
We thank all the reviewers for their time and for raising several interesting questions. We also appreciate that the1

reviewers carefully read the paper, catching typos, and making useful suggestions. Please see our responses below.2

Reviewer #1: The three minor issues raised by the reviewer will be addressed in the revision.3

Reviewer #2: In response to [8.Additional feedback], the most significant difference between the proposed methods4

and a standard BFGS approach is that our approach requires much less storage and work per iteration (see Sec 1 and5

Tables 1,2). Also, our BFGS updates depend on variables that are computed in the course of computing the stochastic6

gradients, rather than the gradients themselves. The most challenging part of our work involves the development of7

our BFGS updates so that they provide good approximations to the inverse of a Kronecker-factored block-diagonal8

approximation of the Hessian matrix. The relationship of our methods to the Fisher-Rao natural gradient (NG) method9

is that we approximate the Hessian instead of the Fisher matrix. As in the KFAC method, we use a block-diagonal10

Kronecker product approximation, where the two sub-blocks in the Kronecker product of each diagonal block is further11

approximated using BFGS-based updating. We will update the description of our methods in our revision to better12

explain the connections and differences between them and Fisher-Rao and other BFGS methods. We thank the reviewer13

for alerting us to the papers on Wasserstein-based NG methods and will include them in the introduction.14

Reviewer #3: The generalization performance of our algorithms is demonstrated in the following figures, which we15

will add to the paper. The upper (lower) row plots the training loss (testing error - i.e., mean squared error on the test16

set), respectively. Hyper-parameters (HPs) are set as in Fig 1 of the paper.17

0 100 200 300 400 500
cpu time(s)

102

tra
ini

ng
 lo

ss

0 100 200 300 400 500
cpu time(s)

10 2

10 1

tes
tin

g e
rro

r

MNIST Autoencoder

0 250 500 750 1000 1250 1500 1750 2000
cpu time(s)

101

102

tra
ini

ng
 lo

ss

0 250 500 750 1000 1250 1500 1750 2000
cpu time(s)

100

3 × 10 1

4 × 10 1

6 × 10 1

tes
tin

g e
rro

r

FACES Autoencoder

0 100 200 300 400 500
cpu time(s)

102

tra
ini

ng
 lo

ss

0 100 200 300 400 500
cpu time(s)

10 3

10 2

10 1

tes
tin

g e
rro

r

CURVES Autoencoder

Regarding additional HPs, our experiments show that the key HPs for our methods are learning rate and damping18

constant, as is the case for KFAC and the adaptive gradient methods. Our methods are relatively insensitive to the other19

HPs, which can be set to default values. We will also highlight how our algorithms are different from related prior20

work and add more discussion on the structural approximations made and their limitations and validity in a DL context.21

Please see the response to Reviewer #2.22

Our K-BFGS can be extended to other architectures, such as CNNs. Due to both time and space limitations, we focused23

only on fully-connected NNs, but our preliminary studies indicate that our approach works equally well on CNNs and24

we are currently working on this extension. We follow standard QN notation, where B denotes the Hessian and H its25

inverse. A distributed version of the proposed method would definitely be of interest and we are looking into this.26

Reviewer #4: We have repeated our experiments using mini-batches of size 100 for all algorithms (see the figures below,27

where HPs are optimally tuned for batch sizes of 100) and our proposed methods continue to demonstrate advantageous28

performance, both in training and testing. These results show that our approach works as well for relatively small29

mini-batch sizes of 100, as those of size 1000, which are less noisy, and hence is robust in the stochastic setting30

employed to train DNNs.31

0 10 20 30 40 50 60
epoch

102

tra
ini

ng
 lo

ss

0 100 200 300 400 500
cpu time(s)

102

tra
ini

ng
 lo

ss

0 10 20 30 40 50 60
epoch

10 2

10 1

tes
tin

g e
rro

r

0 100 200 300 400 500
cpu time(s)

10 2

10 1

tes
tin

g e
rro

r

MNIST, batch_size=100

0 20 40 60 80 100 120
epoch

101

102

tra
ini

ng
 lo

ss

0 250 500 750 1000 1250 1500 1750 2000
cpu time(s)

101

102

tra
ini

ng
 lo

ss

0 20 40 60 80 100 120
epoch

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

tes
tin

g e
rro

r

0 250 500 750 1000 1250 1500 1750 2000
cpu time(s)

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

tes
tin

g e
rro

r

FACES, batch_size=100

0 20 40 60 80 100 120 140
epoch

102

tra
inin

g l
oss

0 100 200 300 400 500
cpu time(s)

102

tra
inin

g l
oss

0 20 40 60 80 100 120 140
epoch

10 3

10 2

10 1

tes
tin

g e
rro

r

0 100 200 300 400 500
cpu time(s)

10 3

10 2

10 1

tes
tin

g e
rro

r K-BFGS
K-BFGS(L)
KFAC
Adam
RMSprop
SGD

CURVES, batch_size=100

The reviewer’s understanding of the need for two forward-backward passes is correct. We will add this explanation to32

the paper. Please see the response to Reviewer #2 for our numerical results on testing error.33


