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Abstract

In this work, we consider the optimization formulation of personalized federated
learning recently introduced by [19] which was shown to give an alternative expla-
nation to the workings of local SGD methods. Our first contribution is establishing
the first lower bounds for this formulation, for both the communication complexity
and the local oracle complexity. Our second contribution is the design of several
optimal methods matching these lower bounds in almost all regimes. These are the
first provably optimal methods for personalized federated learning. Our optimal
methods include an accelerated variant of FedProx, and an accelerated variance-
reduced version of FedAvg/Local SGD. We demonstrate the practical superiority of
our methods through extensive numerical experiments.

1 Introduction

Federated Learning (FL) [32, 24] is a relatively new field attracting much attention lately. Specifically,
FL is a subfield of distributed machine learning that aims to fit the data stored locally on a very large
number of heterogeneous clients. Unlike typical distributed learning inside a data center, each FL
client only sees his/her data, which might differ from the population average significantly. Further-
more, as the clients are often physically located far away from the central server, communication
becomes a notable bottleneck, which is far more significant compared to centralized datacenter
learning.

While the key factor differentiating FL from other varieties of supervised learning lies in the practical
considerations coming from the need to train models from private and heterogeneous data stored
across a large number of heterogeneous and not always available devices, FL is supervised learning,
and as such shares the same mathematical formalism. In particular, the standard formulation of FL
aims to find the minimizer of the overall population loss

min
z∈Rd

1

n

n∑
i=1

fi(z) = min
x1,x2,...,xn∈Rd

1

n

n∑
i=1

fi(xi), (1)

subject tox1 = x2 = · · · = xn,

where fi is the loss of the client i that only depends on his/her own local data.

However, the requirements of several FL applications [53, 25, 10] question the appropriateness of the
objective (1) as a modeling paradigm for FL. Specifically, the minimizer of the overall population
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loss might not be the ideal model for a given client given that his/her data distribution differs from
the population significantly. A good example to illustrate the requirement of personalized FL models
is next word prediction on mobile devices, where a personalized FL approach [20] significantly
outperforms the standard non-personalized one.

There are multiple strategies in the literature for incorporating e personalization into FL: multi-task
learning [49, 48, 14], transfer learning [54, 23], variational inference [8], mixing of local and global
models [41, 19, 31, 10] and others [13]. See also [25, 22] for a survey on personalized FL.

In this work, we focus on the mixing FL objective from [19], which is well-known from the area of
distributed optimization [26, 16] and distributed transfer learning [30, 50]. The mentioned formulation
allows the local models xi to be mutually different, while penalizing their dissimilarity:

min
x=[x1,...,xn]∈Rnd,∀i: xi∈Rd

F (x) :=
1

n

n∑
i=1

fi(xi)︸ ︷︷ ︸
:=f(x)

+λ
1

2n

n∑
i=1

‖xi − x̄‖2︸ ︷︷ ︸
:=ψ(x)

 . (2)

Surprisingly, the optimal solution x? = [x?1, x
?
2, . . . , x

?
n] ∈ Rnd of (2) can be expressed as x?i =

x̄? − 1
λ∇fi(x

?
i ), where x̄? = 1

n

∑n
i=1 x

?
i [19], which strongly resembles the influential model-

agnostic meta learning (MAML) framework from [15].

Specifically, it was shown that a simple version of Stochastic Gradient Descent (SGD) applied on (2)
is essentially1 equivalent to FedAvg algorithm [19]. Furthermore, the FL formulation (2) enabled
local gradient methods to outperform their non-local cousins when applied to heterogeneous data
problems.2

2 Contributions

In this paper, we study the personalized FL formulation (2). We propose lower complexity bounds
for communication and local computation, and develop several algorithms capable of achieving them.
Our contributions can be summarized as follows:

• We propose a lower bound on the communication complexity of the federated learning
formulation (2). We show that for any algorithm that satisfies a certain reasonable as-
sumption (see As. 3.1) there is an instance of (2) with L-smooth, µ-strongly convex3 local

objectives fi requiring at least O
(√

min{L,λ}
µ log 1

ε

)
communication rounds to get to the

ε-neighborhood of the optimum.

• We further establish a lower complexity bound on the number of local oracle calls. We

show that one requires at least O
(√

min{L,λ}
µ log 1

ε

)
proximal oracle calls4 or at least

O
(√

L
µ log 1

ε

)
evaluations of local gradients. Similarly, given that each of the local

objectives is of a m-finite-sum structure with L̃-smooth summands, we show that at least

O
((

m+
√

mL̃
µ

)
log 1

ε

)
gradients of the local summands are required.

1Up to the stepsize and random number of the local gradient steps.
2Surprisingly enough, the non-local algorithms outperform their local counterparts when applied to solve the

classical FL formulation (1) with heterogeneous data.
3We say that function h : Rd → R is L-smooth if for each z, z′ ∈ Rd we have h(z) ≤ h(z′)+〈∇h(z), z′−

z〉 + L
2
‖z − z′‖2 . Similarly, a function h : Rd → R is µ-strongly convex, if for each z, z′ ∈ Rd it holds

h(z) ≥ h(z′) + 〈∇h(z), z′ − z〉+ µ
2
‖z − z′‖2 .

4Local proximal oracle reveals {proxβf (x),∇f(x)} for any x ∈ Rnd, β > 0. Local gradient oracle reveals
{∇f(x)} for any x ∈ Rnd.

2



Algorithm Local oracle Optimal # comm Optimal # local
L2GD [19] Grad 7 7

L2SGD+ [19] Stoch grad 7 7
APGD1 [50] (A. 2) Prox 3 (if λ ≤ L) 3 (if λ ≤ L)
APGD2 [50] (A. 3) Grad 3 (if λ ≥ L) 3
APGD2 [50] (A. 3) Stoch grad 3 (if λ ≥ L) 7

IAPGD [50] (A. 1) + AGD [38] Grad 3 (if λ ≤ L) 3 (if λ ≤ L)
IAPGD [50] (A. 1) + Katyusha [3] Stoch grad 3 (if λ ≤ L) 3 (if mλ ≤ L̃)

AL2SGD+ (A. 4) Stoch grad 3 3
(

if λ ≤ L̃
)

Table 1: Algorithms for solving (2) and their (optimal) complexities.

• We develop several approaches for solving (2) achieving optimal communication complexity
and optimal local gradient complexity under various circumstances. Specializing the ap-
proach from [50] to our problem, we apply Accelerated Proximal Gradient Descent (APGD)
in two different ways – we either take a gradient step with respect to f and a proximal
step with respect to λψ, or vice versa. In the first case, we get communication complexity
and local gradient complexity of the order O

(√
L
µ log 1

ε

)
, which is optimal if L ≤ λ.

In the second case, we get communication complexity and local prox complexity of the
order O

(√
λ
µ log 1

ε

)
, which is optimal if L ≥ λ. Motivated again by [50], we argue that

local prox steps can be evaluated inexactly5 either by running Accelerated Gradient De-
scent (AGD) [38] locally, or by running Katyusha [3] locally, given that the local objective
is of a m-finite sum structure with L̃-smooth summands. Local AGD approach preserves
O
(√

λ
µ log 1

ε

)
communication complexity and yields Õ

(√
L+λ
µ

)
local gradient complex-

ity, both of them optimal for L ≥ λ (up to log factors). Similarly, employing Katyusha

locally, we obtain communication complexity of order O
(√

λ
µ log 1

ε

)
and local gradient

complexity of order Õ
(
m
√

λ
µ +

√
m L̃
µ

)
. The former is optimal once L ≥ λ, while the

latter is (up to log factor) optimal once mλ ≤ L̃.

• Inexact APGD with local randomized solver has three drawbacks: (i) there are extra log factors
in the local gradient complexity, (ii) boundedness of the algorithm iterates as an assumption
is required, and (iii) the communication complexity is suboptimal for λ > L. In order to
fix all the issues, we accelerate the L2SGD+ algorithm from [19]. The proposed algorithm,

AL2SGD+, enjoys the optimal communication complexity O
(√

min{L̃,λ}
µ log 1

ε

)
and the

local summand gradient complexity O
((

m+
√

m(L̃+λ)
µ

)
log 1

ε

)
, which is optimal for

λ ≤ L̃. Unfortunately, the two bounds are not achieved at the same time, as we shall see.

• As a consequence of all aforementioned points, we show the optimality of local algorithms
applied on FL problem (2) with heterogeneous data. We believe this is an important
contributions to the FL literature. Until now, local algorithms were known to be optimal only
when all nodes own the same data set, which is not a realistic regime for FL applications.
By showing the optimality of local methods, we partially justify standard FL practices (i.e.,
using local methods in the practical scenarios with non-iid data), albeit with a twist: local
methods should be seen as methods for solvimg the personalized FL formulation (2) first
introduced in [19].

Table 1 presents a summary of the described results: for each algorithm, it indicates the local oracle
requirement and the circumstances under which the corresponding complexities are optimal.

5Such an approach was already considered in [28, 40] for the standard FL formulation (1).
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Local oracle Optimal
# Comm

Optimal
# Local calls Algorithm

Proximal 3 3

{
λ ≥ L : APGD2 [50](A. 3)
λ ≤ L : APGD1 [50](A. 2)

Gradient 3 3

{
λ ≥ L : APGD2 [50](A. 3)
λ ≤ L : IAPGD [50](A. 1) + AGD [38]

Stoch grad 3 3 if mλ ≤ L̃

{
λ ≥ L : APGD2 [50](A. 3)
λ ≤ L : IAPGD [50](A. 1) + Katyusha [3]

Stoch grad 3
7

7

3 if λ ≤ L̃ AL2SGD+(∗)

Table 2: Matching (up to log and constant factors) lower and upper complexity bounds for solving (2).
Indicator 3 means that the lower and upper bound are matching up to constant and log factors, while
7 means the opposite. (∗) (AL2SGD+ under stochastic gradient oracle): AL2SGD+ can be optimal
either in terms of the communication or in terms of the local computation; the two cases require a
slightly different parameter setup.

Optimality. Next we present Table 2 which carries an information orthogonal to Table 1. In
particular, Table 2 indicates whether our lower and upper complexities match for a given pair of
{local oracle, type of complexity}. The lower and upper complexity bounds on the number of
communication rounds match regardless of the local oracle. Similarly, the local oracle calls match
almost always with one exception when the local oracle provides summand gradients and λ > L̃.

Remark 2.1 Our upper and lower bounds do not match for the local summand gradient oracle
once we are in the classical FL setup (2), which we recover for λ =∞. In such a case, an optimal
algorithm was developed only very recently [21] under a slightly stronger oracle – the proximal
oracle for the local summands.

3 Lower complexity bounds

Before stating our lower complexity bounds for solving (2), let us formalize the notion of an oracle
that an algorithm interacts with.

As we are interested in both communication and local computation, we will also distinguish between
two different oracles: the communication oracle and the local oracle. While the communication
oracle allows the optimization history to be shared among the clients, the local oracle Loc(xi, i)
provides either a local proximal operator, local gradient, or local gradient of a summand given that a
local loss is of a finite-sum structure itself (fi(xi) = 1

m

∑m
j=1 f̃i,j(xi)):

Loc(x, i) =


{∇fi(xi),proxβifi(xi)} if oracle is proximal (for any βi ≥ 0)
{∇fi(xi)} if oracle is gradient
{∇f̃i,ji(xi)} if oracle is summand gradient (for any 1 ≤ ji ≤ m)

for all clients i simultaneously, which we refer to as a single local oracle call.

Next, we restrict ourselves to algorithms whose iterates lie in the span of previously observed oracle
queries. Assumption 3.1 formalizes this.

Assumption 3.1 Let {xk}∞k=1 be iterates generated by algorithm A. For 1 ≤ i ≤ n let {Ski }∞k=0 be
a sequence of sets defined recursively as follows:

S0
i = Span(x0

i )

Sk+1
i =

{
Span

(
Ski ,Loc(xk, i)

)
if ζ(k) = 1

Span
(
Sk1 , S

k
2 , . . . , S

k
n

)
otherwise,

where ζ(k) = 1 if the local oracle was queried at the iteration k, otherwise ζ(k) = 0. Then, assume
that xki ∈ Ski .
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Assumption 3.1 is rahter standard in the literature of distributed optimization [44, 21]; it informally
means that the iterates of A lie in the span of explored directions only. A similar restriction is in
place for several standard optimization lower complexity bounds [37, 27]. We shall, however, note
that Assumption 3.1 can be omitted by choosing the worst-case objective adversarially based on the
algorithm decisions [36, 51, 52]. We do not explore this direction for the sake of simplicity.

3.1 Lower complexity bounds on the communication

We now present our lower bound on the communication complexity of problem (2).

Theorem 3.1 Let k ≥ 0, L ≥ µ, λ ≥ µ. Then, there exist L-smooth µ-strongly convex functions
f1, f2, . . . fn : Rd → R and a starting point x0 ∈ Rnd, such that the sequence of iterates {xt}kt=1
generated by any algorithm A meeting Assumption 3.1 satisfies

‖xk − x?‖2 ≥ 1

4

(
1− 10 max

{√
µ

λ
,

√
µ

L− µ

})C(k)+1

‖x0 − x?‖2. (3)

Above, C(k) stands for the number of communication oracle queries at the first k iterations of A.

Theorem 3.1 shows that in order get to ε close to the optimum, one needs at least

O
(√

min{L,λ}
µ log 1

ε

)
rounds of the communications. This reduces to known communication

complexity O
(√

L
µ log 1

ε

)
for standard FL objective (1) from [44, 21] when λ =∞.6

3.2 Lower complexity bounds on the local computation

Next, we present our lower complexity bounds on the number of the local oracle calls for three
different types of a local oracle. In a special case when λ = ∞, we recover known local oracle
bounds for the classical FL objective (1) from [21].

Proximal oracle. The construction from Theorem 3.1 not only requires O
(√

min{λ,L}
µ log 1

ε

)
communication rounds to reach ε-neighborhood of the optimum, it also requires at least

O
(√

min{λ,L}
µ log 1

ε

)
calls of any local oracle, which serves as the lower bound on the local

proximal oracle.

Gradient oracle. Setting x0 = 0 ∈ Rnd and f1 = f2 = · · · = fn, problem (2) reduces to minimizing
a single local objective f1. Selecting next f1 as the worst-case quadratic function from [37], the
corresponding objective requires at least O

(√
L
µ log 1

ε

)
gradient calls to reach ε-neighborhood,

which serves as our lower bound. Note that parallelism does not help as the starting point is identical
on all machines and the construction of f only allows to explore a single coordinate per a local call,
regardless of communication.

Summand gradient oracle. Suppose that f̃i,j is L̃-smooth for all 1 ≤ j ≤ m and 1 ≤ i ≤ n. Let us
restrict attention on the class of client-symmetric algorithms for which xk+1

i = A(Hk
i , H

k
−i, C

k),
where Hi is history of local gradients gathered by client i, H−i is an unordered set with elements
Hl for all l 6= i and Ck are indices of the communication rounds of the past. We assume that
A is either deterministic, or generated from given seed that is identical for all clients initially.7
Setting again x0 = 0 ∈ Rnd and f1 = f2 = · · · = fn, the described algorithm restriction yields
xk1 = xk2 = · · · = xkn for all k ≥ 0. Consequently, the problem reduces to minimize a single finite

sum objective f1 which requires at least O
(
m+

√
mL̃
µ log 1

ε

)
summand gradient calls [27, 51].

6See also [52] for a similar lower bound in a slightly different setup.
7We suspect that assuming perfect symmetry across nodes is not necessary and can be omitted using more

complex arguments. In fact, we believe that allowing for a varying scale of the local problem across the workers
so that the condition number remains constant, we can adapt the approach from [21] to obtain the desired local
summand gradient complexity without assuming symmetry.
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4 Optimal algorithms

In this section, we present several algorithms that match the lower complexity bound on the number
of communication rounds and the local steps obtained in Section 3.

4.1 Accelerated Proximal Gradient Descent (APGD) for Federated Learning

The first algorithm we mention is a version of the accelerated proximal gradient descent [6]. In order
to see how the method specializes in our setup, let us first describe the non-accelerated counterpart –
proximal gradient descent (PGD).

Let a function h : Rnd → R beLh-smooth and µh-strongly convex, and function φ : Rnd → R∪{∞}
be convex. In its most basic form, iterates of PGD to minimize a regularized convex objective
h(x) + φ(x) are generated recursively as follows

xk+1 = prox 1
Lh

φ

(
xk − 1

Lh
∇h(xk)

)
= argmin

x∈Rnd
φ(x)− Lh

2

∥∥∥∥x− (xk − 1

Lh
∇h(xk)

)∥∥∥∥2

. (4)

The iteration complexity of the above process is O
(
Lh
µh

log 1
ε

)
.

Motivated by [50]8, there are two different ways to apply the process (4) to the problem (2). A more
straightforward option is to set h = f, φ = λψ, which results in the following update rule

xk+1
i =

Lyki + λȳk

L+ λ
, where yki = xki −

1

L
∇f(xki ), ȳk =

1

n

n∑
i=1

yki , (5)

and it yields O
(
L
µ log 1

ε

)
rate. The second option is to set h(x) = λψ(x) + µ

2n‖x‖
2 and φ(x) =

f(x)− µ
2n‖x‖

2. Consequently, the update rule (4) becomes (see Lemma C.3 in the Appendix):

xk+1
i = prox 1

λ fi
(x̄k) = argmin

z∈Rd
fi(z) +

λ

2
‖z − x̄k‖2 for all i, (6)

matching the FedProx [28] algorithm. The iteration complexity we obtain is, however, O
(
λ
µ log 1

ε

)
(see Lemma C.3 again).

As both (5) and (6) require a single communication round per iteration, the corresponding communi-
cation complexity becomes O

(
L
µ log 1

ε

)
and O

(
λ
µ log 1

ε

)
respectively, which is suboptimal in the

light of Theorem 3.1.

Fortunately, incorporating the Nesterov’s momentum [38, 6] on top of the procedure (6) yields both
an optimal communication complexity and optimal local prox complexity once λ ≤ L. We will refer
to such method as APGD1 (Algorithm 2 in the Appendix). Similarly, incorporating the acceleration
into (5) yields both an optimal communication complexity and optimal local prox complexity once
λ ≥ L. Furthermore, such an approach yields the optimal local gradient complexity regardless of the
relative comparison of L, λ. We refer to such method APGD2 (Algorithm 3 in the Appendix).

4.2 Beyond proximal oracle: Inexact APGD (IAPGD)

In most cases, the local proximal oracle is impractical as it requires the exact minimization of the
regularized local problem at each iteration. In this section, we describe an accelerated inexact [45]
version of (6) (Algorithm 1), which only requires a local (either full or summand) gradient oracle. We
present two different approaches to achieve so: AGD [38] (under the gradient oracle) and Katyusha [3]
(under the summand gradient oracle). Both strategies, however, share a common characteristic: they
progressively increase the effort to inexactly evaluate the local prox, which is essential in order to
preserve the optimal communication complexity.

8Iterative process (6) is in fact a special case of algorithms proposed in [50]. See Remark 4.1 for details.
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Algorithm 1 IAPGD +A
Require: Starting point y0 = x0 ∈ Rnd

for k = 0, 1, 2, . . . do

Central server computes the average ȳk = 1
n

n∑
i=1

yki

For all clients i = 1, . . . , n:
Set hk+1

i (z) := fi(z) + λ
2 ‖z − ȳ

k‖2 and find xk+1
i using local solver A for Tk iterations

hk+1
i (xk+1

i ) ≤ εk + min
z∈Rd

hk+1
i (z). (7)

For all clients i = 1, . . . , n: Take the momentum step yk+1
i = xk+1

i +
√
λ−√µ√
λ+
√
µ

(xk+1
i − xki )

end for

Remark 4.1 As already mentioned, the idea of applying IAPGD to solve (2) is not new; it was already
explored in [50].9 However, [50] does not argue about the optimality of IAPGD. Less importantly,
our analysis is slightly more careful, and it supports Katyusha as a local sub-solver as well.

IAPGD + AGD

The next theorem states the convergence rate of IAPGD with AGD [38] as a local subsolver.

Theorem 4.2 Suppose that fi is L-smooth and µ-strongly convex for all i. Let AGD with starting point

yki be employed for Tk :=
√

L+λ
µ+λ log

(
1152Lλn2

(
2
√

λ
µ + 1

)2

µ−2

)
+ 4
√

µ(L+λ)
λ(µ+λ) k iterations to

approximately solve (7) at iteration k. Then, we have

F (xk)− F ? ≤ 8

(
1−

√
µ

λ

)k
(F (x0)− F ?),

where F ? = F (x?). As a result, the total number of communications required to reach ε-approximate
solution is

O

(√
λ

µ
log

1

ε

)
.

The corresponding local gradient complexity is

O

(√
L+ λ

µ
log

1

ε

(
log

Lλn

µ
+ log

1

ε

))
= Õ

(√
L+ λ

µ

)
.

As expected, the communication complexity of IAPGD + AGD isO
(√

λ
µ log 1

ε

)
, thus optimal. On the

other hand, the local gradient complexity is Õ
(√

L+λ
µ

)
. For λ = O(L) this simplifies to Õ

(√
L
µ

)
,

which is, up to log and constant factors identical to the lower bound on the local gradient calls.

IAPGD + Katyusha

In practice, the local objectives fi’s often correspond to a loss of some model on the given client’s
data. In such a case, each function fi is of the finite-sum structure: fi(xi) = 1

m

∑m
j=1 f̃i,j(xi).

Clearly, if m is large, solving the local subproblem with AGD is rather inefficient as it does not
take an advantage of the finite-sum structure. To tackle this issue, we propose solving the local
subproblem (7) using Katyusha.10

Theorem 4.3 Let f̃i,j be L̃-smooth and fi be µ-strongly convex for all 1 ≤ i ≤ n, 1 ≤ j ≤ m.11

9The work [50] considers the distributed multi-task learning objective that is more general than (2).
10Essentially any accelerated variance reduced algorithm can be used instead of Katyusha, for example

ASDCA [46], APCG [29], Point-SAGA [9], MiG [56], SAGA-SSNM [55] and others.
11Consequently, we have L̃ ≥ L ≥ L̃

m
.
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Let Katyusha with starting point yki be employed for Tk =

O
((

m+
√
m L̃+λ
µ+λ

)(
log 1

R2 + k
√

µ
λ

))
iterations to approximately solve (7) at iteration

k of IAPGD for some small R (see proof for details). Given that the iterate sequence {xk}∞k=0 is
bounded, the expected communication complexity of IAPGD+Katyusha is

O

(√
λ

µ
log

1

ε

)
,

while the local summand gradient complexity is

Õ

m√λ

µ
+

√
m
L̃

µ

 .

Theorem 4.3 shows that local Katyusha enjoys the optimal communication complexity. Furthermore,
if
√
mλ = O(L̃), the total expected number of local gradients becomes optimal as well (see Sec. 3.2).

There is, however, a notable drawback of Theorem 4.3 over Theorem 4.2 – Theorem 4.3 requires
a boundedness of the sequence {xk}∞k=0 as an assumption, while this piece is not required for
IAPGD+AGD due to its deterministic nature. In the next section, we devise a stochastic algorithm
AL2SGD+ that does not require such an assumption. Furthermore, the local (summand) gradient
complexity of AL2SGD+ does not depend on the extra log factors, and, at the same time, AL2SGD+ is
optimal in a broader range of scenarios.

4.3 Accelerated L2SGD+

In this section, we introduce accelerated version of L2SGD+ [19], which can be viewed as a variance-
reduced variant of FedAvg devised to solve (2). The proposed algorithm, AL2SGD+, is stated as
Algorithm 4 in the Appendix. From high-level point of view, AL2SGD+ is nothing but L-Katyusha
with non-uniform minibatch sampling.12 In contrast to the approach from Section 4.2, AL2SGD+ does
not treat f as a proximable regularizer, but rather directly constructs gk–a non-uniform minibatch
variance reduced stochastic estimator of ∇F (xk). Next, we state the communication and the local
summand gradient complexity of AL2SGD+.

Theorem 4.4 Suppose that the parameters of AL2SGD+ are chosen as stated in Proposition E.4 in
the Appendix. In such case, the communication complexity of AL2SGD+ with ρ = p(1 − p), where
p = λ

λ+L̃
, is

O

√min{L̃, λ}
µ

log
1

ε


(see Sec. E.2 of the Appendix) while the local gradient complexity of AL2SGD+ for ρ = 1

m and
p = λ

λ+L̃
is

O

m+

√
m(L̃+ λ)

µ

 log
1

ε

 .

The communication complexity of AL2SGD+ is optimal regardless of the relative comparison of L̃, λ,
which is an improvement over the previous methods. Furthermore, AL2SGD+ with a slightly different
parameters choice enjoys the local gradient complexity which is optimal once λ = O(L̃).

5 Experiments

We present empirical evidence to support the theoretical claims of this work. Due to space limitations,
we present a fraction of the experiments here only. The remaining plots, as well as the details on the
experimental setup, can be found in Section B of the Appendix.

12 L-Katyusha [42] is a variant of Katyusha with a random inner loop length.
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In the first experiment, we study the most practical/ realistic scenario with where the local objective
is of a finite-sum structure, while the local oracle provides us with gradients of the summands. In
this work, we developed two algorithms capable of dealing with the summand oracle efficiently:
IAPGD+Katyusha and AL2SGD+. We compare both methods against the baseline L2SGD+ from [19].

The results are presented in Figure 1. In terms of the number of communication rounds, both AL2SGD+
and IAPGD+Katyusha are significantly superior to the L2SGD+, as theory predicts. The situation is,
however, very different when looking at the local computation. While AL2SGD+ performs clearly the
best, IAPGD+Katyusha falls behind L2SGD. We presume this happened due to the large constant and
log factors in the local complexity of IAPGD+Katyusha.

In the second experiments, we compare two variants of APGD presented in Section 4.1: APGD1
(Algorithm 2) and APGD2 (Algorithm 3). We consider several synthetic instances of (2) where we
vary λ and keep remaining parameters (i.e., L, µ) fixed. Our theory predicts that while the rate of
APGD2 should not be influenced by varying λ, the rate of APGD1 should grow as O(

√
λ). Similarly,

APGD1 should be favourable if λ ≤ L = 1, while APGD2 should be the algorithm of choice for
λ > L = 1. As expected, Figure 2 confirms both claims.
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Figure 1: Comparison of IAPGD+Katyusha, AL2SGD+ and L2SDG+ on logistic regression with
LIBSVM datasets [7]. Each client owns a random, mutually disjoint subset of the full dataset. First
row: communication complexity, second row: local computation complexity for the same experiment.
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Figure 2: Effect of the parameter λ on the communication complexity of APGD1 and APGD2. For each
value of λ the y-axis indicates the number of communication required to get 104-times closer to the
optimum compared to the starting point. Quadratic objective with n = 50, d = 50.
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Broader Impact

The paper presents lower and upper complexity bounds for the personalized FL formulation (2).
While the topic this paper studies—personalized FL—already has a significant societal impact since
FL solutions have been and are being deployed in practice, our results are of a theoretical nature.
Consequently, the broader impact discussion for this work specifically is not applicable.
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A Table of frequently used notation

To enhance the reader’s convenience when navigating, we here reiterate our notation:

Table 3: Summary of frequently used notation.
General

F : Rnd → R Global objective (2)
fi : Rn → R Local loss on i-th node (2)
xi ∈ Rd Local model on i-th node (2)
x ∈ Rnd Concatenation of local models x = [x1, x2, . . . , xn] (2)

f : Rnd → R Average loss over nodes f(x) := 1/n
∑n
i=1 fi(xi) (2)

ψ : Rnd → R Dissimilarity penalty ψ(x) := 1
2n

n∑
i=1

‖xi − x̄‖2 (2)

λ ≥ 0 Weight of dissimilarity penalty (2)
Loc(xi, i) local oracle: { proximal, gradient, summand gradient} Sec. 3
µ ≥ 0 Strong convexity constant of each fi (f̃i,j)
L ≥ 0 Smoothness constant of each fi
prox Proximal operator (4)
m ≥ 1 Number of local summands of i-th local loss fi = 1/m

∑m
j=1 f̃i,j Sec. 4.2

f̃i,j : Rn → R j-th summand of i-th local loss, 1 ≤ j ≤ m Sec. 4.2
L̃ ≥ 0 Smoothness constant of each f̃i,j Sec. 4.2
ε ≥ 0 Precision

x0 ∈ Rnd Algorithm initialization
x? ∈ Rnd Optimal solution of (2), x? = [x?1, x

?
2, . . . , x

?
n]

F ? ∈ R Function value at minimum, F ? = F (x?)
Algorithms

APGD1 Accelerated Proximal Gradient Descent (Algorithm 2) Sec. 4.1
APGD2 Accelerated Proximal Gradient Descent (Algorithm 3) Sec. 4.1
IAPGD Inexact Accelerated Proximal Gradient Descent (Algorithm 1) Sec. 4.2

IAPGD + AGD IAPGD with AGD as a local sobsolver Sec. 4.2
IAPGD + Katyusha IAPGD with Katyusha as a local subsolver Sec. 4.2

AL2SGD+ Accelerated Loopless Local Gradient Descent (Algorithm 4) Sec. 4.3
p, ρ Probabilities; parameters of AL2SGD+ Sec. C
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Dataset n m d λ p = ρ

a1a 5 321 119 0.003 0.003
duke 11 4 7129 0.333 0.250

mushrooms 12 677 112 0.001 0.001
madelon 200 10 500 0.111 0.100
phishing 335 33 68 0.031 0.030

Table 4: Number of workers and local functions on workers for different datasets for Figures 3 and 4.

B Extra experiments and details on the experimental setup

In this section, we provide additional experiments comparing introduced algorithms on logistic
regression with LIBSVM data.13 The local objectives are constructed by evenly dividing to the workers.
We vary the parameters m,n among the datasets as specified in Table 4.

We consider two types of assignment of data to the clients: homogeneous assignment, where local
data are assigned uniformly at random and heterogeneous assignment, where we first sort the dataset
according to labels, and then assign it to the clients in the given order. The heterogeneous assignment
is supposed to better simulate the real-world scenarios. Next, we normalize the data a1, a2, . . . , so
that f̃i,j is 1-smooth and set µ = 10−4.

For each dataset we select rather small value of λ, specifically λ = 1
m . Lastly, for L2SGD+ and

AL2SGD+, we choose p = ρ = 1/m, which is in the given setup optimal up to a constant factor in
terms of the communication. We run the algorithms for 103 communication rounds and track relative
suboptimality14 after each aggregation. Similarly to Figure 1, we plot relative suboptimality agains
the number of communication rounds and local gradients computed.

The remaining parameters are selected according to theory for each algorithm with one exception:
For IAPGD+Katyusha we run Katyusha as a local subsolver at the iteration k for√

m(L+ λ)

µ+ λ
+

√
mµ(L+ λ)

λ(µ+ λ)
k

iterations (slightly smaller than what our theory suggests).

Extra experiments

In the first experiment from this section, we extend the comparison of the stochastic algorithms
from Figure 1 to additional datasets. Figure 3 shows a similar behaviour comparing to Figure 1,
demonstrating the robustness of our results.

In the second experiment, we investigate the heterogeneous split of the data among the clients
mentioned earlier. Figure 4 shows the result. We can see that the data heterogeneity does not influence
the convergence significantly and we observe a similar behaviour compared to the homogenous case.

13Logistic regression loss for on the j-th data point aj ∈ Rd is defined as φj(x) = log
(
1 + exp

(
bja
>
j x
))

+
λ
2
‖x‖22, where bj ∈ {−1, 1} is the corresponding label.
14Relative suboptimality means that for iterates

{
xk
}K
k=1

we plot
{
f(xk)−f(x?)
f(x0)−f(x?)

}K
k=1

.
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Figure 3: Same as Figure 1, but a different datasets.
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Figure 4: Same experiment as Figure 1, but a heterogeneous data split.
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C Missing parts for Section 4

In this section, we state the algorithms that were mentioned in the main paper: APGD1 as Algorithm 2,
APGD2 as Algorithm 3 and AL2SGD+ as Algorithm 4. Next, we state the convergence rates of APGD1,
APGD2 as Proposition C.1 and Proposition C.2 respectively. Lastly, we justify (6) via Lemma C.3.

Proposition C.1 [5] Let {xk}∞k=0 be a sequence of iterates generated by Algorithm 2. Then, we
have for all k ≥ 0:

F (xk)− F ? ≤
(

1−
√

µ

λ+ µ

)k (
F (x0)− F ? +

µ

2n
‖x0 − x?‖2

)
.

Algorithm 2 APGD1

Require: Starting point y0 = x0 ∈ Rnd
for k = 0, 1, 2, . . . do

Central server computes the average ȳk = 1
n

∑n
i=1 y

k
i

For all clients i = 1, . . . , n:
Solve the regularized local problem xk+1

i = argminz∈Rd fi(z) + λ
2 ‖z − ȳ

k‖2

Take the momentum step yk+1
i = xk+1

i +
√
λ−√µ√
λ+
√
µ

(xk+1
i − xki )

end for

Proposition C.2 [5] Let {xk}∞k=0 be a sequence of iterates generated by Algorithm 3. Then, we
have for all k ≥ 0:

F (xk)− F ? ≤
(

1−
√

µ

L+ µ

)k (
F (x0)− F ? +

µ

2n
‖x0 − x?‖2

)
.

Algorithm 3 APGD2

Require: Starting point y0 = x0 ∈ Rnd
for k = 0, 1, 2, . . . do

For all clients i = 1, . . . , n:
Take a local gradient step ỹki = yki − 1

L∇fi(y
k
i )

Central server computes the average ȳk = 1
n

∑n
i=1 ỹ

k
i

For all clients i = 1, . . . , n:
Take a prox step w.r.t λψ: xk+1

i =
Lỹki +λȳk

L+λ

Take the momentum step yk+1
i = xk+1

i +

√
L
µ−1√
L
µ+1

(xk+1
i − xki )

end for

Lemma C.3 Let

xk+1 = prox 1
Lh

φ

(
xk − 1

Lh
∇h(xk)

)
, (8)

for h(x) := λψ(x) + µ
2n‖x‖

2 and φ(x) := f(x)− µ
2n‖x‖

2. Then, we have

xk+1
i = prox 1

λ fi
(x̄k).

Further, the iteration complexity of the above process is O
(
λ
µ log 1

ε

)
.

Proof:
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Since function ψ is 1
n -smooth and (∇ψ(x))i = 1

n (xi − x̄) [19], we have Lh = λ+µ
n , (∇h(x))i =

λ
n (xi − x̄) + µ

nxi and thus

xk+1
i = argmin

z∈Rd

1

n
fi(z)−

µ

2n
‖z‖2 +

λ+ µ

2n

∥∥∥∥z − (xki − n

λ+ µ

(
λ

n
(xki − x̄k) +

µ

n
xki

))∥∥∥∥2

= argmin
z∈Rd

fi(z)−
µ

2
‖z‖2 +

λ+ µ

2

∥∥∥∥z − λ

λ+ µ
x̄k
∥∥∥∥2

= argmin
z∈Rd

fi(z) +
λ

2

∥∥z − x̄k∥∥2
= prox 1

λ fi
(x̄k).

Let us now discuss the convergence rate. Given that function h is µh-strongly convex, iteration
complexity of (4) to reach ε-suboptimality is O

(
Lh
µh

log 1
ε

)
. Since Lh = λ+µ

n (note that ψ is 1
n

smooth [19]) and µh = µ
n , the iteration complexity of the process (6) becomes O

(
λ
µ log 1

ε

)
, as

desired.

Algorithm 4 AL2SGD+

Require: 0 < θ1, θ2 < 1, η, β, γ > 0, ρ, p ∈ (0, 1), y0 = z0 = x0 = w0 ∈ Rnd
for k = 0, 1, 2, . . . do

For all clients i = 1, . . . , n:
xki = θ1z

k
i + θ2w

k
i + (1− θ1 − θ2)yki

ξ = 1 with probability p and 0 with probability 1− p
if ξ = 0 then

For all clients i = 1, . . . , n:
gki = 1

n(1−p)

(
∇f̃i,j(xki )−∇f̃i,j(wki )

)
+ 1

n∇fi(w
k
i ) + λ

n (wki − w̄k)

yk+1
i = xki − ηgki

else
Central server computes the average x̄k = 1

n

∑n
i=1 x

k
i and sends it back to the clients

For all clients i = 1, . . . , n:
gki = λ

np (xki − x̄k)− (p−1−1)λ
n (wki − w̄k) + 1

n∇fi(w
k
i )

Set yk+1
i = xki − ηgki

end if
For all clients i = 1, . . . , n:
zk+1
i = βzki + (1− β)xki + γ

η (yk+1
i − xki )

ξ′ = 1 with probability ρ and 0 with probability 1− ρ
if ξ′ = 0 then

For all clients i = 1, . . . , n:
wk+1
i = wki

else
For all clients i = 1, . . . , n:
wk+1
i = yk+1

i

Evaluate and store∇fi(wk+1
i )

Central server computes the average w̄k+1 = 1
n

∑n
i=1 w

k+1
i and sends it back to the clients

end if
end for

17



D Proof of Theorem 3.1

In this section, we provide the proof of the Theorem 3.1. In order to do so, we construct a set of
function f1, f2, . . . , fn such that for any algorithm satisfying Assumption 3.1 and the number of the

iterations k, one must have ‖xk − x?‖2 ≥ 1
2

(
1− 10 max

{√
µ
λ ,
√

µ
L−µ

})C(k)+1

‖x0 − x?‖2.

Without loss of generality, we consider x0 = 0 ∈ Rdn. The rationale behind our proof goes as
follows: we show that the nd–dimensional vector xk has “a lot of” zero elements while x? does not,
and hence we might lower bound

∥∥xk − x?∥∥2
by
∑
j:(xk)j=0(x?)2

j , which will be large enough. As
the main idea of the proof is given, let us introduce our construction.

Let d = 2T for some large T and define the local objectives as follows for even n

f1(y) = f2(y) = · · · = fn/2(y) :=
µ

2
‖y‖2 + ay1 +

λ

2
c

(
T−1∑
i=1

(y2i − y2i+1)
2

)
+
λb

2
y22T

fn/2+1(y) = fn/2+2(y) = · · · = fn(y) :=
µ

2
‖y‖2 + λ

2
c

(
T−1∑
i=0

(y2i+1 − y2i+2)
2

)

and as

f1(y) = f2(y) = · · · = fM (y) :=
M + 1

M

µ

2
‖y‖2 + ay1 +

λ

2

M + 1

M
c

(
T−1∑
i=1

(y2i − y2i+1)
2

)
+
λb

2
y22T

fM+1(y) = fM+2(y) = · · · = fn(y) :=
µ

2
‖y‖2 + λ

2
c

(
T−1∑
i=0

(y2i+1 − y2i+2)
2

)

for n = 2M + 1,M ≥ 1. Note that the smoothness of the objective is now effectively controlled by
parameter c.

With such definition of functions fi(xi), our objective is quadratic and can be written as

n

λ
F (x) =

1

2
x>Mx+

a

λ
x1, (9)

where M is matrix dependent on parity of n. For even n, we have

M :=

(
I− 1

n
ee>

)
⊗ I +

µ

λ
I +

(
M1 0
0 M2

)
, where

M1 := I⊗



0 0 0 . . . 0

0

(
c −c
−c c

)
0

. . .
...

0 0

(
c −c
−c c

)
. . .

...

...
. . . . . . . . .

...
0 . . . . . . . . . b


and

M2 := I⊗



(
c −c
−c c

)
0 . . .

0

(
c −c
−c c

)
. . .

...
...

. . .

 .
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When n is odd, we have

M :=

(
I− 1

n
ee>

)
⊗ I +

µ

λ
I +

(
M1 + µ

MλI 0
0 M2

)
, where

M1 := I⊗



0 0 0 . . . 0

0

(
(M+1)c
M − (M+1)c

M

− (M+1)c
M

(M+1)c
M

)
0

. . .
...

0 0

(
(M+1)c
M − (M+1)c

M

− (M+1)c
M

(M+1)c
M

)
. . .

...

...
. . . . . . . . .

...
0 . . . . . . . . . b


and

M2 := I⊗



(
c −c
−c c

)
0 . . .

0

(
c −c
−c c

)
. . .

...
...

. . .

 .

Note that our functions fk depends on parameters a ∈ R, b, c ∈ R+. We will choose these parameters
later in the way that the optimal solution can be obtained easily.

Now let’s discuss optimal model for the objective. Since the the objective is strongly convex, the
optimum x? is unique. Let us find what it is. For the sake of simplicity, denote y? := x?1, z

? = x?n.
Due to the symmetry, we must have

y? = x?2 = . . . x?n/2, z? = xn/2+1 = xn/2+2 = . . . x?n−1 for even n

and

y? = x?2 = . . . x?M , z? = xM+1 = · · · = x?n−1 for odd n.

Now we use the following lemma to express elements of y?, z? recursively.

Lemma D.1 Let

wi :=


(
z?i
y?i

)
if i is even(

y?i
z?i

)
if i is odd

.

Then, we have

wi+1 = Qrwi

where

Qr :=

(
− rc

c+µ
λ+r

c

− c+
µ
λ+r

c

(c+µ
λ+r)

2

cr − c
r

)

and

r =

{
1
2 if n is even
M
n if n is odd

.

To prove the lemma, we shall manipulate the first-order optimality conditions of (9).

Proof: For even n, the first-order optimality conditions yield
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(
c+

1

2
+
µ

λ

)
z?2i−1 − cz?2i −

1

2
y?2i−1 = 0 for 1 ≤ i ≤ T (10)(

c+
1

2
+
µ

λ

)
z?2i − cz?2i−1 −

1

2
y?2i = 0 for 1 ≤ i ≤ T (11)(

c+
1

2
+
µ

λ

)
y?2i − cy?2i+1 −

1

2
z?2i = 0 for 1 ≤ i ≤ T − 1 (12)(

c+
1

2
+
µ

λ

)
y?2i+1 − cy?2i −

1

2
z?2i+1 = 0 for 1 ≤ i ≤ T − 1 (13)

Equalities (10) and (11) can be equivalently written as(
c 0

−c− r − µ
λ r

)(
z?2i
y?2i

)
=

(
c+ r + µ

λ −r
−c 0

)(
z?2i−1
y?2i−1

)
for 1 ≤ i ≤ T (14)

and consequently we must have for all 1 ≤ i ≤ T(
z?2i
y?2i

)
=

(
c 0

−c− r − µ
λ r

)−1(
c+ r + µ

λ −r
−c 0

)(
z?2i−1
y?2i−1

)
=

(
c+µ

λ+r

c − rc
(c+µ

λ+r)
2

rc − c
r − c+

µ
λ+r

c

)(
z?2i−1
y?2i−1

)
= Qr

(
y?2i−1
z?2i−1

)
.

Analogously, from (12) and (13) we deduce that for all 1 ≤ i ≤ T − 1(
y?2i+1
z?2i+1

)
= Qr

(
z?2i
y?2i

)
.

For odd n, the first-order optimality conditions yield(
c+

M

n
+
µ

λ

)
z?2i−1 − cz?2i −

M

n
y?2i−1 = 0 for 1 ≤ i ≤ T (15)(

c+
M

n
+
µ

λ

)
z?2i − cz?2i−1 −

M

n
y?2i = 0 for 1 ≤ i ≤ T (16)(

M + 1

M
c+

M + 1

n
+
M + 1

M

µ

λ

)
y?2i −

M + 1

M
cy?2i+1 −

M + 1

n
z?2i = 0 for 1 ≤ i ≤ T − 1(17)(

M + 1

M
c+

M + 1

n
+
M + 1

M

µ

λ

)
y?2i+1 −

M + 1

M
cy?2i −

M + 1

n
z?2i+1 = 0 for 1 ≤ i ≤ T − 1(18)

Equalities (15) and (16) can be equivalently written as(
c 0

−c− r − µ
λ r

)(
z?2i
y?2i

)
=

(
c+ r + µ

λ −r
−c 0

)(
z?2i−1
y?2i−1

)
for 1 ≤ i ≤ T,

which is identical to (14), and thus

(
z?2i
y?2i

)
= Qr

(
y?2i−1
z?2i−1

)
.

Similarly, (17) and (18) imply that for all 1 ≤ i ≤ T − 1(
y?2i+1
z?2i+1

)
= Qr

(
z?2i
y?2i

)
.
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As consequence of Lemma D.1, we have that wk = Qk−1
r w1 with 1

3 ≤ r ≤ 1
2 . Now we use

the flexibility to choose a ∈ R, b ∈ R+, so that we can find suitable wk (and thus suitable x?).
Specifically, we aim to choose a, b, so that w1 will be the eigenvector of Qr, corresponding to a
suitable eigenvalue γ of matrix Qr. Then wk could be written as wk = γkw1.

Lemma D.2 Choose c :=

{
1 if L ≥ λ+ µ

δ µλ , δ ≥ 1 if L < λ+ µ
and

b :=


µ2

λ2
+2µλ+2r+2r µλ+2r2+(µλ (µλ+2r)(µλ+2)(µλ+2r+2))

1
2

2r(1+µ
λ+r) − 1− µ

λ if L ≥ λ+ µ
µ2

λ2
+2r2+2r µλ+2δr µλ+2δ µ

2

λ2
+µ
λ ((2δ+1)(µλ+2r)(µλ+2r+2δ µλ ))

1
2

2r(µλ+r+δ µλ ) − 1− µ
λ if L < λ+ µ

. (19)

Then, we have b ≥ 0 and

wi = γi−1w1 6=
(

0
0

)
for i = 1, 2, . . . , d

where

γ :=


µ2

λ2
+2µλ+2r+2r µλ−(µλ (µλ+2r)(µλ+2)(µλ+2r+2))

1
2

2r ≥ 1− 10
√

µ
λ if L ≥ λ+ µ

µ
λ+2r+2δr+2δ µλ−((2δ+1)(µλ+2r)(µλ+2r+2δ µλ ))

1
2

2δr ≥ 1− 10
√

1
δ if L < λ+ µ

. (20)

Proof: First, note that if c = 1, each local objective is (µ+ λ)-smooth, and thus also L-smooth (and
therefore the choice of c does not contradict the smoothness). Next, if L ≥ λ+ µ, the vector

v :=

(
µ2

λ2
+2µλ+2r+2r µλ+2r2+(µλ (µλ+2r)(µλ+2)(µλ+2r+2))

1
2

2r(1+µ
λ+r)

1

)

is an unnormalized eigenvector of Qr corresponding to eigenvalue γ.15 Next, we prove b ≥ 0 and
γ ≥ 1− 10

√
µ
λ using Mathematica, see the file proof.nb and the screen shot below.

Let us look now at the case where L ≤ λ+ µ. Now, the vector

v :=

(
µ2

λ2
+2r2+2r µλ+2δr µλ+2δ µ

2

λ2
+µ
λ ((2δ+1)(µλ+2r)(µλ+2r+2δ µλ ))

1
2

2r(µλ+r+δ µλ )

1

)

is an unnormalized eigenvector of Qr corresponding to eigenvalue γ.16 Next, we prove b ≥ 0 and

γ ≥ 1− 10
√

1
δ using Mathematica, see the file proof.nb and the screen shot below.

15See a MatLab symbolic verification at file eigenvalues.m.
16See a MatLab symbolic verification at file eigenvaleus.m.
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Setting b according to (19) we assure that wi is a multiple of v and consequently we have

wi = γi−1w1 for i = 1, 2, . . . , d

as desired. It remains to mention that wi 6=
(

0
0

)
regardless of the choice of a 6= 0.

Proof: Theorom 3.1

Let x0 = 0 ∈ Rnd. Note that our oracle allows us at most K + 1 nonzero coordinates of xK after K
rounds of communications. Consequently,

‖xK − x?‖2

‖x0 − x?‖2
≥ 1

2

∑d
j=K+2 ‖wj‖2∑d
j=1 ‖wj‖2

=
1

2

∑d
j=K+2 γ

j−1‖w1‖2∑d
j=1 γ

j−1‖w1‖2
=

1

2

γK+1
∑d−K−2
j=0 γj∑d−1

j=0 γ
j

=
1

2
γK+1 1− γd−K−1

1− γd
(∗)
≥ 1

4

(
1− 10 max

{√
µ

λ
,

√
1

δ

})K+1

=
1

4

(
1− 10 max

{√
µ

λ
,

√
µ

L− µ

})K+1

where the inequality (∗) holds for large enough T (and consequently large enough d = 2T ). �
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E Proofs for Section 4

E.1 Towards the Proof of Theorems 4.2 and 4.3

Proposition E.1 Iterates of Algorithm 1 satisfy

F (xk)− F ?

≤
(
1−

√
µ

λ

)k√2(F (x0)− F ?) + 2

√
λ

µ

(
k∑
i=1

ε
1
2
i

(
1−

√
µ

λ

)− i
2

)
+

√√√√ k∑
i=1

εi

(
1−

√
µ

λ

)−i2

.

(21)

Proof: First, notice that the objective is λ
n smooth and µ

n -strongly convex. Next, the error in the
evaluation of the proximal operator at iteration k can be expressed as

n∑
i=1

1

n
fi(x

k+1
i ) +

λ

2n
‖xk+1

i ȳk‖2 ≤
n∑
i=1

1

n
εk = εk.

It remains to apply Proposition 4 from [45].

E.1.1 General convergence rate of IAPGD

Theorem E.2 shows that the expected number of communications that Algorithm 1 requires to reach
ε-approximate solution is Õ

(√
λ
µ

)
, given that (22) holds.

Theorem E.2 Assume that for all k ≥ 0, 1 ≤ i ≤ n, the subproblem (7) was solved up to a
suboptimality17 εk by a possibly randomized iterative algorithm such that

E
[
εk | xk

]
≤
(

1−
√
µ

λ

)2k

R2 (22)

for some fixed R > 0. Consequently, we have

E
[(
F (xk)− F ?

) 1
2

]
≤
(

1−
√
µ

λ

) k
2

(√
2(F (x0)− F ?) + 2

(
2

√
λ

µ
+ 1

)√
λ

µ
R

)
. (23)

Proof:

Let ω := 1−
√

µ
λ . Proposition E.1 gives us

(
F (xk)− F ?

) 1
2

(21)
≤ ω

k
2

√2(F (x0)− F ?) + 2

√
λ

µ

(
k∑
i=1

ε
1
2
i ω
− i

2

)
+

√√√√ k∑
i=1

εiω−i


≤ ω

k
2

(√
2(F (x0)− F ?) +

(
2

√
λ

µ
+ 1

)(
k∑
i=1

ε
1
2
i ω
− i

2

))
.

Taking the expectation, we get

17See Algorithm 1 for the exact meaning.
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E
[(
F (xk)− F ?

) 1
2

]
≤ ω

k
2

(√
2(F (x0)− F ?) +

(
2

√
λ

µ
+ 1

)(
k∑
i=1

E
[
ε

1
2
i

]
ω−

i
2

))

≤ ω
k
2

(√
2(F (x0)− F ?) +

(
2

√
λ

µ
+ 1

)(
k∑
i=1

E [εi]
1
2 ω−

i
2

))
(22)
≤ ω

k
2

(√
2(F (x0)− F ?) +

(
2

√
λ

µ
+ 1

)
R

(
k∑
i=1

ω
i
2

))

≤ ω
k
2

(√
2(F (x0)− F ?) +

(
2

√
λ

µ
+ 1

)
R

( ∞∑
i=1

ω
i
2

))

= ω
k
2

(√
2(F (x0)− F ?) +

(
2

√
λ

µ
+ 1

)
R

ω
1
2

1− ω 1
2

)

≤ ω
k
2

(√
2(F (x0)− F ?) +

(
2

√
λ

µ
+ 1

)
2R

1

1− ω

)

= ω
k
2

(√
2(F (x0)− F ?) +

(
2

√
λ

µ
+ 1

)
2R

√
λ

µ

)
,

which is exactly (23).

E.1.2 Proof of Theorem 4.2

Denote S ′ := {x;F (x) ≤ F ? + 8(F (x0)− F ?)}, S := {(2− α)x′ − (1− α)x′′;x′, x′′ ∈ S ′, 0 ≤
α ≤ 1} and D := Diam(S) <∞. Consequently,

D2 ≤ 36 max
x∈S
‖x− x?‖2 ≤ 18n

µ
max
x∈S

(F (x)− F (x?)) ≤ 144n

µ
(F (x0)− F ?) (24)

Let us proceed with induction. Suppose that for all 0 ≤ t < k we have

F (xi)− F ? ≤ 8

(
1−

√
µ

λ

)t
(F (x0)− F ?).

Consequently, xt ∈ S ′ for all 0 ≤ t < k. Thanks to the update rule of sequence {y}∞t=1, we must
have yk−1 ∈ S. Next, define x̂ki := argminz∈Rd fi(z) + λ

2n‖z − ȳ
k−1‖2. Clearly, x̂k ∈ S, and

consequently, ‖x̂k − yk−1‖2 ≤ D2.

We will next show that

εk ≤ R2ω2k, (25)

where

R :=

√
2(F (x0)− F ?)

2
√

λ
µ

(
2
√

λ
µ + 1

) , ω := 1−
√
µ

λ
. (26)
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Define hki (z) := fi(z) + λ
2n‖z − ȳ

k−1‖2. Since hki is 1
n (L + λ) smooth and 1

n (µ + λ) strongly
convex, running AGD locally for c1 + c2k iterations with18

c1 := −
log 4LD2

R2

log
(

1−
√

µ+λ
L+λ

) (∗)
≤

√
L+ λ

µ+ λ
log

4LD2

R2

(24)
≤

√
L+ λ

µ+ λ
log

1152Lλn
(

2
√

λ
µ + 1

)2

µ2
,

c2 :=
2 logω

log
(

1−
√

µ+λ
L+λ

) (∗)+(∗∗)
≤ 4

√
µ(L+ λ)

λ(µ+ λ)

yields

εk
[45], Prop 4

≤

(
1−

√
µ+ λ

L+ λ

)c1+c2k

4

(
n∑
i=i

(
hki (yk−1

i )− hki (x̂ki )
))

≤

(
1−

√
µ+ λ

L+ λ

)c1+c2k

4LD2

= exp

(
c2k log

(
1−

√
µ+ λ

L+ λ

)
+ c1 log

(
1−

√
µ+ λ

L+ λ

)
+ log

(
4LD2

))
= exp

(
2k logω + log(R2)

)
= R2ω2k

as desired.

Next, Theorem E.2 gives us

F (xk)− F ?
(23)
≤

(
1−

√
µ

λ

)k(√
2(F (x0)− F ?) + 2

(
2

√
λ

µ
+ 1

)√
λ

µ
R

)2

(26)
= 8

(
1−

√
µ

λ

)k
(F (x0)− F ?),

as desired.

Consequently, in order to reach ε suboptimality, we shall set k = O
(√

λ
µ log 1

ε

)
. The total number

of local gradient computation thus is

k∑
i=1

(c1 + c2i) = kc1 + c2O(k2)

= O


√
L+ λ

µ+ λ
log

32Lλn2
(

4
√

λ
µ + 1

)2

µ2

√
λ

µ
log

1

ε
+

√
µ(L+ λ)

λ(µ+ λ)

λ

µ

(
log

1

ε

)2


= O

(√
L+ λ

µ
log

1

ε

(
log

Lλn

µ
+ log

1

ε

))
.

�

18Inequality (∗) holds since for any 0 ≤ a < 1 we have −1
log(1−a) ≤

1
a

, while (∗∗) holds since

log

(
1

1−
√
µ
λ

)
≤ 2
√

µ
λ

thanks to λ ≥ 2µ.
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E.1.3 Proof of Theorem 4.3

Next, since the sequence of iterates {xk}∞k=0 is bounded, so is the sequence {yk}∞k=0, and conse-
quently, the initial distance to the optimum is bounded for each local subproblem too. As the local
objective is (L̃ + λ)-smooth and (µ + λ)-strongly convex, in order to guarantee (22), Katyusha
requires

O

m+

√
m
L̃+ λ

µ+ λ

 log
1

R2ω2k

 = O

m+

√
m
L̃+ λ

µ+ λ

(log
1

R2
+ 2k log

1

ω

)
(∗∗∗)
= O

m+

√
m
L̃+ λ

µ+ λ

(log
1

R2
+ k

√
µ

λ

)

iterations.19

Lastly, since Katyusha requires O(1) local stochastic gradient evaluations on average, the total local
gradient complexity becomes

Õ
(√

λ
µ

)∑
t=1

O

m+

√
m
L̃+ λ

µ+ λ

(log
1

R2
+ t

√
µ

λ

) = Õ

m√λ

µ
+

√
m
L̃+ λ

µ

 .

�

E.2 Towards the Proof of Theorem 4.4

Lemma E.3 Suppose that f̃ij is L̃ smooth for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. Let gk be a variance
reduced stochastic gradient estimator from Algorithm 4 and define

L := max

{
L̃

n(1− p)
,
λ

np

}
.

Then, we have

E
[∥∥gk −∇F (xk)

∥∥2
]
≤ 2LDF (wk, xk). (27)

Proof:

19Inequality (∗ ∗ ∗) holds since log

(
1

1−
√
µ
λ

)
≤ 2
√

µ
λ

thanks to λ ≥ 2µ.
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E
[∥∥gk −∇F (xk)

∥∥2
]

=
1− p
m

m∑
j=1

n∑
i=1

∥∥∥∥ 1

1− p

(
∇f̃ij(xk)−∇f̃ij(wk)

)
−
(
∇F (xk)−∇F (wk)

)∥∥∥∥2

+p

∥∥∥∥λp (∇ψ(xk)−∇ψ(wk)
)
−
(
∇F (xk)−∇F (wk)

)∥∥∥∥2

≤ 1− p
m

m∑
j=1

n∑
i=1

∥∥∥∥ 1

1− p

(
∇f̃ij(xk)−∇f̃ij(wk)

)∥∥∥∥2

+p

∥∥∥∥λp (∇ψ(xk)−∇ψ(wk)
)
)

∥∥∥∥2

=
1

m(1− p)

m∑
j=1

n∑
i=1

∥∥∥∇f̃ij(xk)−∇f̃ij(wk)
∥∥∥2

+
λ2

p

∥∥(∇ψ(xk)−∇ψ(wk)
)
)
∥∥2

(∗)
≤ 2L̃

nm(1− p)

m∑
j=1

n∑
i=1

Df̃ij
(wk, xk) +

2λ2

np
Dψ(wk, xk)

=
2L̃

1− p
Df (wk, xk) +

2λ2

np
Dψ(wk, xk)

≤ 2 max

{
L̃

n(1− p)
,
λ

np

}
DF (wk, xk)

= 2LDF (wk, xk).

Above, (∗) holds since f̃ is L
n smooth and ψ is 1

n smooth [19].

Proposition E.4 Let f̃ij be L smooth and µ strongly convex for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. Define
the following Lyapunov function:

Ψk :=
∥∥zk − x?∥∥2

+
2γβ

θ1

[
F (yk)− F (x?)

]
+

(2θ2 + θ1)γβ

θ1ρ

[
F (wk)− F (x?)

]
,

and let

LF =
1

n
(λ+ L̃),

η =
1

4
max{LF ,L}−1,

θ2 =
L

2 max{LF ,L}
,

γ =
1

max{2µ/n, 4θ1/η}
,

β = 1− γµ

n
and

θ1 = min

{
1

2
,

√
ηµ

n
max

{
1

2
,
θ2

ρ

}}
.

Then the following inequality holds:

E
[
Ψk+1

]
≤

1− 1

4
min

ρ,
√

µ

2nmax
{
LF ,

L
ρ

}

Ψ0.

As a consequence, iteration complexity of Algorithm 4 is

O


1

ρ
+

√√√√max
{

L̃
1−p ,

λ
p

}
ρµ

 log
1

ε

 .
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At the same time, the communication complexity of AL2SGD+ is

O

(ρ+ p(1− p))

1

ρ
+

√√√√max
{

L̃
1−p ,

λ
p

}
ρµ

 log
1

ε


and the local stochastic gradient complexity is

O

(ρm+ (1− ρ))

1

ρ
+

√√√√max
{

L̃
1−p ,

λ
p

}
ρµ

 log
1

ε

 .

Proof:

Note that AL2SGD+ is a special case of L-Katyusha from [18].20 In order to apply Theorem 4.1
therein directly, it suffices to notice that function F is LF = 1

n (λ + L̃) smooth and 1
nµ strongly

convex, and at the same time, thanks to Lemma E.3 we have

E
[∥∥gk −∇F (xk)

∥∥2
]
≤ 2LDF (wk, xk).

Connsequently, we immediately get the iteration complexity. The local stochastic gradient complexity
of a single iteration of AL2SGD+ is 0 if ξ = 1, ξ′ = 0, 1 if ξ = 0, ξ′ = 0, m if ξ = 0, ξ′ = 1 and
m+ 1 if ξ = 1, ξ′ = 1. Thus, the total expected local stochastic gradient complexity is bounded by

O

(ρm+ (1− ρ))

1

ρ
+

√√√√max
{

L̃
1−p ,

λ
p

}
ρµ

 log
1

ε


as desired. Next, the total communication complexity is bounded by the sum of the communication
complexities coming from the full gradient computation (if statement that includes ξ) and the
rest (if statement that includes ξ′). The former requires a communication if ξ′ = 1, the latter if
two consecutive ξ-coin flips are different (see [19]), yielding the expected total communication
O(ρ+ p(1− p)) per iteration.

E.2.1 Proof of Theorem 4.4

For ρ = p(1− p) and p = λ
λ+L̃

, the total communication complexity of AL2SGD+ becomes

O

(ρ+ p(1− p))

1

ρ
+

√√√√max
{

L̃
1−p ,

λ
p

}
ρµ

 log
1

ε

 = O

√pL̃+ (1− p)λ
µ

log
1

ε


= O

(√
L̃λ

(L̃+ λ)µ
log

1

ε

)

= O

√min{L̃, λ}
µ

log
1

ε


as desired.

20 Similarly, we could have applied different accelerated variance reduced method with importance sampling
such as another version of L-Katyusha [42], for example.
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The local stochastic gradient complexity for p = λ
λ+L̃

and ρ = 1
m is

O

(ρm+ (1− ρ))

1

ρ
+

√√√√max
{

L̃
1−p ,

λ
p

}
ρµ

 log
1

ε


= O

m+

√
m(L̃+ λ)

µ

 log
1

ε

 .

�

F Related work on the lower complexity bounds

Related literature on the lower complexity bounds. We distinguish two main lines of work on
the lower complexity bounds related to our paper besides already mentioned works [44, 21].

The first direction focuses on the classical worst-case bounds for sequential optimization developed by
Nemirovsky and Yudin [35]. Their lower bound was further studied in [2, 43, 39] using information
theory. The nearly-tight lower bounds for deterministic non-Euclidean smooth convex functions were
obtained in [17]. A significant gap between the oracle complexities of deterministic and randomized
algorithms for the finite-sum problem was shown in [51], improving upon prior works [1, 27].

The second stream of work tries to answer how much a parallelism might improve upon a given
oracle. This direction was, to best of our knowledge, first explored by the work of Nemirovski [34]
and gained a lots of traction decently [47, 4, 52, 12, 11] motivated by an increased interest in the
applications in federated learning, local differential privacy, and adaptive data analysis.

Remark F.1 Concurrently with our work, a different variant of accelerated FedProx—FedSplit—
was proposed in [40]. There are several key differences between our work: i) While Algorithm 1
is designed to tackle the problem (2), FedSplit is designed to tackle (1). ii) The paper [40] does
not argue about optimality of FedSplit, while we do and iii) Iteration/communication complexity

of FedSplit is O
(√

L
µ log 1

ε

)
under L smoothness of f1, . . . fn; such a rate can be achieved by a

direct application of AGD. At the same time, AGD does not require solving the local subproblem each
iteration, thus is better in this regard. However FedSplit is a local algorithm to solve (1) with the
correct fixed point, unlike other popular local algorithms.
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