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1 Additional implementation details

1.1 Training details

We trained our networks using the ADAM optimizer [10] with a learning rate of 1e−4 that we decrease
by a factor of 2 at epochs 1000 and 1500. Each model was trained for 2K epochs. Training was done
on a single Nvidia V-100 GPU, using PYTORCH deep learning framework [17]. Training time are 6.5
or 8 hours for 49 or 64 images, respectively. Rendering (inference) time: 30 seconds for 1200× 1600
image with 100K pixel batches.

Images preprocessing. As in [21] we transform the RGB images such that each pixel is in the range
[−1, 1]3 by subtracting 0.5 and multiplying by 2.

1.2 Camera representation and initialization

We represent a camera by C = (q, c,K), where q ∈ R4 is a quaternion vector representing the
camera rotation, c ∈ R3 represents the camera position, and K ∈ R3×3 is the camera’s intrinsic
parameters. Our cameras’ parameters are τ = (C1, . . . , CN ), whereN is the numbers of cameras (also
images) in the scene. LetQ(q) ∈ R3×3 denote the rotation matrix corresponding to the quaternion q.
Then, for camera Ci, i ∈ [N ], and a pixel p we have:

cp(τ) = ci (A1)

vp(τ) =
1∥∥K−1i p
∥∥
2

Q(qi)K
−1
i p, (A2)

where p = (px, py, 1)T is the pixel p in homogeneous coordinates.

In our experiments with unknown cameras, for each scene (corresponding to one 3D object) we
generated relative motions between pairs of cameras using SIFT features matching [12] and robust
essential matrix estimation (RANSAC), followed by a decomposition to relative rotation and relative
translation [6]. We used these relative motions as inputs to the linear method of [9] to produce
noisy cameras initialization for our method. We assume known intrinsics, as commonly assumed in
calibrated SFM.

1.3 Architecture:

Figure A1 visualize the IDR architecture. The gray blocks describe the input vectors, orange blocks
for the output vectors, and each blue block describe a fully connected hidden layer with softplus
activation ; a smooth approximation of ReLU: x 7→ 1

β ln(1 + eβx). We used β = 100. In the
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Figure A1: IDR architecture.

renderer network we used the ReLU activation between hidden layers and tanh for the output, to
get valid color values. The grey block illustrate the use of equation 3.

As mentioned in the main paper, we initialize the weights of the implicit function θ ∈ Rm as in
[2], so that f(x, θ) produces an approximate SDF of a unit sphere. To use the non-linear maps of
[14], and still maintain the geometric initialization we implement the positional encoding embedding
with the addition of concatenating identity embedding, that is: δ′k(y) = [y, δk(y)], where δk(y) as
defined in the section 3.4. Then, we zero out the weights coming out of everything except the linear
basis function, to get the proper geometric initialization as in [2].

1.4 Ray marching algorithm

We denote by c the camera center and by v ∈ S the direction from c associated with a pixel on
the image plane. During our training for each selected pixel, we perform ray tracing along the ray
{c+ tv | t ≥ 0} to find the corresponding first intersection point with Sθ denoted by x0 . As Sθ is
defined by the zero level set of an approximated sign distance field f , we base our tracing method on
the sphere tracing algorithm [5]: in each iteration, since the distance along the ray to x0 is bounded
by the current SDF value f(c + tv), we march forward by enlarging the current t by f(c + tv).
We continue iterating until convergence, indicated by an SDF value below a threshold of 5e-5, or
divergence, indicated by a step that reaches out of the unit sphere. As we assume the 3D object to be
located inside the unit sphere, we start the sphere tracing algorithm at the first intersection point of
the ray with the unit sphere as in [11].

We limit the number of sphere tracing steps to 10 in order to prevent long convergence cases e.g.,
when the ray passes very close to the surface without crossing it. Then, for non convergent rays,
we run another 10 sphere tracing iterations starting from the second (i.e., farthest) intersection of
the ray with the unit sphere and get t̄. Similar to [16] we sample 100 equal sized steps between
t to t̄: t < t1 < · · · < t100 < t̄ and find the first pair of consecutive steps ti, ti+1 such that
sign(f(c+ tiv)) 6= sign(f(c+ ti+1v)), i.e., a sign transition that describes the first ray crossing of
the surface. Then, using ti and tj as initial values, we run 8 iterations of the secant algorithm to find
an approximation for the intersection point x0. The algorithm is performed in parallel on the GPU
for multiple rays associated with multiple pixels.

For all pixels in P out we select a point on the corresponding ray c + t∗v for lossMASK, where t∗
is approximated by sampling uniformly 100 possible steps T = {t1, ..., t100} between the two
intersection points of the ray with the unit sphere and taking t∗ = arg minti∈T f(c+ tiv).

All the 3D points resulted from the described process are used for equation 11 together with addition-
ally 1024 points distributed uniformly in the bounding box of the scene.

1.5 Baselines methods running details

In our experiments we compared our method to Colmap [18],[19], DVR [16] and Furu [4]. We next
describe implementation details for these baselines.
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Colmap. We used the official Colmap implementation [20]. For unknown cameras, only the intrin-
sic camera parameters are given, and we used the "mapper" module to extract camera poses. For fixed
known cameras the GT poses are given as inputs. For both setups we run their "feature_extractor",
"exhaustive_matcher" , "point_triangulator", "patch_match_stereo" and "stereo_fusion" modules to
generate point clouds. We also used their screened Poisson Surface Reconstruction (sPSR) for 3D
mesh generation after cleaning the point clouds as described in Section 4.1. For rendering, we used
their generated 3D meshes and cameras, and rendered images for each view using the "Pyrender"
package [13].

DVR. We run DVR using the official Github code release [15]. In order to be compatible with this
implementation, for each scene we used the cameras and the masks to normalize all the cameras
such that the object is inside the unit cube. We applied DVR on all DTU scenes using the "ours_rgb"
configuration. As mentioned in Table 1 (in the main paper), we reconstructed each model twice: with
all the images in the dataset, and with all the images in the dataset that are not in the DVR "ignore
list". We run their method for 5000 epochs and took the best model as they suggest. We further used
their "generate" and "render" scripts for generating 3D meshes and rendering images respectively.

Furu. The point clouds generated by Furu are supplied by the DTU data set. We used Colmap’s
sPSR to generate meshes from the cleaned point clouds. As for Colmap we used "Pyrender" [13] to
render their images.

1.6 Evaluation details

All the reported Chamfer distances are in millimeters and computed by averaging the accuracy and
completeness measures, returned from DTU evaluation script, each represents one sided Chamfer-L1

distance. The reported PSNR values (in dB) for each scan are averaged over the masked pixels of all
the images. Camera accuracy represents the mean accuracy of camera positions (in mm) and camera
rotations (in degrees) after L1 alignment with the GT.

2 Additional results

2.1 Multiview 3D reconstruction

Figure A2: Failure cases.

In Figure A2 we show a failure case (scan 37 from the DTU dataset).
This case presents challenging thin metals parts which our method fails
to fully reproduce especially with noisy cameras.

In Figure A3 we present qualitative results for 3D surface reconstruction
with fixed GT cameras, whereas Figure A4 further presents qualitative
results for the unknown cameras setup. An ablation study for training
IDR with fixed noisy cameras compared to IDR’s camera training mode
initialized with the same noisy cameras is also presented in Figure A4.
We refer the reader to a supplementary video named "IDR.mp4" that
shows side by side our generated surfaces and rendered images from
multiple views in the settings of unknown cameras.

Unexpected lighting effects in the supplied video. In the original
views (training images), the camera body occasionally occludes some
light sources, casting temporary shadows on the object; see inset. Notice
that in the video we move the camera (i.e., viewing direction) and not
the object, therefore when the camera moves near such a view we see
the projected shadow in the generated rendering.

2.2 Disentangling geometry and appearance

Figure A5 depicts other transformation of appearance to unseen geometry, where we render novel
views of different trained geometries, using the renderer from the model trained on the golden bunny
scene.
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Figure A3: Qualitative results of multiview 3D surface reconstructions with fixed GT cameras for the
DTU dataset. We present surface reconstructions generated by our method compared to the baseline
methods. Our renderings from two novel views are presented as well.

2.3 PSNR on a held-out set of images

In our experiments the PSNR is computed over training images. We further performed an experiment
where we held-out 10% of the images as test views, when using fixed GT cameras. Overall, we
got 23.34 / 22.55 mean PSNR accuracy on the train / test images, respectively. Table 1 reports the
per-scene accuracies.

Scan 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

PSNR(Test) 23.02 19.61 24.07 22.30 23.43 22.30 22.19 21.70 22.05 23.82 21.75 20.31 23.03 23.42 25.31 22.55

PSNR(Train) 24.13 21.02 24.65 23.51 24.81 23.33 22.74 21.80 23.29 24.36 22.04 20.32 23.89 23.72 26.45 23.34

Table 1: PSNR on a held-out set of images with fixed GT cameras.
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Figure A4: Qualitative results for trained cameras setup. We also compare to IDR with fixed noisy
cameras.

3 Differentiable intersection of viewing direction and geometry (proof of
Lemma 1)

We will use the notation of the main paper, repeated here for convenience: x̂(θ, τ) = c(τ) +
t(θ, c(τ),v(τ))v(τ) denotes the first intersection point of the viewing ray Rp(τ) for some fixed
pixel p and the geometry Sθ. We denote the current parameters by θ0, τ0; accordingly we denote
c0 = c(τ0), v0 = v(τ0), and t0 = t(θ0, c0,v0). We also denote x0 = x̂(θ0, τ0). Note that
x0 = c0 + t0v0 is the intersection point at the current parameters that is Rp(τ0) ∩ Sθ0 .

To find the function dependence of x̂ on θ, τ we use implicit differentiation [1, 16]. That is we
differentiate

f(x̂(θ, τ); θ) ≡ 0 (A3)
w.r.t. its parameters. Since the functional dependence of c and v on τ is known (given in equations
A1-A2) it is sufficient to consider the derivatives of equation A3 w.r.t. θ, c,v. Therefore we consider

f(c+ t(θ, c,v)v; θ) ≡ 0 (A4)
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and differentiate w.r.t. θ, c,v. We differentiate w.r.t. c: (note that we use ∂f/∂x equivalently to∇xf ,
which is used in the main paper)(

∂f

∂x

)T (
I + v

(
∂t

∂c

)T)
= 0,

where I ∈ R3×3 is the identity matrix, and v, ∂f∂x ,
∂t
∂c ∈ R3 are column vectors. Rearranging and

evaluating at θ0, c0,v0 we get

∂t

∂c
(θ0, c0,v0) = − 1〈

∂f
∂x (x0; θ0),v0

〉 ∂f
∂x

(x0; θ0). (A5)

Differentiating w.r.t. v: (
∂f

∂x

)T (
tI + v

(
∂t

∂v

)T)
= 0,

Rearranging and evaluating at θ0, c0,v0 we get

∂t

∂v
(θ0, c0,v0) = − t0〈

∂f
∂x (x0; θ0),v0

〉 ∂f
∂x

(x0; θ0). (A6)

Lastly, the derivatives w.r.t. θ are as in [16] and we give it here for completeness:(
∂f

∂x

)T
v
∂t

∂θ
+
∂f

∂θ
= 0.

Reordering and evaluating at θ0,v0, c0 we get

∂t

∂θ
(θ0, c0,v0) = − 1〈

∂f
∂x (x0; θ0),v0

〉 ∂f
∂θ

(x0; θ0) (A7)

Now consider the formula

t(θ, c,v) = t0 −
1〈

∂f
∂x (x0; θ0),v0

〉f(c+ t0v; θ). (A8)

Evaluating at θ0, c0,v0 we get t(θ0, c0,v0) = t0 since f(x0; θ0) = 0. Furthermore, differentiating t
w.r.t. c,v, θ and evaluating at c0,v0, θ0 we get the same derivatives as in equations A5, A6, and A7.
Plugging equation A8 into x̂(θ, c,v) = c+ t(θ, c,v)v we get the formula,

x̂(θ, τ) = c+ t0v −
v〈

∂f
∂x (x0; θ0),v0

〉f(c+ t0v; θ), (A9)

that coincide in value and first derivatives with the first intersection points at the current parameters
θ0, c0,v0; equation A9 can be implemented directly by adding a linear layer in the entrance to the
network f and a linear layer at its output.

Figure A5: Transferring appearance from scan 110 (golden bunny) to unseen geometry.
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4 Restricted surface light field model P

We restrict our attention to light fields that can be represented by a continuous function M0. We
denote the collection of such continuous functions by P = {M0}.
This model includes many common materials and lighting conditions such as the popular Phong
model [3]:

L(x̂,wo) = kdOdIa + kdOdId

(
n̂ · `− x̂
‖`− x̂‖

)
+

+ ksOsId

(
r̂ · `− x̂
‖`− x̂‖

)ns

+

, (A10)

where (a)+ = max {a, 0}; kd, ks are the diffuse and specular coefficients, Ia, Id are the ambient
and point light source colors, Od, Os are the diffuse and specular colors of the surface, ` ∈ R3 is
the location of a point light source, r̂ = −(I − 2n̂n̂T )wo the reflection of the viewing direction
wo = −v with respect to the normal n̂, and ns is the specular exponent.

Note, that the family P , however, does not include all possible lighting conditions. It excludes, for
example, self-shadows and second order (or higher) light reflections as Li is independent of the
geometry Sθ.

4.1 P-Universality of renderer

We consider renderer of the form M(x,n,v; γ), where M is an MLP, and show it can approximate
the correct light field function M0(x,n,v) for all (x,n,v) contained in some compact set K ⊂ R9.
Indeed, for some arbitrary and fixed ε > 0 the universal approximation theorem for MLPs (see [8]
and [7] for approximation including derivatives) guarantees the existence of parameters γ ∈ Rn so
that max(x,n,v)∈K |M(x,n,v; γ)−M0(x,n,v)| < ε.

4.2 View direction and normal are necessary for P-universality.

We will next prove that taking out v or n from the renderer M will make this model not P-universal.
Assume Sθ is expressive enough to change the normal direction n̂ arbitrarily at a point x̂; for example,
even a linear classifier f(x;a, b) = aTx+ b would do. We will use the Phong model (equation A10)
to prove the claims; the Phong model is in P as discussed above. We first consider the removal of
the normal component n̂ from the renderer, i.e., M(x̂,v; γ) is the approximated light field radiance
arriving at c in direction v as predicted by the renderer. Consider the setting shown in Figure 3 (a)
and (b) (in the main paper): In both cases M(x̂,v; γ) yields the same value although changing the
normal direction at x̂ will produce, under the Phong model, a different light amount at c.

Similarly, consider a renderer with the viewing direction, v, removed, i.e., M(x̂, n̂; γ), and Figure 3
(a) and (c): In both cases M(x̂, n̂; γ) produces the same value although, under the Phong model, the
reflected light can change when the point of view changes. That is, we can choose light position ` in
equation A10 so that different amount of light reaches c at direction v.

We have shown that renderers with no access to n̂ and/or v would necessarily fail (at-least in some
cases) predicting the correct light amount reaching c in direction v when these and the geometry is
able to change, hence are not universal.

References
[1] Matan Atzmon, Niv Haim, Lior Yariv, Ofer Israelov, Haggai Maron, and Yaron Lipman. Controlling neural

level sets. In Advances in Neural Information Processing Systems, pages 2032–2041, 2019.
[2] Matan Atzmon and Yaron Lipman. Sal: Sign agnostic learning of shapes from raw data. arXiv preprint

arXiv:1911.10414, 2019.
[3] James D Foley, Foley Dan Van, Andries Van Dam, Steven K Feiner, John F Hughes, Edward Angel, and J

Hughes. Computer graphics: principles and practice, volume 12110. Addison-Wesley Professional, 1996.
[4] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and robust multiview stereopsis. IEEE transactions

on pattern analysis and machine intelligence, 32(8):1362–1376, 2009.
[5] John C Hart. Sphere tracing: A geometric method for the antialiased ray tracing of implicit surfaces. The

Visual Computer, 12(10):527–545, 1996.
[6] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision. Cambridge university

press, 2003.
[7] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Universal approximation of an unknown mapping

and its derivatives using multilayer feedforward networks. Neural networks, 3(5):551–560, 1990.

7



[8] Kurt Hornik, Maxwell Stinchcombe, Halbert White, et al. Multilayer feedforward networks are universal
approximators. Neural networks, 2(5):359–366, 1989.

[9] Nianjuan Jiang, Zhaopeng Cui, and Ping Tan. A global linear method for camera pose registration. In
Proceedings of the IEEE International Conference on Computer Vision, pages 481–488, 2013.

[10] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[11] Shaohui Liu, Yinda Zhang, Songyou Peng, Boxin Shi, Marc Pollefeys, and Zhaopeng Cui. Dist: Rendering
deep implicit signed distance function with differentiable sphere tracing. arXiv preprint arXiv:1911.13225,
2019.

[12] David G Lowe. Distinctive image features from scale-invariant keypoints. International journal of
computer vision, 60(2):91–110, 2004.

[13] Matthew Matl. Pyrender code. https://github.com/mmatl/pyrender.
[14] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.

Nerf: Representing scenes as neural radiance fields for view synthesis. arXiv preprint arXiv:2003.08934,
2020.

[15] Michael Niemeyer. Dvr code. https://github.com/autonomousvision/differentiable_
volumetric_rendering.

[16] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Differentiable volumetric
rendering: Learning implicit 3d representations without 3d supervision. arXiv preprint arXiv:1912.07372,
2019.

[17] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.

[18] Johannes L. Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), June 2016.

[19] Johannes L Schönberger, Enliang Zheng, Jan-Michael Frahm, and Marc Pollefeys. Pixelwise view selection
for unstructured multi-view stereo. In European Conference on Computer Vision, pages 501–518. Springer,
2016.

[20] Johannes L. Schönberger. Colmap code. https://colmap.github.io/.
[21] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. Scene representation networks: Continuous

3d-structure-aware neural scene representations. In Advances in Neural Information Processing Systems,
pages 1119–1130, 2019.

8

https://github.com/mmatl/pyrender
https://github.com/autonomousvision/differentiable_volumetric_rendering
https://github.com/autonomousvision/differentiable_volumetric_rendering
https://colmap.github.io/

	Additional implementation details
	Training details
	Camera representation and initialization
	Architecture:
	Ray marching algorithm
	Baselines methods running details
	Evaluation details

	Additional results
	Multiview 3D reconstruction
	Disentangling geometry and appearance
	PSNR on a held-out set of images

	Differentiable intersection of viewing direction and geometry (proof of Lemma 1)
	Restricted surface light field model P
	P-Universality of renderer
	View direction and normal are necessary for P-universality.


