A Linear regression with Gaussian features

In the setting of Section 2.1, we assume X to be centered Gaussian process of covariance Σ where Σ is a bounded symmetric semidefinite operator. As X is not bounded a.s., we need to use the weaker set of assumptions given in Remark 3. We thus need to compute R_{0} such that $\mathbb{E}\left[\|X\|^{2} X \otimes X\right] \preccurlyeq R_{0} \Sigma$ and α, R_{α} such that $\mathbb{E}\left[\left\langle X, \Sigma^{-\alpha} \bar{X}\right\rangle X \otimes X\right] \preccurlyeq R_{\alpha} \Sigma$. We show here that these conditions are in fact simple trace conditions on Σ, sometimes called capacity conditions [25].
Lemma 1. If $X \sim \mathcal{N}(0, \Sigma)$ and A is a bounded symmetric operator such that $\operatorname{Tr}(\Sigma A)<\infty$,

$$
\mathbb{E}[\langle X, A X\rangle X \otimes X]=2 \Sigma A \Sigma+\operatorname{Tr}(\Sigma A) \Sigma \preccurlyeq\left(2\left\|\Sigma^{1 / 2} A \Sigma^{1 / 2}\right\|_{\mathcal{H} \rightarrow \mathcal{H}}+\operatorname{Tr}(\Sigma A)\right) \Sigma
$$

Proof. Diagonalize $\Sigma=\sum_{i \geqslant 1} \lambda_{i} e_{i} \otimes e_{i}$. Then there exists independent standard Gaussian random variables $X_{i}, i \geqslant 0$ such that $X=\sum_{i} \lambda_{i}^{1 / 2} X_{i} e_{i}$.
Let $i, j \geqslant 1$.

$$
\begin{aligned}
\left\langle e_{i}, \mathbb{E}[\langle X, A X\rangle X \otimes X] e_{j}\right\rangle & =\mathbb{E}\left[\langle X, A X\rangle\left\langle e_{i}, X \otimes X e_{j}\right\rangle\right]=\mathbb{E}\left[\langle X, A X\rangle \lambda_{i}^{1 / 2} X_{i} \lambda_{j}^{1 / 2} X_{j}\right] \\
& =\lambda_{i}^{1 / 2} \lambda_{j}^{1 / 2} \sum_{k, l} A_{k, l} \lambda_{k}^{1 / 2} \lambda_{l}^{1 / 2} \mathbb{E}\left[X_{i} X_{j} X_{k} X_{l}\right]
\end{aligned}
$$

As $X_{i}, i \geqslant 1$ are centered independent random variables, the quantity $\mathbb{E}\left[X_{i} X_{j} X_{k} X_{l}\right]$ is 0 in many cases. More precisely,

- if $i \neq j$, the general term of the sum in non-zero only when $k=i$ and $l=j$ or $k=j$ and $l=i$. This gives

$$
\left\langle e_{i}, \mathbb{E}[\langle X, A X\rangle X \otimes X] e_{j}\right\rangle=2 A_{i, j} \lambda_{i} \lambda_{j}
$$

- if $i=j$, the general term of the sum is non-zero only when $k=l$. This gives

$$
\begin{aligned}
\left\langle e_{i}, \mathbb{E}[\langle X, A X\rangle X \otimes X] e_{i}\right\rangle & =\lambda_{i} \sum_{k} A_{k, k} \lambda_{k} \mathbb{E}\left[X_{i}^{2} X_{k}^{2}\right]=\lambda_{i} \sum_{k \neq i} A_{k, k} \lambda_{k}+3 \lambda_{i}^{2} A_{i, i} \\
& =\lambda_{i} \sum_{k} A_{k, k} \lambda_{k}+2 \lambda_{i}^{2} A_{i, i} .
\end{aligned}
$$

In both cases,

$$
\left\langle e_{i}, \mathbb{E}[\langle X, A X\rangle X \otimes X] e_{j}\right\rangle=2 \lambda_{i} \lambda_{j} A_{i, j}+\left(\sum_{k} A_{k, k} \lambda_{k}\right) \lambda_{i} \mathbf{1}_{i=j}
$$

Note that

$$
\operatorname{Tr}(A \Sigma)=\sum_{k}\left\langle e_{k}, \Sigma A e_{k}\right\rangle=\sum_{k} \lambda_{k} A_{k, k}
$$

Thus we get

$$
\begin{aligned}
\left\langle e_{i}, \mathbb{E}[\langle X, A X\rangle X \otimes X] e_{j}\right\rangle & =2 \lambda_{i} \lambda_{j} A_{i, j}+\operatorname{Tr}(A \Sigma) \lambda_{i} \mathbf{1}_{i=j} \\
& =2\left\langle e_{i}, \Sigma A \Sigma e_{j}\right\rangle+\operatorname{Tr}(A \Sigma)\left\langle e_{i}, \Sigma e_{j}\right\rangle \\
& =\left\langle e_{i},[2 \Sigma A \Sigma+\operatorname{Tr}(\Sigma A) \Sigma] e_{j}\right\rangle
\end{aligned}
$$

From this lemma with $A=\mathrm{Id}$, we compute $R_{0}=2\|\Sigma\|_{\mathcal{H} \rightarrow \mathcal{H}}+\operatorname{Tr}(\Sigma)$, and with $A=\Sigma^{-\alpha}$, we compute $R_{\alpha}=2\|\Sigma\|_{\mathcal{H} \rightarrow \mathcal{H}}^{1-\alpha}+\operatorname{Tr}\left(\Sigma^{1-\alpha}\right)$. Thus in the Gaussian case, the condition of (weak) regularity of the features is given by $\operatorname{Tr}\left(\Sigma^{1-\alpha}\right)<\infty$.

Figure 3: In blue + , evolution of $\left\|\theta_{n}-\theta_{*}\right\|^{2}$ (left) and $\mathcal{R}\left(\theta_{n}\right)$ (right) as functions of n, for the problems with parameters $\beta=1.4, \delta=1.2$ (up) and $\beta=3.5, \delta=1.5$. The orange lines represent the curves $D / n^{\alpha_{*}}$ (left) and $D^{\prime} / n^{\alpha_{*}+1}$ (right).

Simulations. We present simulations in finite but large dimension $d=10^{5}$, and we check that dimension-independent bounds describe the observed behavior. We artificially generate regression problems with different regularities by varying the decay of the eigenvalues of the covariance Σ and varying the decay of the coefficients of θ_{*}.
Choose an orthonormal basis e_{1}, \ldots, e_{d} of \mathcal{H}. We define $\Sigma=\sum_{i=1}^{d} i^{-\beta} e_{i} \otimes e_{i}$ for some $\beta \geqslant 1$ and $\theta_{*}=\sum_{i=1}^{d} i^{-\delta} e_{i}$ for some $\delta \geqslant 1 / 2$. We now check the condition on α such that the assumptions (a) and (b) are satisfied.
(a) $\left\langle\theta_{*}, \Sigma^{-\alpha} \theta_{*}\right\rangle=\sum_{i=1}^{d}\left\langle\theta_{*}, e_{i}\right\rangle^{2} i^{\beta \alpha}=\sum_{i=1}^{d} i^{-2 \delta+\alpha \beta}$, which is bounded independently of the dimension d if and only if $\sum_{i=1}^{\infty} i^{-2 \delta+\alpha \beta}<\infty \Leftrightarrow-2 \delta+\alpha \beta<-1 \Leftrightarrow \alpha<\frac{2 \delta-1}{\beta}$.
(b) $\operatorname{Tr}\left(\Sigma^{1-\alpha}\right)=\sum_{i=1}^{d} i^{-\beta(1-\alpha)}$, which is bounded independently of the dimension d if and only if $\sum_{i=1}^{\infty} i^{-\beta(1-\alpha)}<\infty \Leftrightarrow-\beta(1-\alpha)<-1 \Leftrightarrow \alpha<1-1 / \beta$.

Thus the corollary gives dimension-independent convergence rates for all $\alpha<\alpha_{*}=$ $\min \left(1-\frac{1}{\beta}, \frac{2 \delta-1}{\beta}\right)$.

In Figure 3. we show the evolution of $\left\|\theta_{n}-\theta_{*}\right\|^{2}$ and $\mathcal{R}\left(\theta_{n}\right)$ for two realizations of SGD. We chose the stepsize $\gamma=1 / R_{0}=1 /\left(2\|\Sigma\|_{\mathcal{H} \rightarrow \mathcal{H}}+\operatorname{Tr}(\Sigma)\right)$. The two realizations represent two possible different regimes:

- In the two upper plots, $\beta=1.4, \delta=1.2$. The irregularity of the feature vectors is the bottleneck for fast convergence. We have $\alpha_{*}=\min \left(1-\frac{1}{\beta}, \frac{2 \delta-1}{\beta}\right) \approx \min (0.29,1)=$ 0.29 .
- In the two lower plots, $\beta=3.5, \delta=1.5$. The irregularity of the optimum is the bottleneck for fast convergence. We have $\alpha_{*}=\min \left(1-\frac{1}{\beta}, \frac{2 \delta-1}{\beta}\right) \approx \min (0.71,0.57)=0.57$.

We compare with the curves $D / n^{\alpha_{*}}$ and $D^{\prime} / n^{\alpha_{*}+1}$ with hand-tuned constants D and D^{\prime} to fit best the data for each plot. In both regimes, our theory is sharp in predicting the exponents in the polynomial rates of convergence of $\left\|\theta_{n}-\theta_{*}\right\|^{2}$ and $\mathcal{R}\left(\theta_{n}\right)$.

B Proof of Theorems 1 and 3

We recall here the definition of the regularity functions

$$
\varphi_{n}(\beta)=\mathbb{E}\left[\left\langle\theta_{n}-\theta_{*}, \Sigma^{-\beta}\left(\theta_{n}-\theta_{*}\right)\right\rangle\right] \in[0, \infty], \quad \beta \in \mathbb{R}
$$

B. 1 Properties of the regularity functions

We derive here two properties of the sequence of regularity functions $\varphi_{n}, n \geqslant 1$ that are useful for the proof of Theorem 3. The first one is a simple consequence of the above definition of the regularity function. The second property is the closed recurrence relation of the regularity functions $\varphi_{n}, n \geqslant 0$ associated to the iterates of SGD.
Property 1. For all n, the function φ_{n} is log-convex, i.e., for all $\beta_{1}, \beta_{2} \in \mathbb{R}$, for all $\lambda \in[0,1]$,

$$
\varphi_{n}\left((1-\lambda) \beta_{1}+\lambda \beta_{2}\right) \leqslant \varphi_{n}\left(\beta_{1}\right)^{1-\lambda} \varphi_{n}\left(\beta_{2}\right)^{\lambda}
$$

Proof. The proof is based on the following lemma, that we state clearly for another use below.
Lemma 2. Let $\theta \in \mathcal{H}$. Then for all $\beta_{1}, \beta_{2} \in \mathbb{R}, \lambda \in[0,1]$,

$$
\left\langle\theta, \Sigma^{-\left[(1-\lambda) \beta_{1}+\lambda \beta_{2}\right]} \theta\right\rangle \leqslant\left\langle\theta, \Sigma^{-\beta_{1}} \theta\right\rangle^{1-\lambda}\left\langle\theta, \Sigma^{-\beta_{2}} \theta\right\rangle^{\lambda} .
$$

This lemma follows from Hölder's inequality with $p=(1-\lambda)^{-1}$ and $q=\lambda^{-1}$. Indeed, diagonalize $\Sigma=\sum_{i} \mu_{i} e_{i} \otimes e_{i}$. Then

$$
\begin{aligned}
\left\langle\theta, \Sigma^{-\left[(1-\lambda) \beta_{1}+\lambda \beta_{2}\right]} \theta\right\rangle & =\sum_{i} \mu_{i}^{-\left[(1-\lambda) \beta_{1}+\lambda \beta_{2}\right]}\left\langle\theta, e_{i}\right\rangle^{2} \\
& =\sum_{i}\left(\mu_{i}^{-\beta_{1}}\left\langle\theta, e_{i}\right\rangle^{2}\right)^{1-\lambda}\left(\mu_{i}^{-\beta_{2}}\left\langle\theta, e_{i}\right\rangle^{2}\right)^{\lambda} \\
& \leqslant\left(\sum_{i} \mu_{i}^{-\beta_{1}}\left\langle\theta, e_{i}\right\rangle^{2}\right)^{1-\lambda}\left(\sum_{i} \mu_{i}^{-\beta_{2}}\left\langle\theta, e_{i}\right\rangle^{2}\right)^{\lambda} \\
& =\left\langle\theta, \Sigma^{-\beta_{1}} \theta\right\rangle^{1-\lambda}\left\langle\theta, \Sigma^{-\beta_{2}} \theta\right\rangle^{\lambda}
\end{aligned}
$$

We now apply this lemma to prove Property 1

$$
\begin{aligned}
\varphi_{n}\left((1-\lambda) \beta_{1}+\lambda \beta_{2}\right) & =\mathbb{E}\left[\left\langle\theta_{n}-\theta_{*}, \Sigma^{-\left[(1-\lambda) \beta_{1}+\lambda \beta_{2}\right]}\left(\theta_{n}-\theta_{*}\right)\right\rangle\right] \\
& \leqslant \mathbb{E}\left[\left\langle\theta_{n}-\theta_{*}, \Sigma^{-\beta_{1}}\left(\theta_{n}-\theta_{*}\right)\right\rangle^{1-\lambda}\left\langle\theta_{n}-\theta_{*}, \Sigma^{-\beta_{2}}\left(\theta_{n}-\theta_{*}\right)\right\rangle^{\lambda}\right]
\end{aligned}
$$

Using again Hölder's inequality, we get

$$
\begin{aligned}
\varphi_{n}\left((1-\lambda) \beta_{1}+\lambda \beta_{2}\right) & \leqslant \mathbb{E}\left[\left\langle\theta_{n}-\theta_{*}, \Sigma^{-\beta_{1}}\left(\theta_{n}-\theta_{*}\right)\right\rangle\right]^{1-\lambda} \mathbb{E}\left[\left\langle\theta_{n}-\theta_{*}, \Sigma^{-\beta_{2}}\left(\theta_{n}-\theta_{*}\right)\right\rangle\right]^{\lambda} \\
& =\varphi_{n}\left(\beta_{1}\right)^{1-\lambda} \varphi_{n}\left(\beta_{2}\right)^{\lambda}
\end{aligned}
$$

Property 2. Under the assumptions of Theorem 3 for all n, the function φ_{n} is finite on $(-\infty, \underline{\alpha}]$, and if $0 \leqslant \beta \leqslant \underline{\alpha}$,

$$
\varphi_{n}(\beta) \leqslant \varphi_{n-1}(\beta)-2 \gamma \varphi_{n-1}(\beta-1)+\gamma^{2} R_{0}^{1-\beta / \underline{\alpha}} R_{\underline{\alpha}}^{\beta / \underline{\alpha}} \varphi_{n-1}(-1)
$$

Proof. By assumption (a), $\varphi_{0}(\underline{\alpha})=\left\|\Sigma^{-\underline{\alpha} / 2} \theta_{*}\right\|^{2}$ is finite, i.e., there exists $\theta \in \mathcal{H}$ such that $\theta_{*}=$ $\Sigma^{\underline{\alpha} / 2} \theta$. Then for any $\beta \leqslant \underline{\alpha}, \theta_{*}=\Sigma^{\beta / 2}\left(\Sigma^{(\underline{\alpha}-\beta) / 2} \theta\right)$ thus $\varphi_{0}(\beta)=\left\|\Sigma^{-\beta / 2} \theta_{*}\right\|^{2}$ is finite.
Further, assume that for some n, the function φ_{n-1} is finite on $(\infty, \underline{\alpha}]$. Then we can rewrite the stochastic gradient iteration (1) as

$$
\theta_{n}-\theta_{*}=\left(\operatorname{Id}-\gamma X_{n} \otimes X_{n}\right)\left(\theta_{n-1}-\theta_{*}\right)
$$

Substituting this expression in the definition of φ_{n} and expanding the formula, we get

$$
\begin{align*}
\varphi_{n}(\beta)= & \mathbb{E}\left[\left\langle\theta_{n}-\theta_{*}, \Sigma^{-\beta}\left(\theta_{n}-\theta_{*}\right)\right\rangle\right] \\
= & \mathbb{E}\left[\left\langle\left(\operatorname{Id}-\gamma X_{n} \otimes X_{n}\right)\left(\theta_{n-1}-\theta_{*}\right), \Sigma^{-\beta}\left(\operatorname{Id}-\gamma X_{n} \otimes X_{n}\right)\left(\theta_{n-1}-\theta_{*}\right)\right\rangle\right] \\
= & \mathbb{E}\left[\left\langle\theta_{n-1}-\theta_{*}, \Sigma^{-\beta}\left(\theta_{n-1}-\theta_{*}\right)\right\rangle\right] \tag{8}\\
& \quad-2 \gamma \mathbb{E}\left[\left\langle\theta_{n-1}-\theta_{*}, \Sigma^{-\beta} X_{n} \otimes X_{n}\left(\theta_{n-1}-\theta_{*}\right)\right\rangle\right] \tag{9}\\
& \quad+\gamma^{2} \mathbb{E}\left[\left\langle\theta_{n-1}-\theta_{*}, X_{n} \otimes X_{n} \Sigma^{-\beta} X_{n} \otimes X_{n}\left(\theta_{n-1}-\theta_{*}\right)\right\rangle\right] . \tag{10}
\end{align*}
$$

Note that the first term of this sum is $\varphi_{n-1}(\beta)$. Further, θ_{n-1} is computed using only $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n-1}, Y_{n-1}\right)$, thus it is independent of X_{n}. It follows that

$$
\begin{align*}
\mathbb{E}\left[\left\langle\theta_{n-1}-\theta_{*}, \Sigma^{-\beta} X_{n} \otimes X_{n}\left(\theta_{n-1}-\theta_{*}\right)\right\rangle\right] & =\mathbb{E}\left[\left\langle\theta_{n-1}-\theta_{*}, \Sigma^{-\beta} \mathbb{E}\left[X_{n} \otimes X_{n}\right]\left(\theta_{n-1}-\theta_{*}\right)\right\rangle\right] \\
& =\mathbb{E}\left[\left\langle\theta_{n-1}-\theta_{*}, \Sigma^{-\beta+1}\left(\theta_{n-1}-\theta_{*}\right)\right\rangle\right] \\
& =\varphi_{n-1}(\beta-1) \tag{11}
\end{align*}
$$

Finally,

$$
\begin{align*}
& \mathbb{E}\left[\left\langle\theta_{n-1}-\theta_{*}, X_{n} \otimes X_{n} \Sigma^{-\beta} X_{n} \otimes X_{n}\left(\theta_{n-1}-\theta_{*}\right)\right\rangle\right] \tag{12}\\
& \quad=\mathbb{E}\left[\left\langle\theta_{n-1}-\theta_{*}, X_{n}\right\rangle^{2}\left\langle X_{n}, \Sigma^{-\beta} X_{n}\right\rangle\right] \tag{13}
\end{align*}
$$

We now assume that $0 \leqslant \beta \leqslant \underline{\alpha}$. We apply Lemma 2 with $\beta_{1}=0, \beta_{2}=\underline{\alpha}, \lambda=\beta / \underline{\alpha}$:

$$
\left\langle X_{n}, \Sigma^{-\beta} X_{n}\right\rangle \leqslant\left\|X_{n}\right\|^{2(1-\beta / \underline{\alpha})}\left\langle X_{n}, \Sigma^{-\underline{\alpha}} X_{n}\right\rangle^{\beta / \underline{\alpha}}
$$

Let $E_{X_{n}}$ denote the expectation with respect to X_{n} only, while keeping X_{0}, \ldots, X_{n-1} random. Applying Hölder's inequality, we get

$$
\begin{aligned}
\mathbb{E}_{X_{n}} & {\left[\left\langle X_{n}, \Sigma^{-\beta} X_{n}\right\rangle\left\langle\theta_{n-1}-\theta_{*}, X_{n}\right\rangle^{2}\right] } \\
\leqslant & \mathbb{E}_{X_{n}}\left[\left\|X_{n}\right\|^{2(1-\beta / \underline{\alpha})}\left\langle X_{n}, \Sigma^{-\underline{\alpha}} X_{n}\right\rangle^{\beta / \underline{\alpha}}\left\langle\theta_{n-1}-\theta_{*}, X_{n}\right\rangle^{2}\right] \\
\leqslant & \mathbb{E}_{X_{n}}\left[\left\|X_{n}\right\|^{2}\left\langle\theta_{n-1}-\theta_{*}, X_{n}\right\rangle^{2}\right]^{1-\beta / \underline{\alpha}} \mathbb{E}\left[\left\langle X_{n}, \Sigma^{-\underline{\alpha}} X_{n}\right\rangle\left\langle\theta_{n-1}-\theta_{*}, X_{n}\right\rangle^{2}\right]^{\beta / \underline{\alpha}} \\
= & \left\langle\theta_{n-1}-\theta_{*}, \mathbb{E}\left[\left\|X_{n}\right\|^{2} X_{n} \otimes X_{n}\right]\left(\theta_{n-1}-\theta_{*}\right)\right\rangle^{1-\beta / \underline{\alpha}} \\
& \quad \times\left\langle\theta_{n-1}-\theta_{*}, \mathbb{E}\left[\left\langle X_{n}, \Sigma^{-\underline{\alpha}} X_{n}\right\rangle X_{n} \otimes X_{n}\right]\left(\theta_{n-1}-\theta_{*}\right)\right\rangle^{\beta / \underline{\alpha}} \\
\leqslant & R_{0}^{1-\beta / \underline{\alpha}} R_{\underline{\alpha}}^{\beta / \underline{\alpha}}\left\langle\theta_{n-1}-\theta_{*}, \Sigma\left(\theta_{n-1}-\theta_{*}\right)\right\rangle
\end{aligned}
$$

where in this last step, we use the assumptions that the features X are bounded and regular, in their weak formulation of Remark 3 Returning to the computation of $\sqrt{12}-\sqrt{13}$, we get

$$
\begin{align*}
& \mathbb{E}\left[\left\langle\theta_{n-1}-\theta_{*}, X_{n} \otimes X_{n} \Sigma^{-\beta} X_{n} \otimes X_{n}\left(\theta_{n-1}-\theta_{*}\right)\right\rangle\right] \\
& \quad=\mathbb{E}\left[\mathbb{E}_{X_{n}}\left[\left\langle\theta_{n-1}-\theta_{*}, X_{n}\right\rangle^{2}\left\langle X_{n}, \Sigma^{-\beta} X_{n}\right\rangle\right]\right] \tag{14}\\
& \quad \leqslant R_{0}^{1-\beta / \underline{\alpha}} R_{\underline{\alpha}}^{\beta / \underline{\alpha}} \mathbb{E}\left[\left\langle\theta_{n-1}-\theta_{*}, \Sigma\left(\theta_{n-1}-\theta_{*}\right)\right\rangle\right] \\
& \quad=R_{0}^{1-\beta / \underline{\alpha}} R_{\underline{\alpha}}^{\beta / \underline{\alpha}} \varphi_{n-1}(-1) . \tag{15}
\end{align*}
$$

The result is obtained by putting together Equations (8)-(10), (11) and (15).

B. 2 Proof of Theorem 1

A remarkable feature of the proof that follows is that only Properties 1 and 2 of the regularity functions are used to derive the theorem. In particular, we do not use the definition of the regularity functions φ_{n} in this section.
We start with a few preliminary remarks. Using the recurrence Property 2 and that $\gamma R_{0} \leqslant 1$,

$$
\begin{aligned}
\varphi_{k}(0) & \leqslant \varphi_{k-1}(0)-\gamma\left(2-\gamma R_{0}\right) \varphi_{k-1}(-1) \\
& \leqslant \varphi_{k-1}(0)-\gamma \varphi_{k-1}(-1)
\end{aligned}
$$

Thus the sequence $\varphi_{k}(0), k \geqslant 0$ decreases, and

$$
\begin{equation*}
\gamma \varphi_{k-1}(-1) \leqslant \varphi_{k-1}(0)-\varphi_{k}(0) . \tag{16}
\end{equation*}
$$

By summing this inequality over $k \geqslant 1$, we get

$$
\begin{equation*}
\gamma \sum_{k=0}^{\infty} \varphi_{k}(-1) \leqslant \varphi_{0}(0) \tag{17}
\end{equation*}
$$

Using again the recurrence Property 2 ,

$$
\begin{align*}
\varphi_{k}(\underline{\alpha}) & \leqslant \varphi_{k-1}(\underline{\alpha})-2 \gamma \varphi_{k-1}(\underline{\alpha}-1)+\gamma^{2} R_{\underline{\alpha}} \varphi_{k-1}(-1) \tag{18}\\
& \leqslant \varphi_{k-1}(\underline{\alpha})+\gamma^{2} R_{\underline{\alpha}} \varphi_{k-1}(-1) .
\end{align*}
$$

By summing for $k=1, \ldots, n$ and using the bound (17),

$$
\begin{align*}
\varphi_{n}(\underline{\alpha}) & \leqslant \varphi_{0}(\underline{\alpha})+\gamma^{2} R_{\underline{\alpha}} \sum_{k=0}^{n-1} \varphi_{k}(-1) \\
& \leqslant \varphi_{0}(\underline{\alpha})+\gamma R_{\underline{\alpha}} \varphi_{0}(0) \\
& \leqslant \varphi_{0}(\underline{\alpha})+\frac{R_{\underline{\alpha}}}{R_{0}} \varphi_{0}(0) \tag{19}
\end{align*}
$$

In words, the sequence $\varphi_{n}(\underline{\alpha}), n \geqslant 0$ is bounded by $D:=\varphi_{0}(\underline{\alpha})+\frac{R_{\underline{\alpha}}}{R_{0}} \varphi_{0}(0)$. As a side note, this proves Theorem 3 for $\beta=\underline{\alpha}$.
We can now give a closed recurrence relation $\varphi_{k}(0), k \geqslant 0$. Using the log-convexity Property 1 ,

$$
\varphi_{k-1}(0) \leqslant \varphi_{k-1}(-1)^{\underline{\alpha} /(\underline{\alpha}+1)} \varphi_{k-1}(\underline{\alpha})^{1 /(\underline{\alpha}+1)} \leqslant \varphi_{k-1}(-1)^{\underline{\alpha} /(\underline{\alpha}+1)} D^{1 /(\underline{\alpha}+1)} .
$$

Substituting in 16, we obtain

$$
\begin{aligned}
\varphi_{k-1}(0)-\varphi_{k}(0) & \geqslant \gamma \varphi_{k-1}(-1) \\
& \geqslant \gamma D^{-1 / \underline{\alpha}} \varphi_{k-1}(0)^{1+1 / \underline{\alpha}}
\end{aligned}
$$

This gives the wanted closed recurrence relation for $\varphi_{k}(0), k \geqslant 0$. It implies a decay of $\varphi_{k}(0)$ as follows: consider the real function $f(\varphi)=\frac{1}{\varphi^{1 / \alpha} \underline{\alpha}}$. It is a convex function on the positive reals, with derivative $f^{\prime}(\varphi)=-\frac{1}{\underline{\alpha}} \frac{1}{\varphi^{1+1 / \alpha}}$. Using that a convex function is above its tangents, we obtain

$$
\begin{aligned}
f\left(\varphi_{k}(0)\right)-f\left(\varphi_{k-1}(0)\right) & \geqslant f^{\prime}\left(\varphi_{k-1}(0)\right)\left(\varphi_{k}(0)-\varphi_{k-1}(0)\right) \\
& =-\frac{1}{\underline{\alpha}} \frac{1}{\varphi_{k-1}(0)^{1+1 / \underline{\alpha}}}\left(\varphi_{k}(0)-\varphi_{k-1}(0)\right) \\
& \geqslant \frac{1}{\underline{\alpha}} \gamma D^{-1 / \underline{\alpha}} .
\end{aligned}
$$

By summing this inequality for $k=1, \ldots, n$, we obtain

$$
\frac{1}{\varphi_{n}(0)^{1 / \underline{\alpha}}}=f\left(\varphi_{n}(0)\right) \geqslant f\left(\varphi_{0}(0)\right)+\frac{1}{\underline{\alpha}} \gamma D^{-1 / \underline{\alpha}} n \geqslant \frac{1}{\underline{\alpha}} \gamma D^{-1 / \underline{\alpha}} n
$$

This implies conclusion 1 of Theorem 1

$$
\begin{equation*}
\mathbb{E}\left[\left\|\theta_{n}-\theta_{*}\right\|^{2}\right]=\varphi_{n}(0) \leqslant \frac{\underline{\alpha}^{\underline{\alpha}}}{\gamma^{\underline{\alpha}}} D \frac{1}{n^{\underline{\alpha}}} . \tag{20}
\end{equation*}
$$

Further,

$$
\min _{0 \leqslant k \leqslant n} \varphi_{k}(-1) \leqslant \min _{\lceil n / 2\rceil \leqslant k \leqslant n} \varphi_{k}(-1) \leqslant \frac{2}{n} \sum_{k=\lceil n / 2\rceil}^{n} \varphi_{k}(-1) \leqslant \frac{2}{n} \frac{1}{\gamma} \sum_{k=\lceil n / 2\rceil}^{n}\left(\varphi_{k}(0)-\varphi_{k+1}(0)\right)
$$

where in the last step we used (16). Telescoping the sum, we obtain

$$
\begin{align*}
\min _{0 \leqslant k \leqslant n} \varphi_{k}(-1) & \leqslant \min _{\lceil n / 2\rceil \leqslant k \leqslant n} \varphi_{k}(-1) \leqslant \frac{2}{n} \frac{1}{\gamma} \varphi_{\lceil n / 2\rceil}(0) \tag{21}\\
& \leqslant \frac{2}{n} \frac{1}{\gamma} \frac{\underline{\alpha}^{\underline{\alpha}}}{\gamma \underline{\underline{\alpha}}} D \frac{1}{\lceil n / 2\rceil^{\underline{\alpha}}} \leqslant 2^{\underline{\alpha}+1} \frac{\underline{\alpha}^{\underline{\alpha}}}{\gamma^{\underline{\alpha}}+1} D \frac{1}{n^{\underline{\alpha}+1}}
\end{align*}
$$

Using that $\varphi_{n}(-1)=2 \mathbb{E}\left[\mathcal{R}\left(\theta_{n}\right)\right]$, this gives conclusion 2 of Theorem 1

B. 3 Proof of Theorem 3

We continue the proof of Theorem 1 to prove Theorem 3 By the log-convexity Property 1 , for all $\beta \in[0, \underline{\alpha}]$,

$$
\varphi_{n}(\beta) \leqslant \varphi_{n}(0)^{1-\beta / \underline{\alpha}} \varphi_{n}(\underline{\alpha})^{\beta / \underline{\alpha}} .
$$

Using Equations (20) and (19), we obtain

$$
\varphi_{n}(\beta) \leqslant \frac{\underline{\alpha}^{\underline{\alpha}-\beta}}{\gamma^{\underline{\alpha}-\beta}} D \frac{1}{n^{\underline{\alpha}-\beta}}
$$

This proves conclusion 1 of the theorem. We now consider the case $\beta \in[-1,0)$. By the log-convexity Property 1 .

$$
\min _{0 \leqslant k \leqslant n} \varphi_{k}(\beta) \leqslant \min _{\lceil n / 2\rceil \leqslant k \leqslant n} \varphi_{k}(\beta) \leqslant \min _{\lceil n / 2\rceil \leqslant k \leqslant n} \varphi_{k}(-1)^{-\beta} \varphi_{k}(0)^{1+\beta}
$$

Using that $\varphi_{k}(0), k \geqslant 0$ is decreasing and the inequality (21), we obtain

$$
\begin{aligned}
\min _{\lceil n / 2\rceil \leqslant k \leqslant n} \varphi_{k}(-1)^{-\beta} \varphi_{k}(0)^{1+\beta} & \leqslant \varphi_{\lceil n / 2\rceil}(0)^{1+\beta}\left(\min _{\lceil n / 2\rceil \leqslant k \leqslant n} \varphi_{k}(-1)\right)^{-\beta} \\
& \leqslant \varphi_{\lceil n / 2\rceil}(0)^{1+\beta}\left(\frac{2}{n} \frac{1}{\gamma} \varphi_{\lceil n / 2\rceil}(0)\right)^{-\beta} \\
& \leqslant \frac{2^{-\beta}}{n^{-\beta}} \frac{1}{\gamma^{-\beta}} \varphi_{\lceil n / 2\rceil}(0)
\end{aligned}
$$

Using finally 20, we obtain conclusion 2 of the theorem

$$
\min _{0 \leqslant k \leqslant n} \varphi_{k}(\beta) \leqslant \frac{2^{-\beta}}{n^{-\beta}} \frac{1}{\gamma^{-\beta}} \frac{\underline{\alpha}^{\underline{\alpha}}}{\gamma^{\underline{\alpha}}} D \frac{1}{\lceil n / 2\rceil^{\underline{\alpha}}} \leqslant 2^{\underline{\underline{\alpha}}-\beta} \frac{\underline{\alpha}^{\underline{\alpha}}}{\gamma^{\underline{\alpha}-\beta}} D \frac{1}{n^{\underline{\alpha}-\beta}} .
$$

C Proof of Theorems 2 and 4

We start in the case (a) where the optimum is irregular: $\theta_{*} \notin \Sigma^{-\bar{\alpha} / 2}(\mathcal{H})$. In that case, we give a lower bound in the convergence rate by studying the expected process $\bar{\theta}_{n}:=\mathbb{E}\left[\theta_{n}\right]$. Indeed, by Jensen's inequality,

$$
\begin{equation*}
\varphi_{n}(\beta)=\mathbb{E}\left[\left\langle\theta_{n}-\theta_{*}, \Sigma^{-\beta}\left(\theta_{n}-\theta_{*}\right)\right\rangle\right] \geqslant\left\langle\bar{\theta}_{n}-\theta_{*}, \Sigma^{-\beta}\left(\bar{\theta}_{n}-\theta_{*}\right)\right\rangle \tag{22}
\end{equation*}
$$

The expectation $\bar{\theta}_{n}$ can be interpreted as the (non-stochastic) gradient descent on the population risk $\mathcal{R}(\theta)$. Indeed, by taking the expectation in (1), we obtain

$$
\begin{equation*}
\bar{\theta}_{n}-\theta_{*}=(\operatorname{Id}-\gamma \Sigma)\left(\bar{\theta}_{n-1}-\theta_{*}\right)=-(\operatorname{Id}-\gamma \Sigma)^{n} \theta_{*} \tag{23}
\end{equation*}
$$

Note that as $\gamma \leqslant 1 / R_{0}, I-\gamma \Sigma$ is a positive definite matrix. Indeed, by the weak definition of R_{0} in Remark 3 .

$$
R_{0} \Sigma \succcurlyeq \mathbb{E}\left[\|X\|^{2} X \otimes X\right]=\mathbb{E}[(X \otimes X)(X \otimes X)] \succcurlyeq \mathbb{E}[X \otimes X]^{2}=\Sigma^{2}
$$

thus R_{0} is larger than the operator norm of Σ. Thus $\gamma \Sigma \preccurlyeq \frac{1}{R_{0}} \Sigma \preccurlyeq \mathrm{Id}$.
In the following, if $\alpha \in \mathbb{R}$ and $k \in \mathbb{N},\binom{\alpha}{k}$ denotes the generalized binomial coefficient: $\binom{\alpha}{k}=$ $\frac{\alpha(\alpha-1) \cdots(\alpha-k+1)}{k!}$. Fix now $\alpha \geqslant 0$. We have the (formal) power series

$$
\begin{aligned}
(1+x)^{-\alpha} & =\sum_{k=0}^{\infty}\binom{-\alpha}{k} x^{k} \\
(1-x)^{-\alpha} & =\sum_{k=0}^{\infty}\binom{-\alpha}{k}(-1)^{k} x^{k}=\sum_{k=0}^{\infty}\binom{\alpha+k-1}{k} x^{k} \\
y^{-\alpha} & =\sum_{k=0}^{\infty}\binom{\alpha+k-1}{k}(1-y)^{k}
\end{aligned}
$$

This last equality holds in $[0, \infty]$ for $y \in[0,1]$. In that case, all terms of the serie are positive, thus the meaning of the sum is unambiguous.
Note that $0 \preccurlyeq \gamma \Sigma \preccurlyeq$ Id, thus we have, formally,

$$
\gamma^{-\alpha} \Sigma^{-\alpha}=\sum_{k=0}^{\infty}\binom{\alpha+k-1}{k}(\operatorname{Id}-\gamma \Sigma)^{k}
$$

The rigorous meaning of this equality is that for all $\theta \in \mathcal{H}$,

$$
\gamma^{-\alpha}\left\langle\theta, \Sigma^{-\alpha} \theta\right\rangle=\sum_{k=0}^{\infty}\binom{\alpha+k-1}{k}\left\langle\theta,(\operatorname{Id}-\gamma \Sigma)^{k} \theta\right\rangle
$$

Both terms of the equality can be infinite: here we are using the convention stated in Section 2.1 that implies that $\left\langle\theta, \Sigma^{-\alpha} \theta\right\rangle=\infty \Leftrightarrow \theta \notin \Sigma^{\alpha / 2}(\mathcal{H})$. In particular, take $\alpha=\bar{\alpha}-\beta$ and $\theta=\Sigma^{-\beta / 2} \theta_{*}$:

$$
\begin{gathered}
\infty=\gamma^{\beta-\bar{\alpha}}\left\langle\theta_{*}, \Sigma^{-\bar{\alpha}} \theta_{*}\right\rangle=\sum_{k=0}^{\infty}\binom{\bar{\alpha}-\beta+k-1}{k}\left\langle\theta_{*}, \Sigma^{-\beta}(\operatorname{Id}-\gamma \Sigma)^{k} \theta_{*}\right\rangle \\
=\sum_{n=0}^{\infty}\left[\binom{\bar{\alpha}-\beta+2 n-1}{2 n}\left\langle\theta_{*}, \Sigma^{-\beta}(\operatorname{Id}-\gamma \Sigma)^{2 n} \theta_{*}\right\rangle\right. \\
\left.\quad+\binom{\bar{\alpha}-\beta+2 n}{2 n+1}\left\langle\theta_{*}, \Sigma^{-\beta}(\operatorname{Id}-\gamma \Sigma)^{2 n+1} \theta_{*}\right\rangle\right]
\end{gathered}
$$

Using that $\binom{\bar{\alpha}-\beta+2 n-1}{2 n} \leqslant\binom{\bar{\alpha}-\beta+2 n}{2 n+1}$ and $\left\langle\theta_{*}, \Sigma^{-\beta}(\operatorname{Id}-\gamma \Sigma)^{2 n} \theta_{*}\right\rangle \geqslant\left\langle\theta_{*}, \Sigma^{-\beta}(\operatorname{Id}-\gamma \Sigma)^{2 n+1} \theta_{*}\right\rangle$ and then 23), 22),

$$
\begin{aligned}
\infty & \leqslant 2 \sum_{n=0}^{\infty}\binom{\bar{\alpha}-\beta+2 n}{2 n+1}\left\langle\theta_{*}, \Sigma^{-\beta}(\operatorname{Id}-\gamma \Sigma)^{2 n} \theta_{*}\right\rangle \\
& =2 \sum_{n=0}^{\infty}\binom{\bar{\alpha}-\beta+2 n}{2 n+1}\left\langle\bar{\theta}_{n}-\theta_{*}, \Sigma^{-\beta}\left(\bar{\theta}_{n}-\theta_{*}\right)\right\rangle \\
& \leqslant 2 \sum_{n=0}^{\infty}\binom{\bar{\alpha}-\beta+2 n}{2 n+1} \varphi_{n}(\beta) .
\end{aligned}
$$

From [14] Equation 5.8.1], we have the formula $\Gamma(z)=\lim _{k \rightarrow \infty} \frac{k!k^{z}}{z(z+1) \cdots(z+k)}$ where Γ denotes the Gamma function. Thus as $n \rightarrow \infty$

$$
\binom{\bar{\alpha}-\beta+2 n}{2 n+1}=\frac{(\bar{\alpha}-\beta)(\bar{\alpha}-\beta+1) \cdots(\bar{\alpha}-\beta+2 n)}{(2 n+1)(2 n)!} \sim \frac{(2 n)^{\bar{\alpha}-\beta}}{(2 n+1) \Gamma(\bar{\alpha}-\beta)} .
$$

As a consequence, the serie $\sum_{n} n^{\bar{\alpha}-\beta-1} \varphi_{n}(\beta)$ diverges. The criteria for the convergence of Riemann series implies that $\varphi_{n}(\beta)$ can not be asymptotically dominated by $1 / n^{\bar{\alpha}-\beta+\varepsilon}$ for $\varepsilon>0$.

We now turn to the case (b) where the features are irregular: with positive probability $p>0$, $X \notin \Sigma^{\bar{\alpha} / 2}(\mathcal{H})$ and $\left\langle X, \theta_{*}\right\rangle \neq 0$. With probability p, the second iterate $\theta_{1}=-\gamma\left\langle X_{1}, \theta_{*}\right\rangle X_{1}$ is irregular, i.e., $\theta_{1} \notin \Sigma^{\bar{\alpha} / 2}(\mathcal{H})$. By a simple shift of the iterates, we show that the effect of the irregularity of the initial condition for this iteration started from θ_{1} has an effect equivalent to the irregularity of the optimum, thus we can apply the result above to lower bound the convergence rate. More precisely, consider the iterates $\tilde{\theta}_{n}=\theta_{n+1}-\theta_{1}$ and $\tilde{\theta}_{*}=\theta_{*}-\theta_{1}$. The iteration (1) can be rewritten as $\tilde{\theta}_{n}=\tilde{\theta}_{n-1}-\gamma\left\langle\tilde{\theta}_{n-1}-\tilde{\theta}_{*}, X_{n}\right\rangle X_{n}$ and $\tilde{\theta}_{0}=0$, thus the new sequence $\tilde{\theta}_{n}$ satisfies our framework. We can assume that (a) is satisfied, i.e., $\theta_{*} \in \Sigma^{\bar{\alpha} / 2}(\mathcal{H})$. In that case, with probability p, $\tilde{\theta}_{*}=\theta_{*}-\theta_{1} \notin \Sigma^{\bar{\alpha} / 2}(\mathcal{H})$. Thus by the case above,

$$
\begin{aligned}
\varphi_{n}(\beta) & =\mathbb{E}\left[\left\langle\theta_{n}-\theta_{*}, \Sigma^{-\beta}\left(\theta_{n}-\theta_{*}\right)\right\rangle\right] \\
& =\mathbb{E}\left[\left\langle\tilde{\theta}_{n-1}-\tilde{\theta}_{*}, \Sigma^{-\beta}\left(\tilde{\theta}_{n-1}-\tilde{\theta}_{*}\right)\right\rangle\right]
\end{aligned}
$$

is not asymptotically dominated by $1 / n^{\bar{\alpha}-\beta+\varepsilon}$, for $\varepsilon>0$.

D Robustness to model mispecification

In this section, we describe how the results of Section 2 are perturbed in the case where a linear relation $Y=\left\langle\theta_{*}, X\right\rangle$ a.s. does not hold. Following the statistical learning framework, we assume a joint law on (X, Y). We further assume that there exists a minimizer $\theta_{*} \in \mathcal{H}$ of the population risk $\mathcal{R}(\theta)$:

$$
\theta_{*} \in \underset{\theta \in \mathcal{H}}{\operatorname{argmin}}\left\{\mathcal{R}(\theta)=\frac{1}{2} \mathbb{E}\left[(Y-\langle\theta, X\rangle)^{2}\right]\right\}
$$

This general framework encapsulates two types of perturbations of the noiseless linear model:

- (variance) The output Y can be uncertain given X. For instance, under the noisy linear model, $Y=\left\langle\theta_{*}, X\right\rangle+Z$, where Z is centered and independent of X. In this case, $\mathcal{R}\left(\theta_{*}\right)=\mathbb{E}\left[Z^{2}\right]=\mathbb{E}[\operatorname{var}(Y \mid X)]$.
- (bias) Even if Y is deterministic given X, this dependence can be non-linear: $Y=\psi(X)$ for some non-linear function ψ. Then $\mathcal{R}\left(\theta_{*}\right)$ is the squared L^{2} distance of the best linear approximation to $\psi: \mathcal{R}\left(\theta_{*}\right)=\frac{1}{2} \mathbb{E}\left[\left(\psi(X)-\left\langle\theta_{*}, X\right\rangle\right)^{2}\right]$.

In the general framework, the optimal population risk is a combination of both sources

$$
\mathcal{R}\left(\theta_{*}\right)=\frac{1}{2} \mathbb{E}[\operatorname{var}(Y \mid X)]+\frac{1}{2} \mathbb{E}\left[\left(\mathbb{E}[Y \mid X]-\left\langle\theta_{*}, X\right\rangle\right)^{2}\right]
$$

Given i.i.d. realizations $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots$ of (X, Y), the SGD iterates are defined as

$$
\begin{equation*}
\theta_{0}=0, \quad \theta_{n}=\theta_{n-1}-\gamma\left(\left\langle\theta_{n-1}, X_{n}\right\rangle-Y_{n}\right) X_{n} \tag{24}
\end{equation*}
$$

Apart from the new definition of θ_{*}, we repeat the same assumptions as in Section2 let $R_{0}<\infty$ be such that $\|X\|^{2} \leqslant R_{0}$ a.s., denote $\Sigma=\mathbb{E}[X \otimes X]$ and $\varphi_{n}(\beta)=\mathbb{E}\left[\left\langle\theta_{n}-\theta_{*}, \Sigma^{-\beta}\left(\theta_{n}-\theta_{*}\right)\right\rangle\right]$.
Theorem 5. Under the assumptions of Theorem 1

$$
\min _{k=0, \ldots, n} \mathbb{E}\left[\mathcal{R}\left(\theta_{k}\right)-\mathcal{R}\left(\theta_{*}\right)\right] \leqslant 2 \frac{C^{\prime}}{n^{\underline{\alpha}+1}}+2 R_{0} \gamma \mathcal{R}\left(\theta_{*}\right)
$$

where C^{\prime} is the same constant as in Theorem 1
The take-home message is that if we consider the excess risk $\mathcal{R}\left(\theta_{k}\right)-\mathcal{R}\left(\theta_{*}\right)$, we get the upper bound of the form $2 C^{\prime} n^{-(\underline{\alpha}+1)}$, analog to Theorem 1 , but with an additional constant term $2 R_{0} \gamma \mathcal{R}\left(\theta_{*}\right)$. This term can be small if $\mathcal{R}\left(\theta_{*}\right)$ is small, that is if the problem is close to the noiseless linear model, or if the step-size γ is small. In the finite horizon setting setting, one can optimize γ as a function of the scheduled number of steps n in order to balance both terms in the upper bound. As $C^{\prime} \propto \gamma^{-(\underline{\alpha}+1)}$, the optimal choice is $\gamma \propto n^{-(\underline{\alpha}+1) /(\underline{\alpha}+2)}$ which gives a rate $\min _{k=0, \ldots, n} \mathbb{E}\left[\mathcal{R}\left(\theta_{k}\right)-\mathcal{R}\left(\theta_{*}\right)\right]=$ $O\left(n^{-(\underline{\alpha}+1) /(\underline{\alpha}+2)}\right)$.

Figure 4: In blue + , evolution of $\left\|\theta_{n}-\theta_{*}\right\|^{2}$ (left) and $\mathcal{R}\left(\theta_{n}\right)$ (right) as functions of n, for the problems with parameters $d=10^{5}, \beta=1.4, \delta=1.2$. The orange lines represent the curves $D / n^{\alpha_{*}}$ (left) and $D^{\prime} / n^{\alpha_{*}+1}$ (right).

In the theorem below, we study the SGD iterates θ_{n} in terms of the power norms $\varphi_{n}(\beta), \beta \in$ $[-1, \underline{\alpha}-1]$, in particular in term of the reconstruction error $\varphi_{n}(0)=\mathbb{E}\left[\left\|\theta_{n}-\theta_{*}\right\|^{2}\right]$ if $\underline{\alpha} \geqslant 1$. Note that the population risk $\mathcal{R}(\theta)$ is a quadratic with Hessian Σ, minimized at θ_{*}, thus

$$
\mathbb{E}\left[\mathcal{R}\left(\theta_{n}\right)-\mathcal{R}\left(\theta_{*}\right)\right]=\frac{1}{2} \mathbb{E}\left[\left\langle\theta_{n}-\theta_{*}, \Sigma\left(\theta_{n}-\theta_{*}\right)\right\rangle\right]=\frac{1}{2} \varphi_{n}(-1)
$$

Thus the theorem below extends Theorem 5
Theorem 6. Under the assumptions of Theorem 11

1. for all $\beta \geqslant 0, \beta \leqslant \underline{\alpha}-1$,

$$
\varphi_{n}(\beta) \leqslant 2 \frac{C(\beta)}{n \underline{\alpha}-\beta}+4 R_{0}^{1-(\beta+1) / \underline{\alpha}} R_{\underline{\alpha}}^{(\beta+1) / \underline{\alpha}} \gamma \mathcal{R}\left(\theta_{*}\right)
$$

2. for all $\beta \in[-1,0), \beta \leqslant \underline{\alpha}-1$,

$$
\min _{k 01, \ldots, n} \varphi_{k}(\beta) \leqslant 2 \frac{C^{\prime}(\beta)}{n_{\underline{\alpha}-\beta}^{\alpha}}+4 R_{0}^{1-(\beta+1) / \underline{\alpha}} R_{\underline{\alpha}}^{(\beta+1) / \underline{\alpha}} \gamma \mathcal{R}\left(\theta_{*}\right)
$$

where C, C^{\prime} are the same constants as in Theorem 3
This theorem is proved at the end of this section. We expect the condition $\beta \leqslant \underline{\alpha}-1$ to be necessary. More precisely, when $\mathcal{R}\left(\theta_{*}\right)$ is positive, we expect the error $\theta_{n}-\theta_{*}$ to diverge under the norm $\| \Sigma^{-\beta / 2}$. $\|$ if $\beta>\underline{\alpha}-1$. In particular, this would imply that the reconstruction error diverges when $\underline{\alpha}<1$.

In Figure 4, we show how the simulations of Appendix A are perturbed in the presence of additive noise. We consider the noisy linear model $Y=\left\langle\theta_{*}, X\right\rangle+\sigma^{2} Z$, where $X \sim \mathcal{N}(0, \Sigma)$ and $Z \sim$ $\mathcal{N}(0,1)$ are independent. As in the previous simulations, we consider the case $\Sigma=\sum_{i=1}^{d} i^{-\beta} e_{i} \otimes e_{i}$ and $\theta_{*}=\sum_{i=1}^{d} i^{-\delta} e_{i}$ with here $d=10^{5}, \beta=1.4, \delta=1.2$. In the noiseless case $\sigma^{2}=0$, we have shown that the rate of convergence was given by the polynomial exponent $\alpha_{*}=\min \left(1-\frac{1}{\beta}, \frac{2 \delta-1}{\beta}\right)$. These predicted rates are represented by the orange lines in the plots. In blue, we show the results of our simulations with some additive noise with variance $\sigma^{2}=2 \times 10^{-4}$. The exponent α_{*} still describes the behavior of SGD in the initial phase, but in the large n asymptotic the population risk $\mathcal{R}\left(\theta_{n}\right)$ stagnates around the order of σ^{2}. Both of these qualitative behaviors are predicted by Theorem 5 Moreover, the reconstruction error $\left\|\theta_{n}-\theta_{*}\right\|$ diverges for large n.

Proof of Theorems 5 and 6 . Note that in this proof, we use the strong assumptions of regularity of the feature vector X. We do not know whether it is possible to prove the same result under the weak assumptions of Remark 3

Our proof stategy is the following: we decompose the SGD iterates sequence θ_{n} as a sum of sequences $\theta_{n}=\nu_{n}+\sum_{l=1}^{n} \eta_{n}^{(l)}$, where each of the auxiliary sequences is interpreted as the iterates of some

SGD iteration under a noiseless linear model. We thus apply the results of Section 2 to control these auxiliary sequences and obtain the presented bound.
Define $\varepsilon_{n}=Y_{n}-\left\langle\theta_{*}, X_{n}\right\rangle$, the error of the best linear estimator. Then Equation 24 can be rewritten as

$$
\theta_{0}=0, \quad \theta_{n}=\theta_{n-1}-\gamma\left\langle\theta_{n-1}-\theta_{*}, X_{n}\right\rangle X_{n}+\gamma \varepsilon_{n} X_{n}
$$

We see this iteration as an additively perturbed version of the iteration

$$
\nu_{0}=0, \quad \nu_{n}=\nu_{n-1}-\gamma\left\langle\nu_{n-1}-\theta_{*}, X_{n}\right\rangle X_{n},
$$

studied in Section 2. To understand the effect of the additive noise, define for all $l \geqslant 1$,

$$
\eta_{l}^{(l)}=\gamma \varepsilon_{l} X_{l}, \quad \quad \eta_{n}^{(l)}=\eta_{n-1}^{(l)}-\gamma\left\langle\eta_{n-1}^{(l)}, X_{n}\right\rangle X_{n}, \quad n>l
$$

Then

$$
\begin{equation*}
\theta_{n}=\nu_{n}+\sum_{l=1}^{n} \eta_{n}^{(l)} \tag{25}
\end{equation*}
$$

Indeed, this last equation is checked by induction: $\theta_{0}=0=\nu_{0}$, and if the equation is satisfied for some $n \geqslant 0$,

$$
\begin{aligned}
\theta_{n+1} & =\theta_{n}-\gamma\left\langle\theta_{n}-\theta_{*}, X_{n+1}\right\rangle X_{n+1}+\gamma \varepsilon_{n+1} X_{n+1} \\
& =\nu_{n}+\sum_{l=1}^{n} \eta_{n}^{(l)}-\gamma\left\langle\nu_{n}+\sum_{l=1}^{n} \eta_{n}^{(l)}-\theta_{*}, X_{n+1}\right\rangle X_{n+1}+\eta_{n+1}^{(n+1)} \\
& =\left[\nu_{n}-\gamma\left\langle\nu_{n}-\theta_{*}, X_{n+1}\right\rangle X_{n+1}\right]+\sum_{l=1}^{n}\left[\eta_{n}^{(l)}-\gamma\left\langle\eta_{n}^{(l)}, X_{n+1}\right\rangle X_{n+1}\right]+\eta_{n+1}^{(n+1)} \\
& =\nu_{n+1}+\sum_{l=1}^{n} \eta_{n+1}^{(l)}+\eta_{n+1}^{(n+1)}
\end{aligned}
$$

We use the decomposition (25) to study $\varphi_{n}(\beta)$. Using the triangle inequality,

$$
\begin{align*}
\varphi_{n}(\beta) & =\mathbb{E}\left[\left\|\Sigma^{-\beta / 2}\left(\nu_{n}+\sum_{l=1}^{n} \eta_{n}^{(l)}\right)\right\|^{2}\right] \\
& \leqslant \mathbb{E}\left[\left(\left\|\Sigma^{-\beta / 2} \nu_{n}\right\|+\left\|\Sigma^{-\beta / 2} \sum_{l=1}^{n} \eta_{n}^{(l)}\right\|\right)^{2}\right] \\
& \leqslant 2 \mathbb{E}\left[\left\|\Sigma^{-\beta / 2} \nu_{n}\right\|^{2}\right]+2 \mathbb{E}\left[\left\|\Sigma^{-\beta / 2} \sum_{l=1}^{n} \eta_{n}^{(l)}\right\|^{2}\right] \tag{26}
\end{align*}
$$

The first term is studied in Section 2 We detail the analysis of the second term. Note that

$$
\begin{align*}
\eta_{n}^{(l)} & =\left(I-\gamma X_{n} \otimes X_{n}\right) \eta_{n-1}^{(l)}=\cdots=\left(I-\gamma X_{n} \otimes X_{n}\right) \cdots\left(I-\gamma X_{l+1} \otimes X_{l+1}\right) \eta_{l}^{(l)} \\
& =\left(I-\gamma X_{n} \otimes X_{n}\right) \cdots\left(I-\gamma X_{l+1} \otimes X_{l+1}\right) \gamma \varepsilon_{l} X_{l} \tag{27}
\end{align*}
$$

Thus if $l<l^{\prime}$,

$$
\begin{aligned}
\mathbb{E}\left[\left\langle\eta_{n}^{(l)}, \Sigma^{-\beta} \eta_{n}^{\left(l^{\prime}\right)}\right\rangle\right] & =\mathbb{E}\left[\left\langle\mathbb{E}\left[\eta_{n}^{(l)} \mid X_{l+1}, \ldots, X_{n}\right], \Sigma^{-\beta} \eta_{n}^{\left(l^{\prime}\right)}\right\rangle\right] \\
& =\mathbb{E}\left[\left\langle\left(I-\gamma X_{n} \otimes X_{n}\right) \cdots\left(I-\gamma X_{l+1} \otimes X_{l+1}\right) \gamma \mathbb{E}\left[\varepsilon_{l} X_{l}\right], \Sigma^{-\beta} \eta_{n}^{\left(l^{\prime}\right)}\right\rangle\right]
\end{aligned}
$$

Note that by definition of $\theta_{*}, 0=\nabla \mathcal{R}\left(\theta_{*}\right)=-\mathbb{E}\left[\left(Y_{l}-\left\langle\theta_{*}, X_{l}\right\rangle\right) X_{l}\right]=-\mathbb{E}\left[\varepsilon_{l} X_{l}\right]$ thus we obtain that the cross products $\mathbb{E}\left[\left\langle\eta_{n}^{(l)}, \Sigma^{-\beta} \eta_{n}^{\left(l^{\prime}\right)}\right\rangle\right]$ are zero. This gives

$$
\mathbb{E}\left[\left\|\Sigma^{-\beta / 2} \sum_{l=1}^{n} \eta_{n}^{(l)}\right\|^{2}\right]=\sum_{l=1}^{n} \mathbb{E}\left[\left\|\Sigma^{-\beta / 2} \eta_{n}^{(l)}\right\|^{2}\right]
$$

Note that from Equation 27), $\eta_{n}^{(l)}$ and $\eta_{n-l+1}^{(1)}$ are equal in law. Thus

$$
\begin{equation*}
\mathbb{E}\left[\left\|\Sigma^{-\beta / 2} \sum_{l=1}^{n} \eta_{n}^{(l)}\right\|^{2}\right]=\sum_{l=1}^{n} \mathbb{E}\left[\left\|\Sigma^{-\beta / 2} \eta_{n-l+1}^{(1)}\right\|^{2}\right]=\sum_{l=1}^{n} \mathbb{E}\left[\left\|\Sigma^{-\beta / 2} \eta_{l}^{(1)}\right\|^{2}\right] \tag{28}
\end{equation*}
$$

This last quantity is the sum of the expected squared power norms

$$
\varphi_{l}^{\prime}(\beta):=\mathbb{E}\left[\left\|\Sigma^{-\beta / 2} \eta_{l}^{(1)}\right\|^{2}\right]
$$

of the SGD iterates $\eta_{l}^{(1)}, l \geqslant 1$ on a noiseless linear model, with initialization $\eta_{1}^{(1)}=\gamma \varepsilon_{1} X_{1}$. When $\beta=-1$, this control is given by (17): with our notation here, this gives

$$
\begin{equation*}
\sum_{l=1}^{n} \varphi_{l}^{\prime}(-1) \leqslant \sum_{l=1}^{\infty} \varphi_{l}^{\prime}(-1) \leqslant \frac{1}{\gamma} \varphi_{1}^{\prime}(0) \tag{29}
\end{equation*}
$$

When $\beta=\underline{\alpha}-1$, a similar control can be obtained from 18 which gives:

$$
2 \gamma \varphi_{l-1}^{\prime}(\underline{\alpha}-1) \leqslant \varphi_{l-1}^{\prime}(\underline{\alpha})-\varphi_{l}^{\prime}(\underline{\alpha})+\gamma^{2} R_{\underline{\alpha}} \varphi_{l-1}^{\prime}(-1)
$$

By summing these inequalities for $l=2,3, \ldots$, we obtain,

$$
\begin{align*}
2 \gamma \sum_{l=1}^{\infty} \varphi_{l}^{\prime}(\underline{\alpha}-1) & \leqslant \varphi_{1}^{\prime}(\underline{\alpha})+\gamma^{2} R_{\underline{\alpha}} \sum_{l=1}^{\infty} \varphi_{l}^{\prime}(-1) \\
& \leqslant \varphi_{1}^{\prime}(\underline{\alpha})+\frac{R_{\underline{\alpha}}}{R_{0}} \varphi_{1}^{\prime}(0) \tag{30}
\end{align*}
$$

Note that using the strong assumption of regularity of the feature vectors,

$$
\begin{aligned}
& \varphi_{1}^{\prime}(0)=\mathbb{E}\left[\left\|\gamma \varepsilon_{1} X_{1}\right\|^{2}\right] \leqslant \gamma^{2} R_{0} \mathbb{E}\left[\varepsilon_{1}^{2}\right]=2 \gamma^{2} R_{0} \mathcal{R}\left(\theta_{*}\right) \\
& \varphi_{1}^{\prime}(\underline{\alpha})=\mathbb{E}\left[\left\|\Sigma^{-\underline{\alpha} / 2} \gamma \varepsilon_{1}^{2} X\right\|^{2}\right] \leqslant \gamma^{2} R_{\underline{\alpha}} \mathbb{E}\left[\varepsilon_{1}^{2}\right]=2 \gamma^{2} R_{\underline{\alpha}} \mathcal{R}\left(\theta_{*}\right)
\end{aligned}
$$

We use these expressions to simply further (29) and 30):

$$
\begin{gathered}
\sum_{l=1}^{n} \varphi_{l}^{\prime}(-1) \leqslant 2 \gamma R_{0} \mathcal{R}\left(\theta_{*}\right), \\
\sum_{l=1}^{\infty} \varphi_{l}^{\prime}(\underline{\alpha}-1) \leqslant 2 \gamma R_{\underline{\alpha}} \mathcal{R}\left(\theta_{*}\right) .
\end{gathered}
$$

If $\beta \in[-1, \underline{\alpha}-1]$, we use the log-convexity Property 1 and Hölder's inequality: decompose $\beta=(1-\lambda)(-1)+\lambda(\underline{\alpha}-1)$ with $\lambda=(\beta+1) / \underline{\alpha}$,

$$
\begin{align*}
\sum_{l=1}^{\infty} \varphi_{l}^{\prime}(\beta) & \leqslant \sum_{l=1}^{\infty} \varphi_{l}^{\prime}(-1)^{1-\lambda} \varphi_{l}^{\prime}(\underline{\alpha}-1)^{\lambda} \\
& \leqslant\left(\sum_{l=1}^{n} \varphi_{l}^{\prime}(-1)\right)^{1-\lambda}\left(\sum_{l=1}^{\infty} \varphi_{l}^{\prime}(\underline{\alpha}-1)\right)^{\lambda} \\
& \leqslant\left(2 \gamma R_{0} \mathcal{R}\left(\theta_{*}\right)\right)^{1-\lambda}\left(2 \gamma R_{\underline{\alpha}} \mathcal{R}\left(\theta_{*}\right)\right)^{\lambda} \\
& =2 \gamma R_{0}^{1-\lambda} R_{\underline{\alpha}}^{\lambda} \mathcal{R}\left(\theta_{*}\right) \tag{31}
\end{align*}
$$

Putting back together Equations (26, (28) and 31, we obtain

$$
\varphi_{n}(\beta) \leqslant 2 \mathbb{E}\left[\left\|\Sigma^{-\beta / 2} \nu_{n}\right\|^{2}\right]+4 \gamma R_{0}^{1-\lambda} R_{\underline{\alpha}}^{\lambda} \mathcal{R}\left(\theta_{*}\right)
$$

The theorem follows the application of Theorem 3 to the sequence ν_{n} in order to control the first term.

E Proof of Corollary 1

We apply Theorem 1 in the following way. Denote $\theta_{n}=x_{n}-x_{0}, \theta_{*}=x_{*}-x_{0}$, where $x_{*}=\frac{1}{N} \mathbf{1}$ is the function identically equal to $\frac{1}{N}$. These vectors belong to the Hilbert space $\mathcal{H}=\ell^{2}(\mathcal{V})$. Denote $\langle.,$.$\rangle and \|$.$\| the \ell^{2}(\mathcal{V})$ scalar product and norm. Denote also $X_{n}=e_{v_{n}}-e_{w_{n}} \in \mathcal{H}$ and $\gamma=1 / 2$. Note that $\Sigma=\mathbb{E}\left[X_{n} X_{n}^{\top}\right]=\frac{1}{M} L$. The graph is connected thus $\lambda_{0}=0$ is the unique zero eigenvalue of L [11, Lemma 1.7]. The corresponding eigenspace is the space of constant functions. The vectors $\theta_{n}, X_{n}, \theta_{*}$ are orthogonal to the null space of Σ, thus the quantities of the form $\left\langle\theta_{n}, \Sigma^{-\alpha} \theta_{n}\right\rangle$, $\left\langle X_{n}, \Sigma^{-\alpha} X_{n}\right\rangle,\left\langle\theta_{*}, \Sigma^{-\alpha} \theta_{*}\right\rangle$ are finite.
We have $\theta_{0}=0$ and the averaging update step (7) can be written as

$$
\theta_{n}=\theta_{n-1}-\gamma\left\langle\theta_{n-1}-\theta_{*}, X_{n}\right\rangle X_{n}
$$

The last form makes explicit the parallel with Equation (1). To apply Theorem 1, we check that its assumptions are satisfied. First, $\left\|X_{n}\right\|^{2}=2$ a.s. thus can take $R_{0}=2$ and then $\gamma=1 / R_{0}$. Second, we seek $\alpha>0$ such that $\left\|\Sigma^{-\alpha / 2} \theta_{*}\right\|<\infty$ and $R_{\alpha}=\sup _{\{v, w\} \in \mathcal{E}}\left\langle e_{v}-e_{w}, \Sigma^{-\alpha}\left(e_{v}-e_{w}\right)\right\rangle<\infty$. In the following, we bound these constants for all $\alpha<d / 2$, thus giving decay rates for the expected squared distance to optimum of the form $n^{-\alpha}$ for all $\alpha<d / 2$. However, our bounds of the constants $\left\|\Sigma^{-\alpha / 2} \theta_{*}\right\|$ and R_{α} diverge as $\alpha \rightarrow d / 2$. Nevertheless, by estimating how fast the bounds diverge as $\alpha \rightarrow d / 2$, we obtain a decay rate of $n^{-d / 2}$ by paying an additional logarithmic factor.
Fix $0<\alpha<d / 2$. We check assumptions (a) and (b)
(a)

$$
\left\|\Sigma^{-\alpha / 2} \theta_{*}\right\|^{2}=M^{\alpha}\left\langle x_{*}-x_{0}, L^{-\alpha}\left(x_{*}-x_{0}\right)\right\rangle=M^{\alpha} \sum_{i=1}^{N-1} \lambda_{i}^{-\alpha}\left\langle x_{*}-x_{0}, u_{i}\right\rangle^{2}
$$

First, as x_{*} is a constant vector, $\left\langle x_{*}, u_{i}\right\rangle$ is zero for all $i \geqslant 1$. Second, $x_{0}=e_{v_{\star}}$. Thus

$$
\begin{aligned}
\left\|\Sigma^{-\alpha / 2} \theta_{*}\right\|^{2} & =M^{\alpha} \sum_{i=1}^{N-1} \lambda_{i}^{-\alpha} u_{i}\left(v_{\star}\right)^{2} \\
& =M^{\alpha} \int_{(0, \infty)} \mathrm{d} \sigma_{v_{\star}}(\lambda) \lambda^{-\alpha} \\
& =M^{\alpha} \int_{(0, \infty)} \mathrm{d} \sigma_{v_{\star}}(\lambda) \int_{0}^{\infty} \mathrm{d} s \mathbf{1}_{\{s \leqslant \lambda-\alpha\}} \\
& =M^{\alpha} \int_{0}^{\infty} \mathrm{d} s \int_{(0, \infty)} \mathrm{d} \sigma_{v_{\star}}(\lambda) \mathbf{1}_{\left\{\lambda \leqslant s^{-1 / \alpha}\right\}} \\
& =M^{\alpha} \int_{0}^{\infty} \mathrm{d} s \sigma_{v_{\star}}\left(\left(0, s^{-1 / \alpha}\right]\right) .
\end{aligned}
$$

The graph G is of spectral dimension d with constant V, thus $\sigma_{v_{\star}}\left(\left(0, s^{-1 / \alpha}\right]\right) \leqslant V^{-1} s^{-\frac{d}{2 \alpha}}$. However, if $s<\delta_{\max }^{-\alpha}$, it is better to use a more naive bound. As all eigenvalues of L are smaller or equal than $\delta_{\max }, \sigma_{v_{\star}}\left(\left(0, s^{-1 / \alpha}\right]\right) \leqslant \sigma_{v_{\star}}\left(\left(0, \delta_{\max }\right]\right) \leqslant V^{-1} \delta_{\max }^{d / 2}$. Then

$$
\begin{aligned}
\left\|\Sigma^{-\alpha / 2} \theta_{*}\right\|^{2} & \leqslant M^{\alpha}\left[\int_{0}^{\delta_{\max }^{-\alpha}} \mathrm{d} s V^{-1} \delta_{\max }^{d / 2}+\int_{\delta_{\max }^{-\alpha}}^{\infty} \mathrm{d} s V^{-1} s^{-\frac{d}{2 \alpha}}\right] \\
& =M^{\alpha} V^{-1} \delta_{\max }^{d / 2-\alpha} \frac{d}{d-2 \alpha}
\end{aligned}
$$

(b) Let $\{v, w\} \in E$. As $\left\|\Sigma^{-\alpha / 2}.\right\|$ is a norm, by the triangle inequality,

$$
\begin{aligned}
\left\|\Sigma^{-\alpha / 2}\left(e_{v}-e_{w}\right)\right\|^{2} & =\left\|\Sigma^{-\alpha / 2}\left[\left(x_{*}-e_{w}\right)-\left(x_{*}-e_{v}\right)\right]\right\|^{2} \\
& \leqslant\left(\left\|\Sigma^{-\alpha / 2}\left(x_{*}-e_{w}\right)\right\|+\left\|\Sigma^{-\alpha / 2}\left(x_{*}-e_{v}\right)\right\|\right)^{2} \\
& \leqslant 2\left(\left\|\Sigma^{-\alpha / 2}\left(x_{*}-e_{w}\right)\right\|^{2}+\left\|\Sigma^{-\alpha / 2}\left(x_{*}-e_{v}\right)\right\|^{2}\right) .
\end{aligned}
$$

We bound the two quantities as above. We obtain

$$
R_{\alpha}=\sup _{v, w \in E}\left\|\Sigma^{-\alpha / 2}\left(e_{v}-e_{w}\right)\right\|^{2} \leqslant 2 M^{\alpha} V^{-1} \delta_{\max }^{d / 2-\alpha} \frac{d}{d-2 \alpha}
$$

Theorem 1 gives

$$
\begin{aligned}
\mathbb{E}\left[\left\|x_{n}-x_{*}\right\|^{2}\right] & =\mathbb{E}\left[\left\|\theta_{n}-\theta_{*}\right\|^{2}\right] \leqslant \frac{\alpha^{\alpha}}{\gamma^{\alpha}}\left(\left\|\Sigma^{-\alpha / 2} \theta_{*}\right\|^{2}+\frac{R_{\alpha}}{R_{0}}\left\|\theta_{*}\right\|^{2}\right) \frac{1}{n^{\alpha}} \\
& \leqslant \frac{(d / 2)^{\alpha}}{(1 / 2)^{\alpha}}\left(M^{\alpha} V^{-1} \delta_{\max }^{d / 2-\alpha} \frac{d}{d-2 \alpha}+M^{\alpha} V^{-1} \delta_{\max }^{d / 2-\alpha} \frac{d}{d-2 \alpha}\left\|\theta_{*}\right\|^{2}\right) \frac{1}{n^{\alpha}}
\end{aligned}
$$

Note that $\left\|\theta_{*}\right\|_{2}^{2} \leqslant 1$ and recall the scaling $t=n / M$:

$$
\mathbb{E}\left[\left\|x_{n}-x_{*}\right\|^{2}\right] \leqslant d^{d / 2+1} V^{-1} \delta_{\max }^{d / 2-\alpha} \frac{1}{d / 2-\alpha} \frac{1}{t^{\alpha}}
$$

This bound is valid for all $\alpha<\frac{d}{2}$. Choose $\alpha=\frac{d}{2}-\frac{\log 2}{\log t}$.

$$
\mathbb{E}\left[\left\|x_{n}-x_{*}\right\|^{2}\right] \leqslant d^{d / 2+1} V^{-1} \delta_{\max }^{\log 2 / \log t} \frac{\log t}{\log 2} \frac{2}{t^{d / 2}}
$$

As we assume $t \geqslant 2, \delta_{\max }^{\log 2 / \log t} \leqslant \delta_{\max }$. Thus we obtain conclusion 1
The proof of 2 is similar. Theorem 1 gives

$$
\begin{aligned}
\min _{0 \leqslant k \leqslant n} \mathbb{E}\left[\frac{1}{2} \sum_{\{v, w\} \in \mathcal{E}}\left(x_{k}(v)-x_{k}(w)\right)^{2}\right] & =\min _{0 \leqslant k \leqslant n} \mathbb{E}\left[\frac{1}{2}\left\langle x_{k}-x_{*}, L\left(x_{k}-x_{*}\right)\right\rangle\right] \\
& =M \min _{0 \leqslant k \leqslant n} \mathbb{E}\left[\frac{1}{2}\left\langle\theta_{k}-\theta_{*}, \Sigma\left(\theta_{k}-\theta_{*}\right)\right\rangle\right] \\
& \leqslant 2^{\alpha} \frac{\alpha^{\alpha}}{\gamma^{\alpha+1}}\left(\left\|\Sigma^{-\alpha / 2} \theta_{*}\right\|^{2}+\frac{R_{\alpha}}{R_{0}}\left\|\theta_{*}\right\|^{2}\right) \frac{1}{n^{\alpha}} \\
& \leqslant 2^{\alpha+1} d^{\alpha} V^{-1} \delta_{\max }^{d / 2-\alpha} \frac{d}{d / 2-\alpha} \frac{1}{t^{\alpha+1}} .
\end{aligned}
$$

Taking again $\alpha=\frac{d}{2}-\frac{1}{2 \log t}$ and $t \geqslant 2$,

$$
\min _{0 \leqslant k \leqslant n} \mathbb{E}\left[\frac{1}{2} \sum_{\{v, w\} \in \mathcal{E}}\left(x_{k}(v)-x_{k}(w)\right)^{2}\right] \leqslant 2^{d / 2+1} d^{d / 2} V^{-1} \delta_{\max } \frac{d \log t}{\log 2} \frac{2}{t^{d / 2+1}}
$$

This gives conclusion 2 of the corollary.

F Proof of Proposition 1

The graph \mathbb{T}_{Λ}^{d} is invariant by translation, thus the spectral measure σ_{v} is the same for all vertices $v \in \mathcal{V}$. Thus

$$
|\mathcal{V}| \sigma_{v}(\mathrm{~d} \lambda)=\sum_{w \in \mathcal{V}} \sigma_{w}(\mathrm{~d} \lambda)=\sum_{w \in \mathcal{V}} \sum_{i=0}^{N-1} u_{i}(w)^{2} \delta_{\lambda_{i}}=\sum_{i=0}^{N-1}\left(\sum_{w \in \mathcal{V}} u_{i}(w)^{2}\right) \delta_{\lambda_{i}}=\sum_{i=0}^{N-1} \delta_{\lambda_{i}}
$$

Thus

$$
\sigma_{v}((0, E])=\frac{1}{\Lambda^{d}}\left|\left\{0<i \leqslant N-1 \mid \lambda_{i} \leqslant E\right\}\right| .
$$

We need to bound the number of eigenvalues of the Laplacian of \mathbb{T}_{Λ}^{d} below some fixed value E. The eigenvalues of the Laplacian of the circle \mathbb{T}_{Λ}^{1} are $1-\cos \left(\frac{2 \pi i}{\Lambda}\right), i \in \mathbb{Z},-\Lambda / 2<i \leqslant \Lambda / 2$ [11,

Example 1.5]. As \mathbb{T}_{Λ}^{d} is the Cartesian product $\mathbb{T}_{\Lambda}^{1} \times \cdots \times \mathbb{T}_{\Lambda}^{1}$ (with d terms), the eigenvalues of the Laplacian of the torus \mathbb{T}_{Λ}^{d} are the

$$
1-\cos \left(\frac{2 \pi i_{1}}{\Lambda}\right)+\cdots+1-\cos \left(\frac{2 \pi i_{d}}{\Lambda}\right), \quad i_{1}, \ldots i_{d} \in \mathbb{Z}, \quad-\frac{\Lambda}{2}<i_{1}, \ldots, i_{d} \leqslant \frac{\Lambda}{2}
$$

For $y \in[-\pi, \pi], 1-\cos (y) \geqslant \frac{2}{\pi^{2}} y^{2}$. Thus

$$
\begin{aligned}
1-\cos \left(\frac{2 \pi i_{1}}{\Lambda}\right)+\cdots+1-\cos \left(\frac{2 \pi i_{d}}{\Lambda}\right) \leqslant E & \Rightarrow \frac{2}{\pi^{2}}\left[\left(\frac{2 \pi i_{1}}{\Lambda}\right)^{2}+\cdots+\left(\frac{2 \pi i_{d}}{\Lambda}\right)^{2}\right] \leqslant E \\
& \Leftrightarrow i_{1}^{2}+\cdots+i_{d}^{2} \leqslant \frac{E \Lambda^{2}}{8}
\end{aligned}
$$

We need to count the number of integer points in the Euclidean ball centered at 0 and of radius $\sqrt{E / 8} \Lambda$ in \mathbb{R}^{d}. This problem is famously known as Gauss circle problem. For our purposes, a crude estimate suffices: there exists a constant $C(d)$, depending only on the dimension d, such that for all radius R, the number of integer points in the ball of radius R is smaller than $1+C(d) R^{d}$. This leads to the final estimate

$$
\begin{aligned}
\sigma_{v}((0, E])= & \frac{1}{\Lambda^{d}} \left\lvert\,\left\{\left(i_{1}, \ldots, i_{d}\right) \in\left(\mathbb{Z} \cap\left(-\frac{\Lambda}{2}, \frac{\Lambda}{2}\right]\right)^{d} \backslash\{0\}\right. \text { such that }\right. \\
& \left.1-\cos \left(\frac{2 \pi i_{1}}{\Lambda}\right)+\cdots+1-\cos \left(\frac{2 \pi i_{d}}{\Lambda}\right) \leqslant E\right\} \mid \\
\leqslant & \frac{1}{\Lambda^{d}}\left|\left\{\left(i_{1}, \ldots, i_{d}\right) \in \mathbb{Z}^{d} \backslash\{0\} \left\lvert\, i_{1}^{2}+\cdots+i_{d}^{2} \leqslant \frac{E \Lambda^{2}}{8}\right.\right\}\right| \\
\leqslant & \frac{1}{\Lambda^{d}} C(d)\left(\frac{E \Lambda^{2}}{8}\right)^{d / 2}=\frac{C(d)}{8^{d / 2}} E^{d / 2}
\end{aligned}
$$

This proves the proposition with $V(d)=8^{d / 2} / C(d)$.

