is larger than the operator norm of Σ. Thus γΣ 4 1
R0

Σ 4 Id.

In the following, if α ∈ R and k ∈ N,
(
α
k

)
denotes the generalized binomial coefficient:

(
α
k

)
=

α(α−1)···(α−k+1)
k! . Fix now α > 0. We have the (formal) power series

(1 + x)−α =

∞∑
k=0

(
−α
k

)
xk

(1− x)−α =

∞∑
k=0

(
−α
k

)
(−1)kxk =

∞∑
k=0

(
α+ k − 1

k

)
xk

y−α =

∞∑
k=0

(
α+ k − 1

k

)
(1− y)k .

This last equality holds in [0,∞] for y ∈ [0, 1]. In that case, all terms of the serie are positive, thus
the meaning of the sum is unambiguous.

Note that 0 4 γΣ 4 Id, thus we have, formally,

γ−αΣ−α =

∞∑
k=0

(
α+ k − 1

k

)
(Id−γΣ)k .

The rigorous meaning of this equality is that for all θ ∈ H,

γ−α〈θ,Σ−αθ〉 =

∞∑
k=0

(
α+ k − 1

k

)
〈θ, (Id−γΣ)kθ〉 .

Both terms of the equality can be infinite: here we are using the convention stated in Section 2.1 that
implies that 〈θ,Σ−αθ〉 =∞⇔ θ /∈ Σα/2(H). In particular, take α = α− β and θ = Σ−β/2θ∗:

∞ = γβ−α
〈
θ∗,Σ

−αθ∗
〉

=

∞∑
k=0

(
α− β + k − 1

k

)〈
θ∗,Σ

−β(Id−γΣ)kθ∗
〉

=

∞∑
n=0

[(
α− β + 2n− 1

2n

)〈
θ∗,Σ

−β(Id−γΣ)2nθ∗
〉

+

(
α− β + 2n

2n+ 1

)〈
θ∗,Σ

−β(Id−γΣ)2n+1θ∗
〉 ]

.

Using that
(
α−β+2n−1

2n

)
6
(
α−β+2n

2n+1

)
and

〈
θ∗,Σ

−β(Id−γΣ)2nθ∗
〉
>
〈
θ∗,Σ

−β(Id−γΣ)2n+1θ∗
〉

and then (23), (22),

∞ 6 2

∞∑
n=0

(
α− β + 2n

2n+ 1

)〈
θ∗,Σ

−β(Id−γΣ)2nθ∗
〉

= 2

∞∑
n=0

(
α− β + 2n

2n+ 1

)〈
θn − θ∗,Σ−β(θn − θ∗)

〉
6 2

∞∑
n=0

(
α− β + 2n

2n+ 1

)
ϕn(β) .

From [14, Equation 5.8.1], we have the formula Γ(z) = limk→∞
k!kz

z(z+1)···(z+k) where Γ denotes the
Gamma function. Thus as n→∞(

α− β + 2n

2n+ 1

)
=

(α− β)(α− β + 1) · · · (α− β + 2n)

(2n+ 1)(2n)!
∼ (2n)α−β

(2n+ 1)Γ(α− β)
.

As a consequence, the serie
∑
n n

α−β−1ϕn(β) diverges. The criteria for the convergence of Riemann
series implies that ϕn(β) can not be asymptotically dominated by 1/nα−β+ε for ε > 0.
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We now turn to the case (b) where the features are irregular: with positive probability p > 0,
X /∈ Σα/2(H) and 〈X, θ∗〉 6= 0. With probability p, the second iterate θ1 = −γ〈X1, θ∗〉X1 is
irregular, i.e., θ1 /∈ Σα/2(H). By a simple shift of the iterates, we show that the effect of the
irregularity of the initial condition for this iteration started from θ1 has an effect equivalent to the
irregularity of the optimum, thus we can apply the result above to lower bound the convergence rate.
More precisely, consider the iterates θ̃n = θn+1 − θ1 and θ̃∗ = θ∗ − θ1. The iteration (1) can be
rewritten as θ̃n = θ̃n−1 − γ〈θ̃n−1 − θ̃∗, Xn〉Xn and θ̃0 = 0, thus the new sequence θ̃n satisfies our
framework. We can assume that (a) is satisfied, i.e., θ∗ ∈ Σα/2(H). In that case, with probability p,
θ̃∗ = θ∗ − θ1 /∈ Σα/2(H). Thus by the case above,

ϕn(β) = E
[〈
θn − θ∗,Σ−β (θn − θ∗)

〉]
= E

[〈
θ̃n−1 − θ̃∗,Σ−β

(
θ̃n−1 − θ̃∗

)〉]
is not asymptotically dominated by 1/nα−β+ε, for ε > 0.

D Robustness to model mispecification

In this section, we describe how the results of Section 2 are perturbed in the case where a linear
relation Y = 〈θ∗, X〉 a.s. does not hold. Following the statistical learning framework, we assume a
joint law on (X,Y ). We further assume that there exists a minimizer θ∗ ∈ H of the population risk
R(θ):

θ∗ ∈ argmin
θ∈H

{
R(θ) =

1

2
E
[
(Y − 〈θ,X〉)2

]}
.

This general framework encapsulates two types of perturbations of the noiseless linear model:

• (variance) The output Y can be uncertain given X . For instance, under the noisy linear
model, Y = 〈θ∗, X〉 + Z, where Z is centered and independent of X . In this case,
R(θ∗) = E[Z2] = E[var (Y |X)].

• (bias) Even if Y is deterministic given X , this dependence can be non-linear: Y = ψ(X)
for some non-linear function ψ. Then R(θ∗) is the squared L2 distance of the best linear
approximation to ψ: R(θ∗) = 1

2E
[
(ψ(X)− 〈θ∗, X〉)2

]
.

In the general framework, the optimal population risk is a combination of both sources

R(θ∗) =
1

2
E [var (Y |X)] +

1

2
E
[
(E[Y |X]− 〈θ∗, X〉)2

]
.

Given i.i.d. realizations (X1, Y1), (X2, Y2), . . . of (X,Y ), the SGD iterates are defined as

θ0 = 0 , θn = θn−1 − γ (〈θn−1, Xn〉 − Yn)Xn . (24)

Apart from the new definition of θ∗, we repeat the same assumptions as in Section 2: let R0 <∞ be
such that ‖X‖2 6 R0 a.s., denote Σ = E[X ⊗X] and ϕn(β) = E

[〈
θn − θ∗,Σ−β (θn − θ∗)

〉]
.

Theorem 5. Under the assumptions of Theorem 1,

min
k=0,...,n

E [R(θk)−R(θ∗)] 6 2
C ′

nα+1
+ 2R0γR(θ∗) ,

where C ′ is the same constant as in Theorem 1.

The take-home message is that if we consider the excess riskR(θk)−R(θ∗), we get the upper bound
of the form 2C ′n−(α+1), analog to Theorem 1, but with an additional constant term 2R0γR(θ∗).
This term can be small ifR(θ∗) is small, that is if the problem is close to the noiseless linear model,
or if the step-size γ is small. In the finite horizon setting setting, one can optimize γ as a function of
the scheduled number of steps n in order to balance both terms in the upper bound. As C ′ ∝ γ−(α+1),
the optimal choice is γ ∝ n−(α+1)/(α+2) which gives a rate mink=0,...,n E [R(θk)−R(θ∗)] =

O
(
n−(α+1)/(α+2)

)
.
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Figure 4: In blue +, evolution of ‖θn − θ∗‖2 (left) and R(θn) (right) as functions of n, for the
problems with parameters d = 105, β = 1.4, δ = 1.2. The orange lines represent the curves D/nα∗
(left) and D′/nα∗+1 (right).

In the theorem below, we study the SGD iterates θn in terms of the power norms ϕn(β), β ∈
[−1, α− 1], in particular in term of the reconstruction error ϕn(0) = E[‖θn − θ∗‖2] if α > 1. Note
that the population riskR(θ) is a quadratic with Hessian Σ, minimized at θ∗, thus

E [R(θn)−R(θ∗)] =
1

2
E [〈θn − θ∗,Σ(θn − θ∗)〉] =

1

2
ϕn(−1) .

Thus the theorem below extends Theorem 5.
Theorem 6. Under the assumptions of Theorem 1,

1. for all β > 0, β 6 α− 1,

ϕn(β) 6 2
C(β)

nα−β
+ 4R

1−(β+1)/α
0 R(β+1)/α

α γR(θ∗) ,

2. for all β ∈ [−1, 0), β 6 α− 1,

min
k01,...,n

ϕk(β) 6 2
C ′(β)

nα−β
+ 4R

1−(β+1)/α
0 R(β+1)/α

α γR(θ∗) ,

where C, C ′ are the same constants as in Theorem 3.

This theorem is proved at the end of this section. We expect the condition β 6 α− 1 to be necessary.
More precisely, when R(θ∗) is positive, we expect the error θn − θ∗ to diverge under the norm
‖Σ−β/2 . ‖ if β > α− 1. In particular, this would imply that the reconstruction error diverges when
α < 1.

In Figure 4, we show how the simulations of Appendix A are perturbed in the presence of additive
noise. We consider the noisy linear model Y = 〈θ∗, X 〉 + σ2Z, where X ∼ N (0,Σ) and Z ∼
N (0, 1) are independent. As in the previous simulations, we consider the case Σ =

∑d
i=1 i

−βei⊗ ei
and θ∗ =

∑d
i=1 i

−δei with here d = 105, β = 1.4, δ = 1.2. In the noiseless case σ2 = 0, we have

shown that the rate of convergence was given by the polynomial exponent α∗ = min
(

1− 1
β ,

2δ−1
β

)
.

These predicted rates are represented by the orange lines in the plots. In blue, we show the results
of our simulations with some additive noise with variance σ2 = 2 × 10−4. The exponent α∗ still
describes the behavior of SGD in the initial phase, but in the large n asymptotic the population
risk R(θn) stagnates around the order of σ2. Both of these qualitative behaviors are predicted by
Theorem 5. Moreover, the reconstruction error ‖θn − θ∗‖ diverges for large n.

Proof of Theorems 5 and 6. Note that in this proof, we use the strong assumptions of regularity of
the feature vector X . We do not know whether it is possible to prove the same result under the weak
assumptions of Remark 3.

Our proof stategy is the following: we decompose the SGD iterates sequence θn as a sum of sequences
θn = νn +

∑n
l=1 η

(l)
n , where each of the auxiliary sequences is interpreted as the iterates of some
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SGD iteration under a noiseless linear model. We thus apply the results of Section 2 to control these
auxiliary sequences and obtain the presented bound.

Define εn = Yn−〈θ∗, Xn〉, the error of the best linear estimator. Then Equation (24) can be rewritten
as

θ0 = 0 , θn = θn−1 − γ〈θn−1 − θ∗, Xn〉Xn + γεnXn .

We see this iteration as an additively perturbed version of the iteration

ν0 = 0 , νn = νn−1 − γ〈νn−1 − θ∗, Xn〉Xn ,

studied in Section 2. To understand the effect of the additive noise, define for all l > 1,

η
(l)
l = γεlXl , η(l)

n = η
(l)
n−1 − γ〈η

(l)
n−1, Xn〉Xn , n > l .

Then

θn = νn +

n∑
l=1

η(l)
n . (25)

Indeed, this last equation is checked by induction: θ0 = 0 = ν0, and if the equation is satisfied for
some n > 0,

θn+1 = θn − γ〈θn − θ∗, Xn+1〉Xn+1 + γεn+1Xn+1

= νn +

n∑
l=1

η(l)
n − γ

〈
νn +

n∑
l=1

η(l)
n − θ∗, Xn+1

〉
Xn+1 + η

(n+1)
n+1

= [νn − γ〈νn − θ∗, Xn+1〉Xn+1] +

n∑
l=1

[
η(l)
n − γ〈η(l)

n , Xn+1〉Xn+1

]
+ η

(n+1)
n+1

= νn+1 +

n∑
l=1

η
(l)
n+1 + η

(n+1)
n+1 .

We use the decomposition (25) to study ϕn(β). Using the triangle inequality,

ϕn(β) = E

∥∥∥∥∥Σ−β/2

(
νn +

n∑
l=1

η(l)
n

)∥∥∥∥∥
2


6 E

(∥∥∥Σ−β/2νn

∥∥∥+

∥∥∥∥∥Σ−β/2
n∑
l=1

η(l)
n

∥∥∥∥∥
)2


6 2E
[∥∥∥Σ−β/2νn

∥∥∥2
]

+ 2E

∥∥∥∥∥Σ−β/2
n∑
l=1

η(l)
n

∥∥∥∥∥
2
 (26)

The first term is studied in Section 2. We detail the analysis of the second term. Note that

η(l)
n = (I − γXn ⊗Xn)η

(l)
n−1 = · · · = (I − γXn ⊗Xn) · · · (I − γXl+1 ⊗Xl+1)η

(l)
l

= (I − γXn ⊗Xn) · · · (I − γXl+1 ⊗Xl+1)γεlXl . (27)

Thus if l < l′,

E
[〈
η(l)
n ,Σ−βη(l′)

n

〉]
= E

[〈
E
[
η(l)
n

∣∣∣Xl+1, . . . , Xn

]
,Σ−βη(l′)

n

〉]
= E

[〈
(I − γXn ⊗Xn) · · · (I − γXl+1 ⊗Xl+1)γE[εlXl],Σ

−βη(l′)
n

〉]
Note that by definition of θ∗, 0 = ∇R(θ∗) = −E [(Yl − 〈θ∗, Xl〉)Xl] = −E [εlXl] thus we obtain
that the cross products E

[〈
η

(l)
n ,Σ−βη

(l′)
n

〉]
are zero. This gives

E

∥∥∥∥∥Σ−β/2
n∑
l=1

η(l)
n

∥∥∥∥∥
2
 =

n∑
l=1

E
[∥∥∥Σ−β/2η(l)

n

∥∥∥2
]
.
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Note that from Equation (27), η(l)
n and η(1)

n−l+1 are equal in law. Thus

E

∥∥∥∥∥Σ−β/2
n∑
l=1

η(l)
n

∥∥∥∥∥
2
 =

n∑
l=1

E
[∥∥∥Σ−β/2η

(1)
n−l+1

∥∥∥2
]

=

n∑
l=1

E
[∥∥∥Σ−β/2η

(1)
l

∥∥∥2
]
. (28)

This last quantity is the sum of the expected squared power norms

ϕ′l(β) := E
[∥∥∥Σ−β/2η

(1)
l

∥∥∥2
]

of the SGD iterates η(1)
l , l > 1 on a noiseless linear model, with initialization η(1)

1 = γε1X1. When
β = −1, this control is given by (17): with our notation here, this gives

n∑
l=1

ϕ′l(−1) 6
∞∑
l=1

ϕ′l(−1) 6
1

γ
ϕ′1(0) . (29)

When β = α− 1, a similar control can be obtained from (18) which gives:

2γϕ′l−1(α− 1) 6 ϕ′l−1(α)− ϕ′l(α) + γ2Rαϕ
′
l−1(−1) .

By summing these inequalities for l = 2, 3, . . . , we obtain,

2γ

∞∑
l=1

ϕ′l(α− 1) 6 ϕ′1(α) + γ2Rα

∞∑
l=1

ϕ′l(−1)

6 ϕ′1(α) +
Rα
R0

ϕ′1(0) (30)

Note that using the strong assumption of regularity of the feature vectors,

ϕ′1(0) = E
[
‖γε1X1‖2

]
6 γ2R0E

[
ε2

1

]
= 2γ2R0R(θ∗) ,

ϕ′1(α) = E
[∥∥∥Σ−α/2γε2

1X
∥∥∥2
]
6 γ2RαE

[
ε2

1

]
= 2γ2RαR(θ∗) .

We use these expressions to simply further (29) and (30):
n∑
l=1

ϕ′l(−1) 6 2γR0R(θ∗) ,

∞∑
l=1

ϕ′l(α− 1) 6 2γRαR(θ∗) .

If β ∈ [−1, α − 1], we use the log-convexity Property 1 and Hölder’s inequality: decompose
β = (1− λ)(−1) + λ(α− 1) with λ = (β + 1)/α,

∞∑
l=1

ϕ′l(β) 6
∞∑
l=1

ϕ′l(−1)1−λϕ′l(α− 1)λ

6

(
n∑
l=1

ϕ′l(−1)

)1−λ( ∞∑
l=1

ϕ′l(α− 1)

)λ
6 (2γR0R(θ∗))

1−λ (
2γRαR(θ∗)

)λ
= 2γR1−λ

0 RλαR(θ∗) . (31)

Putting back together Equations (26), (28) and (31), we obtain

ϕn(β) 6 2E
[∥∥∥Σ−β/2νn

∥∥∥2
]

+ 4γR1−λ
0 RλαR(θ∗)

The theorem follows the application of Theorem 3 to the sequence νn in order to control the first
term.
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E Proof of Corollary 1

We apply Theorem 1 in the following way. Denote θn = xn − x0, θ∗ = x∗ − x0, where x∗ = 1
N 1 is

the function identically equal to 1
N . These vectors belong to the Hilbert spaceH = `2(V). Denote

〈., .〉 and ‖.‖ the `2(V) scalar product and norm. Denote also Xn = evn − ewn ∈ H and γ = 1/2.
Note that Σ = E[XnX

>
n ] = 1

ML. The graph is connected thus λ0 = 0 is the unique zero eigenvalue
of L [11, Lemma 1.7]. The corresponding eigenspace is the space of constant functions. The
vectors θn, Xn, θ∗ are orthogonal to the null space of Σ, thus the quantities of the form 〈θn,Σ−αθn〉,
〈Xn,Σ

−αXn〉,〈θ∗,Σ−αθ∗〉 are finite.

We have θ0 = 0 and the averaging update step (7) can be written as

θn = θn−1 − γ 〈θn−1 − θ∗, Xn〉Xn .

The last form makes explicit the parallel with Equation (1). To apply Theorem 1, we check that its
assumptions are satisfied. First, ‖Xn‖2 = 2 a.s. thus can take R0 = 2 and then γ = 1/R0. Second,
we seek α > 0 such that ‖Σ−α/2θ∗‖ < ∞ and Rα = sup{v,w}∈E 〈ev − ew,Σ−α(ev − ew)〉 < ∞.
In the following, we bound these constants for all α < d/2, thus giving decay rates for the expected
squared distance to optimum of the form n−α for all α < d/2. However, our bounds of the constants
‖Σ−α/2θ∗‖ and Rα diverge as α→ d/2. Nevertheless, by estimating how fast the bounds diverge as
α→ d/2, we obtain a decay rate of n−d/2 by paying an additional logarithmic factor.

Fix 0 < α < d/2. We check assumptions (a) and (b).

(a)

‖Σ−α/2θ∗‖2 = Mα
〈
x∗ − x0, L

−α(x∗ − x0)
〉

= Mα
N−1∑
i=1

λ−αi 〈x∗ − x0, ui〉2 .

First, as x∗ is a constant vector, 〈x∗, ui〉 is zero for all i > 1. Second, x0 = ev? . Thus

‖Σ−α/2θ∗‖2 = Mα
N−1∑
i=1

λ−αi ui(v?)
2

= Mα

∫
(0,∞)

dσv?(λ)λ−α

= Mα

∫
(0,∞)

dσv?(λ)

∫ ∞
0

ds1{s6λ−α}

= Mα

∫ ∞
0

ds

∫
(0,∞)

dσv?(λ)1{λ6s−1/α}

= Mα

∫ ∞
0

ds σv?((0, s−1/α]) .

The graph G is of spectral dimension d with constant V , thus σv?((0, s−1/α]) 6 V −1s−
d
2α .

However, if s < δ−αmax, it is better to use a more naive bound. As all eigenvalues of L are
smaller or equal than δmax, σv?((0, s−1/α]) 6 σv?((0, δmax]) 6 V −1δ

d/2
max. Then

‖Σ−α/2θ∗‖2 6Mα

[∫ δ−αmax

0

ds V −1δd/2max +

∫ ∞
δ−αmax

ds V −1s−
d
2α

]

= MαV −1δd/2−αmax

d

d− 2α
.

(b) Let {v, w} ∈ E. As ‖Σ−α/2.‖ is a norm, by the triangle inequality,

‖Σ−α/2(ev − ew)‖2 = ‖Σ−α/2 [(x∗ − ew)− (x∗ − ev)] ‖2

6
(
‖Σ−α/2(x∗ − ew)‖+ ‖Σ−α/2(x∗ − ev)‖

)2

6 2
(
‖Σ−α/2(x∗ − ew)‖2 + ‖Σ−α/2(x∗ − ev)‖2

)
.
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We bound the two quantities as above. We obtain

Rα = sup
v,w∈E

‖Σ−α/2(ev − ew)‖2 6 2MαV −1δd/2−αmax

d

d− 2α
.

Theorem 1 gives

E
[
‖xn − x∗‖2

]
= E

[
‖θn − θ∗‖2

]
6
αα

γα

(
‖Σ−α/2θ∗‖2 +

Rα
R0
‖θ∗‖2

)
1

nα

6
(d/2)α

(1/2)α

(
MαV −1δd/2−αmax

d

d− 2α
+MαV −1δd/2−αmax

d

d− 2α
‖θ∗‖2

)
1

nα

Note that ‖θ∗‖22 6 1 and recall the scaling t = n/M :

E
[
‖xn − x∗‖2

]
6 dd/2+1V −1δd/2−αmax

1

d/2− α
1

tα
.

This bound is valid for all α < d
2 . Choose α = d

2 −
log 2
log t .

E
[
‖xn − x∗‖2

]
6 dd/2+1V −1δlog 2/ log t

max

log t

log 2

2

td/2

As we assume t > 2, δlog 2/ log t
max 6 δmax. Thus we obtain conclusion 1.

The proof of 2 is similar. Theorem 1 gives

min
06k6n

E

1

2

∑
{v,w}∈E

(xk(v)− xk(w))
2

 = min
06k6n

E
[

1

2
〈xk − x∗, L(xk − x∗)〉

]

= M min
06k6n

E
[

1

2
〈θk − θ∗,Σ(θk − θ∗)〉

]
6 2α

αα

γα+1

(
‖Σ−α/2θ∗‖2 +

Rα
R0
‖θ∗‖2

)
1

nα

6 2α+1dαV −1δd/2−αmax

d

d/2− α
1

tα+1
.

Taking again α = d
2 −

1
2 log t and t > 2,

min
06k6n

E

1

2

∑
{v,w}∈E

(xk(v)− xk(w))
2

 6 2d/2+1dd/2V −1δmax
d log t

log 2

2

td/2+1

This gives conclusion 2 of the corollary.

F Proof of Proposition 1

The graph TdΛ is invariant by translation, thus the spectral measure σv is the same for all vertices
v ∈ V . Thus

|V|σv(dλ) =
∑
w∈V

σw(dλ) =
∑
w∈V

N−1∑
i=0

ui(w)2δλi =

N−1∑
i=0

(∑
w∈V

ui(w)2

)
δλi =

N−1∑
i=0

δλi .

Thus

σv((0, E]) =
1

Λd
|{0 < i 6 N − 1|λi 6 E}| .

We need to bound the number of eigenvalues of the Laplacian of TdΛ below some fixed value E.
The eigenvalues of the Laplacian of the circle T1

Λ are 1− cos
(

2πi
Λ

)
, i ∈ Z,−Λ/2 < i 6 Λ/2 [11,
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Example 1.5]. As TdΛ is the Cartesian product T1
Λ × · · · × T1

Λ (with d terms), the eigenvalues of the
Laplacian of the torus TdΛ are the

1− cos

(
2πi1

Λ

)
+ · · ·+ 1− cos

(
2πid

Λ

)
, i1, . . . id ∈ Z, −Λ

2
< i1, . . . , id 6

Λ

2
.

For y ∈ [−π, π], 1− cos(y) > 2
π2 y

2. Thus

1− cos

(
2πi1

Λ

)
+ · · ·+ 1− cos

(
2πid

Λ

)
6 E ⇒ 2

π2

[(
2πi1

Λ

)2

+ · · ·+
(

2πid
Λ

)2
]
6 E

⇔ i21 + · · ·+ i2d 6
EΛ2

8
.

We need to count the number of integer points in the Euclidean ball centered at 0 and of radius√
E/8Λ in Rd. This problem is famously known as Gauss circle problem. For our purposes, a crude

estimate suffices: there exists a constant C(d), depending only on the dimension d, such that for all
radius R, the number of integer points in the ball of radius R is smaller than 1 + C(d)Rd. This leads
to the final estimate

σv((0, E]) =
1

Λd

∣∣∣∣{(i1, . . . , id) ∈
(
Z ∩

(
−Λ

2
,

Λ

2

])d
\ {0} such that

1− cos

(
2πi1

Λ

)
+ · · ·+ 1− cos

(
2πid

Λ

)
6 E

}∣∣∣∣
6

1

Λd

∣∣∣∣{(i1, . . . , id) ∈ Zd\ {0}
∣∣∣∣ i21 + · · ·+ i2d 6

EΛ2

8

}∣∣∣∣
6

1

Λd
C(d)

(
EΛ2

8

)d/2
=
C(d)

8d/2
Ed/2 .

This proves the proposition with V (d) = 8d/2/C(d).
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