
A Pseudocode for K-BFGS/K-BFGS(L)

Algorithm 4 gives pseudocode for K-BFGS/K-BFGS(L), which is implemented in the experiments. For details
see Sections 3, 4, and Section C in the Appendix.

Algorithm 4 Pseudocode for K-BFGS / K-BFGS(L)

Require: Given initial weights θ =
[
vec (W1)

>
, . . . , vec (WL)

>
]>

, batch size m, learning rate α,
damping value λ, and for K-BFGS(L), the number of (s,y) pairs p that are stored and used to
compute H l

g at each iteration
1: µ1 = 0.2, β = 0.9 {set default hyper-parameter values}
2: λA = λG =

√
λ {split the damping into A and G}

3: ∇̂f l = 0, Al = Ei
[
al−1(i)al−1(i)>

]
by forward pass, H l

a = (Al + λAIA)−1, H l
g = I

(l = 1, ..., L) {Initialization}
4: for k = 1, 2, . . . do
5: Sample mini-batch of size m: Mk = {ξk,i, i = 1, . . . ,m}
6: Perform a forward-backward pass over the current mini-batch Mk to compute∇f l, al, hl, and

gl (l = 1, . . . , L) (see Algorithm 1)
7: for l = 1, . . . , L do
8: ∇̂f l = β∇̂f l + (1− β)∇f l
9: pl = H l

g∇̂f lH l
a

10: {In K-BFGS(L), when computing H l
g

(
∇̂f lH l

a

)
, L-BFGS is initialized with an identity

matrix}
11: Wl = Wl − α · pl
12: Perform another forward-backward pass over Mk to compute h+

l , g+
l (l = 1, . . . , L)

13: for l = 1, ..., L do
14: {Use damped BFGS or L-BFGS to update H l

g (see Section 3)}

15: slg = β · slg + (1− β) ·
(
h+
l − hl

)
, ylg = β · ylg + (1− β) ·

(
g+
l − gl

)
16: (s̃lg, ỹ

l
g) = DD(slg,y

l
g) with H = H l

g , µ1 = µ1, µ2 = λG {See Algorithm 3}
17: Use BFGS or L-BFGS with (s̃lg, ỹ

l
g) to update H l

g

18: {Use Hessian-action BFGS to update H l
a (see Section 4)}

19: Al = β ·Al + (1− β) · al−1a>l−1

20: ALM
l = Al + λAIA

21: sla = H l
a · al−1, yla = ALM

l sla
22: Use BFGS with (sla,y

l
a) to update H l

a

B Convergence: Proofs of Lemmas 1-3 and Theorem 2

In this section, we prove the convergence of Algorithm 5, a variant of K-BFGS(L). Algorithm 5 is very similar
to our actual implementation of K-BFGS(L) (i.e. Algorithm 4), except that

• we skip updating Hl
g if (s̃lg)

>ỹlg < µ1(ỹlg)
>Hl

gỹ
l
g (see Line 16);

• we set Hl
a to the exact inverse of ALM

l (see Line 21);

• we use decreasing step sizes {αk} as specified in Theorem 2;

• we use the mini-batch gradient instead of the momentum gradient (see Line 8).

To accomplish this, we prove Lemmas 1-3, which in addition to Assumptions AS.1-2, ensure that all of the
assumptions in Theorem 2.8 in [41] are satisfied, and hence that the generic stochastic quasi-Newton (SQN)
method, i.e. Algorithm 6, below converges. Specifically, Theorem 2.8 in [41] requires, in addition to Assumptions
AS.1-2, the assumption

AS. 4. There exist two positive constants κ, κ̄, such that κI � Hk � κ̄I, ∀k; for any k ≥ 2, the random
variable Hk depends only on ξ[k−1].
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Algorithm 5 K-BFGS(L) with DD-skip and exact inversion of ALM
l

Require: Given initial weights θ =
[
vec (W1)

>
, . . . , vec (WL)

>
]>

, batch size m, learning rate

{αk}, damping value λ, and the number of (s,y) pairs p that are stored and used to compute H l
g

at each iteration
1: µ1 = 0.2, β = 0.9 {set default hyper-parameter values}
2: λA = λG =

√
λ {split the damping into A and G}

3: Al(0) = Ei
[
al−1(i)al−1(i)>

]
by forward pass, H l

a(0) = (Al(0) + λAIA)−1, H l
g(0) = I

(l = 1, ..., L) {Initialization}
4: for k = 1, 2, . . . do
5: Sample mini-batch of size m: Mk = {ξk,i, i = 1, . . . ,m}
6: Perform a forward-backward pass over the current mini-batch Mk to compute∇f l, al, hl, and

gl (l = 1, . . . , L) (see Algorithm 1)
7: for l = 1, . . . , L do
8: pl = H l

g(k − 1)∇̂f lH l
a(k − 1), where ∇̂f l = ∇f l

9: {When computing H l
g

(
∇̂f lH l

a

)
, L-BFGS is initialized with an identity matrix}

10: Wl = Wl − αk · pl
11: Perform another forward-backward pass over Mk to compute h+

l , g+
l (l = 1, . . . , L)

12: for l = 1, ..., L do
13: {Use damped L-BFGS with skip to update H l

g (see Section 3)}

14: slg = β · slg + (1− β) ·
(
h+
l − hl

)
, ylg = β · ylg + (1− β) ·

(
g+
l − gl

)
15: (s̃lg, ỹ

l
g) = DD(slg,y

l
g) with H = H l

g(k − 1), µ1 = µ1, µ2 = λG {See Algorithm 3}
16: if (s̃lg)

>ỹlg ≥ µ1(ỹlg)
>H l

gỹ
l
g then

17: Use L-BFGS with (s̃lg, ỹ
l
g) to update H l

g(k)

18: {Use exact inversion to compute H l
a}

19: Al(k) = β ·Al(k − 1) + (1− β) · al−1a>l−1

20: ALM
l (k) = Al(k) + λAIA

21: H l
a(k) =

(
ALM
l (k)

)−1

Algorithm 6 SQN method for nonconvex stochastic optimization.

Require: Given θ1 ∈ Rn, batch sizes {mk}k≥1, and step sizes {αk}k≥1

1: for k = 1, 2, . . . do
2: Calculate ∇̂fk = 1

mk

∑mk
i=1∇f(θk, ξk,i)

3: Generate a positive definite Hessian inverse approximation Hk

4: Calculate θk+1 = θk − αkHk∇̂fk

In the following proofs, ‖ · ‖ denotes the 2-norm for vectors, and the spectral norm for matrices.

Proof of Lemma 1:

Proof. Because ALM
l (k) � λAIA, we have that Hl

a(k) � κ̄aIA, where κ̄a = 1
λA

.

On the other hand, for any x ∈ Rdl , by Cauchy-Schwarz, 〈al−1(i),x〉2 ≤ ‖x‖2‖al−1(i)‖2 ≤ ‖x‖2(1+ϕ2dl).

Hence,
∥∥∥al−1a>l−1

∥∥∥ ≤ 1 + ϕ2dl; similarly, ‖Al(0)‖ ≤ 1 + ϕ2dl. Because ‖Al(k)‖ ≤ β‖Al(k − 1)‖+ (1−

β)
∥∥∥al−1a>l−1

∥∥∥, by induction, ‖Al(k)‖ ≤ 1+ϕ2dl for any k and l. Thus, ‖ALM
l (k)‖ ≤ 1+ϕ2dl+λA. Hence,

Hl
a(k) � κaIA, where κa = 1

1+ϕ2dl+λA
.

Proof of Lemma 2:
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Proof. To simplify notation, we omit the subscript g, superscript l and the iteration index k in the proof. Hence,
our goal is to prove κgI � H = Hl

g(k) � κ̄gI , for any l and k. Let (si,yi) (i = 1, ..., p) denote the pairs used

in an L-BFGS computation of H . Since (si,yi) was not skipped, y>i H̄
(i)yi

s>i yi
≤ 1

µ1
, where H̄(i) denotes the

matrix Hl
g used at the iteration in which si and yi were computed. Note that this is not the matrix Hi used in

the recursive computation of H at the current iterate θk.

Given an initial estimate H0 = B−1
0 = I of (Glg(θk))−1, the L-BFGS method updates Hi recursively as

Hi =
(
I − ρisiy>i

)
Hi−1

(
I − ρiyis>i

)
+ ρisis

>
i , i = 1, . . . , p, (12)

where ρi = (s>i yi)
−1, and equivalently,

Bi = Bi−1 +
yiy
>
i

s>i yi
− Bi−1sis

>
i Bi−1

s>i Bi−1si
, i = 1, . . . , p,

where Bi = H−1
i . Since we use DD with skipping, we have that s>i si

s>i yi
≤ 1

µ2
and y>i H̄

(i)yi
s>i yi

≤ 1
µ1

. Note

that we don’t have y>i Hi−1yi
s>i yi

≤ 1
µ1

, so we cannot direct apply (10). Hence, by (8), we have that ||Bi|| ≤

||Bi−1||
(

1 + 1
µ1

)
. Hence, ||B|| = ||Bp|| ≤ ||B0||

(
1 + 1

µ1

)p
=
(

1 + 1
µ1

)p
. Thus, B �

(
1 + 1

µ1

)p
I ,

H �
(

1 + 1
µ1

)−p
I := κgI .

On the other hand, since κg is a uniform lower bound for Hl
g(k) for any k and l, H̄(i) � κgI . Thus,

1

µ1
≥ y>i H̄

(i)yi
s>i yi

≥ κg
y>i yi
s>i yi

⇒ y>i yi
s>i yi

≤ 1

µ1κg
.

Hence, using the fact that ||uv>|| = ||u|| · ||v|| for any vectors u, v, ||ρisis>i || = ρi||si||||si|| = s>i si
s>i yi

≤ 1
µ2
,

||Hi|| = ||
(
I − ρisiy>i

)
Hi−1

(
I − ρiyis>i

)
+ ρisis

>
i ||

= ||Hi−1 + ρ2
i (y
>
i Hi−1yi)sis

>
i − ρisiy>i Hi−1 − ρiHi−1yis

>
i + ρisis

>
i ||

≤ ||Hi−1||+ ||ρ2
i (y
>
i Hi−1yi)sis

>
i ||+ ||ρisiy>i Hi−1||+ ||ρiHi−1yis

>
i ||+ ||ρisis>i ||

≤ ||Hi−1||+ ||Hi−1|| · ||ρ2
i (y
>
i yi)sis

>
i ||+ 2ρi||si|| · ||y>i Hi−1||+

1

µ2

≤ ||Hi−1||+ ||Hi−1|| ·
1

µ1κg

1

µ2
+ 2ρi||si|| · ||y>i || · ||Hi−1||+

1

µ2

≤ ||Hi−1||

(
1 +

1

µ1κg

1

µ2
+ 2

1
√
µ1µ2κg

)
+

1

µ2

= µ̂||Hi−1||+
1

µ2
, where µ̂ =

(
1 +

1
√
µ1µ2κg

)2

.

From the fact that H0 = I , and induction, we have that ||H|| ≤ µ̂p + µ̂p−1
µ̂−1

1
µ2
≡ κ̄g .

Proof of Lemma 3:

Proof. By Lemma 1, 2 and the fact thatHk = diag{H1
a(k−1)⊗H1

g (k−1), ..., HL
a (k−1)⊗HL

g (k−1)}.

Proof of Theorem 2:

Proof. To show that Algorithm 5 lies in the framework of Algorithm 6, it suffices to show that Hk generated by
Algorithm 5 is positive definite, which is true since Hk = diag{H1

a(k − 1) ⊗H1
g (k − 1), ..., HL

a (k − 1) ⊗
HL
g (k − 1)} and Hl

a(k) and Hl
g(k) are positive definite for all k and l. Then by Lemma 3, and the fact that Hk

depends on Hl
a(k − 1) and Hl

g(k − 1), and Hl
a(k − 1) and Hl

g(k − 1) does not depend on random samplings
in the kth iteration, AS.4 holds. Hence, Theorem 2.8 of [41] applies to Algorithm 5, proving Theorem 2.
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C Powell’s Damped BFGS Updating

For BFGS and L-BFGS, one needs y>s > 0. However, when used to update Hl
g , there is no guarantee that

(ylg)
>slg > 0 for any layer l = 1, . . . , L. In deterministic optimization, positive definiteness of the QN Hessian

approximation B (or its inverse) is maintained by performing an inexact line search that ensures that sTy > 0,
which is always possible as long as the function being minimized is bounded below. However, this would be
expensive to do for DNN. Thus, we propose the following heuristic based on Powell’s damped-BFGS approach
[35].

Powell’s Damping on B. Powell’s damping on B, proposed in [35], replaces y in the BFGS update, by
ỹ = θy + (1− θ)Bs, where

θ =

{
(1−µ)s>Bs

s>Bs−s>y
, if s>y < µs>Bs,

1, otherwise.

It is easy to verify that s>ỹ ≥ µs>Bs.

Powell’s Damping on H . In Powell’s damping on H (see e.g. [3]), s̃ = θs + (1− θ)Hy replaces s, where

θ =

{
(1−µ1)y>Hy

y>Hy−s>y
, if s>y < µ1y

>Hy,

1, otherwise.

This is used in lines 2 and 3 of the DD (Algorithm 3). It is also easy to verify that s̃>y ≥ µ1y
>Hy.

Powell’s Damping with B = I . Powell’s damping on B is not suitable for our algorithms because we do not
keep track of B. Moreover, it does not provide a simple bound on s̃> s̃

s̃>ỹ
that is independent of ‖B‖. Therefore,

we use Powell’s damping with B = I , in lines 4 and 5 of the DD (Algorithm 3). It is easy to verify that it
ensures that s̃>ỹ ≥ µ2s̃

>s̃.

Powell’s damping with B = I can be interpreted as adding an Levenberg-Marquardt (LM) damping term to B.
Note that an LM damping term µ2 would lead to B � µ2I . Then, the secant condition ỹ = Bs̃ implies

ỹ>s̃ = s̃>Bs̃ ≥ µ2s̃
>s̃,

which is the same inequality as we get using Powell’s damping with B = I . Note that although the µ2 parameter
in Powell’s damping with B = I can be interpreted as an LM damping, we recommend setting the value of µ2

within (0, 1] so that ỹ is a convex combination of y and s̃. In all of our experimental tests, we found that the
best value for the hyperparameter λ for both K-BFGS and K-BFGS(L) was less than or equal to 1, and hence
that µ2 = λG =

√
λ was in the interval (0, 1].

C.1 Double Damping (DD)

Our double damping (Algorithm 3) is a two-step damping procedure, where the first step (i.e. Powell’s damping
on H) can be viewed as an interpolation between the current curvature and the previous ones, and the second
step (i.e. Powell’s damping with B = I) can be viewed as an LM damping.

Recall that there is no guarantee that y>Hy
s>y

≤ 2
µ1

holds after DD. While we skip using pairs that do not satisfy

this inequality, when updating Hl
g in proving the convergence of the K-BFGS(L) variant Algorithm 5 , we use

all (s,y) pairs to update Hl
g in our implementations of both K-BFGS and K-BFGS(L) . However, whether one

skips or not makes only slight difference in the performance of these algorithms, because as our empirical testing
has shown, at least 90% of the iterations satisfy y>Hy

s>y
≤ 2

µ1
, even if we don’t skip. See Figure 2 which reports

results on this for K-BFGS(L) when tested on the MNIST, FACES and CURVES datasets.

D Implementation Details and More Experiments

D.1 Description of Competing Algorithms

D.1.1 KFAC

We first describe KFAC in Algorithm 7. Note that Gl in KFAC refers to the G matrices in [30], which is different
from the Gl in K-BFGS.
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Figure 2: Fraction of the number of iterations in each epoch, in which the inequality y>Hy
s>y

≤ 2
µ1

holds (upper plots), and the average value of yTHy
s>y

(lower plots) in each epoch. Legends in each plot
assign different colors to represent each layer l.

D.1.2 Adam/RMSprop

We implement Adam and RMSprop exactly as in [24] and [21], respectively. Note that the only difference
between them is that Adam does bias correction for the 1st and 2nd moments of gradient while RMSprop does
not.

D.1.3 Initialization of Algorithms

We now describe how each algorithm is initialized. For all algorithms, ∇̂f is always initialized as zero.

For second-order information, we use a "warm start" to estimate the curvature when applicable. In particular, we
estimate the following curvature information using the entire training set before we start updating parameters.
The information gathered is

• Al for K-BFGS and K-BFGS(L);

• Al and Gl for KFAC;

• ∇f �∇f for RMSprop;
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Algorithm 7 KFAC
Require: Given θ0, batch size m, and learning rate α, damping value λ, inversion frequency T

1: for k = 1, 2, . . . do
2: Sample mini-batch of size m: Mk = {ξk,i, i = 1, . . . ,m}
3: Perform a forward-backward pass over the current mini-batch Mk (see Algorithm 1)
4: for l = 1, 2, . . . L do
5: pl = H l

g∇̂f lH l
a

6: Wl = Wl − α · pl.
7: Perform another pass over Mk with y sampled from the predictive distribution
8: Update Al = β ·Al + (1− β) · al−1a>l−1, Gl = β ·Gl + (1− β) · glg>l
9: if k ≤ T or k ≡ 0 (mod T ) then

10: Recompute H l
a = (Al +

√
λI)−1, H l

g = (Gl +
√
λI)−1

• Not applicable to Adam because of the bias correction.

Lastly, for K-BFGS and K-BFGS(L), Hl
a is always initially set to an identity matrix. Hl

g is also initially set
to an identity matrix in K-BFGS; for K-BFGS(L), when updating Hl

g using L-BFGS, the incorporation of the
information from the p (s,y) pairs is applied to an initial matrix that is set to an identity matrix. Hence, the above
initialization/warm start costs are roughly twice as large for KFAC as they are for K-BFGS and K-BFGS(L).

D.2 Autoencoder Problems

Table 3 lists information about the three datasets, namely, MNIST2, FACES3, and CURVES4. Table 4 specifies
the architecture of the 3 problems, where binary entropyL (aL, y) =

∑
n[yn log aL,n+(1−yn) log(1−aL,n)],

MSE L (aL, y) = 1
2

∑
n(aL,n − yn)2. Besides the loss function in Table 4, we further add a regularization

term η
2
||θ||2 to the loss function, where η = 10−5.

Table 3: Info for 3 datasets
Dataset # data points # training examples # testing examples

MNIST 70,000 60,000 10,000
FACES 165,600 103,500 62,100

CURVES 30,000 20,000 10,000

Table 4: Architecture of 3 auto-encoder problems
Dataset Layer width & activation Loss function

MNIST [784, 1000, 500, 250, 30, 250, 500, 1000, 784] binary entropy
[ReLU, ReLU, ReLU, linear, ReLU, ReLU, ReLU, sigmoid]

FACES [625, 2000, 1000, 500, 30, 500, 1000, 2000, 625] MSE
[ReLU, ReLU, ReLU, linear, ReLU, ReLU, ReLU, linear]

CURVES [784, 400, 200, 100, 50, 25, 6, 25, 50, 100, 200, 400, 784] binary entropy
[ReLU, ReLU, ReLU, ReLU, ReLU, linear,
ReLU, ReLU, ReLU, ReLU, ReLU, sigmoid]

D.3 Specification of Hyper-parameters

In our experiments, we focus our tuning effort onto learning rate and damping. The range of the tuning values is
listed below:

• learning rate αk = α ∈ { 1e-5, 3e-5, 1e-4, 3e-4, 1e-3, 3e-3, 1e-2, 3e-2, 1e-1, 3e-1, 1, 3, 10 }.
2Downloadable at http://yann.lecun.com/exdb/mnist/
3Downloadable at www.cs.toronto.edu/~jmartens/newfaces_rot_single.mat
4Downloadable at www.cs.toronto.edu/~jmartens/digs3pts_1.mat
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• damping:

– λ for K-BFGS, K-BFGS(L) and KFAC: λ ∈ { 3e-3, 1e-2, 3e-2, 1e-1, 3e-1, 1, 3 }.

– ε for RMSprop and Adam: ε ∈ { 1e-10, 1e-8, 1e-6, 1e-4, 1e-3, 1e-2, 1e-1 }.

– Not applicable for SGD with momentum.

Table 5: Best (learning rate, damping) for Figure 1
K-BFGS K-BFGS(L) KFAC Adam RMSprop SGD-m

MNIST (0.3, 0.3) (0.3, 0.3) (1, 3) (1e-4, 1e-4) (1e-4, 1e-4) (0.03, -)
FACES (0.1, 0.1) (0.1, 0.1) (0.1, 0.1) (1e-4, 1e-4) (1e-4, 1e-4) (0.01, -)

CURVES (0.1, 0.01) (0.3, 0.3) (0.3, 0.3) (1e-3, 1e-3) (1e-3, 1e-3) (0.1, -)

The best hyper-parameters were those that produced the lowest value of the deterministic loss function encoun-
tered at the end of every epoch until the algorithm was terminated. These values were used in Figure 1 and
are listed in Table 5. Besides the tuning hyper-parameters, we also list other fixed hyper-parameters with their
values:

• Size of minibatch m = 1000, which is also suggested in [5].

• Decay parameter:

– K-BFGS, K-BFGS(L): β = 0.9;

– KFAC: β = 0.9;

– RMSprop, Adam: Following the notation in [24], we use β1 = β2 = 0.9;5

– SGD with momentum: β = 0.9.

• Other:

– µ1 = 0.2 in double damping (DD):

We recommend to leave the value as default because µ1 represents the "ratio" between current
and past, which is scaling invariant;

– Number of (s,y) pairs stored for K-BFGS(L) p = 100:

It might be more efficient to use a smaller p for the narrow layers. We didn’t investigate this for
simplicity and consistency;

– Inverse frequency T = 20 in KFAC.

5The default value of β2 recommended in [24] is 0.999. Hence, we also tested β2 = 0.999, and obtained
results that were similar to those presented in Figure 1 (i.e., with β2 = 0.9). For the sake of fair comparison, we
chose to report the results with β2 = 0.9.
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D.4 Sensitivity to Hyper-parameters
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Figure 3: Landscape of loss w.r.t hyper-parameters (i.e. learning rate and damping). The left, middle,
right columns depict results for MNIST, FACES, CURVES, which are terminated after 500, 2000,
500 seconds (CPU time), respectively, for K-BFGS (upper) and K-BFGS(L) (lower) row.

Figure 3 shows the sensitivity of K-BFGS and K-BFGS(L) to hyper-parameter values (i.e. learning rate and
damping). The x-axis corresponds to the learning rate α, while the y-axis correspond to the damping value λ.
Color corresponds to the loss after a certain amount of CPU time. We can see that both K-BFGS and K-BFGS(L)
are robust within a fairly wide range of hyper-parameters.

To get the plot, we first obtained training loss with α ∈ {1e-4, 3e-4, 1e-3, 3e-3, 1e-2, 3e-2, 1e-1, 3e-1, 1} and
λ ∈ {1e-2, 3e-2, 1e-1, 3e-1, 1}, and then drew contour lines of the loss within the above ranges.

D.5 Experimental Results Using Mini-batches of Size 100

We repeated our experiments using mini-batches of size 100 for all algorithms (see Figures 4, 5, and 6). For
each figure, the upper (lower) rower depict training loss (testing (mean square) error), whereas the left (right)
column depicts training/test progress versus epoch (CPU time), respectively.

The best hyper-parameters were those that produce the lowest value of the deterministic loss function encountered
at the end of every epoch until the algorithm was terminated. These values were used in Figures 4, 5, 6 and are
listed in Table 6.

Our proposed methods continue to demonstrate advantageous performance, both in training and testing. It is
interesting to note that, whereas for a minibatch size of 1000, KFAC slightly outperformed K-BFGS(L), for a
minibatch size of 100, K-BFGS(L) clearly outperformed KFAC in training on CURVES.

Table 6: Best (learning rate, damping) for Figures 4, 5, 6
K-BFGS K-BFGS(L) KFAC Adam RMSprop SGD-m

MNIST (0.1, 0.3) (0.1, 0.3) (0.1, 0.3) (1e-4, 1e-4) (1e-4, 1e-4) (0.03, -)
FACES (0.03, 0.03) (0.03, 0.3) (0.03, 0.3) (3e-5, 1e-4) (3e-5, 1e-4) (0.01, -)

CURVES (0.3, 1) (0.3, 0.3) (0.03, 0.1) (3e-4, 1e-4) (3e-3, 1e-4) (0.03, -)
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Figure 4: Comparison between algorithms on MNIST with batch size 100
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Figure 5: Comparison between algorithms on FACES with batch size 100
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Figure 6: Comparison between algorithms on CURVES with batch size 100

D.6 Doubling the Mini-batch for the Gradient at Almost No Cost

Compared with other methods mentioned in this paper, our K-BFGS and K-BFGS(L) methods have the extra
advantage of being able to double the size of the minibatch used to compute the stochastic gradient with
almost no extra cost, which might be of particular interest in a highly stochastic setting. To accomplish this,
we can make use of the stochastic gradient ∇f+

computed in the second pass of the previous iteration that
is needed for computing the (s,y) pair for applying the BFGS or L-BFGS updates, and average it with the
stochastic gradient ∇f of the current iteration. For example if the size of minibatch is m = 1000, the above
"double-grad-minibatch" method computes a stochastic gradient from 2000 data points at each iteration, except
at the very first iteration.

The results of some preliminary experiments are depicted in Figure 7, where we compare an earlier version of
the K-BFGS algorithm (Algorithm 4), which uses a slightly different variant of Hessian-action to update Hl

a,
using a size of m = 1000 for mini-batches, with its "double-grad-minibatch" variants for m = 500 and 1000.
Even though "double-grad" does not help much in these experiments, our K-BFGS algorithm performs stably
across these different variants. These results indicate that there is a potential for further improvements; e.g., a
finer grid search might identify hyper-parameter values that result in better performing algorithms.
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Figure 7: Comparison between K-BFGS and its "double-grad" variants
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