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Abstract

Subgroup analysis of treatment effects plays an important role in applications
from medicine to public policy to recommender systems. It allows physicians
(for example) to identify groups of patients for whom a given drug or treatment is
likely to be effective and groups of patients for which it is not. Most of the current
methods of subgroup analysis begin with a particular algorithm for estimating
individualized treatment effects (ITE) and identify subgroups by maximizing the
differences across subgroups of the average treatment effect in each subgroup.
These approaches have several weaknesses: they rely on a particular algorithm
for estimating ITE, they ignore (in)homogeneity within identified subgroups, and
they do not produce good confidence estimates. This paper develops a new method
for subgroup analysis, R2P, that addresses all these weaknesses. R2P uses an
arbitrary, exogenously prescribed algorithm for estimating ITE and quantifies the
uncertainty of the ITE estimation, using a construction that is more robust than
other methods. Experiments using synthetic and semi-synthetic datasets (based
on real data) demonstrate that R2P constructs partitions that are simultaneously
more homogeneous within groups and more heterogeneous across groups than the
partitions produced by other methods. Moreover, because R2P can employ any ITE
estimator, it also produces much narrower confidence intervals with a prescribed
coverage guarantee than other methods.

1 Introduction
The understanding of treatment effects plays an important role – especially in shaping interventions
and treatments – in areas from clinical trials [1, 2] to recommender systems [3] to public policy [4].
In many settings, the relevant population is diverse, and different parts of the population display
different reactions to treatment. In such settings, heterogeneous treatment effect (HTE) analysis – also
called subgroup analysis– is used to find subgroups consisting of subjects who have similar covariates
and display similar treatment responses [5, 6]. The identification of subgroups is informative of
itself; it also improves the interpretation of treatment effects across the entire population and makes it
possible to develop more effective interventions and treatments and to improve the design of further
experiments. In a clinical trial, for example, HTE analysis can identify subgroups of the population
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for which the studied treatment is effective, even when it is found to be ineffective for the population
in general [7].

To identify subjects who have similar covariates and display similar treatment responses, it is necessary
to create reliable estimates of the treatment responses of individual subjects; i.e. of individualized
treatment effects (ITE). The state-of-the-art work on HTE proceeds by simultaneously estimating ITE
and recursively partitioning the subject population [8–11]. In these HTE methods, the criterion for
partitioning is maximizing the heterogeneity of treatment effects across subgroups, using a sample
mean estimator, under the assumption that treatment effects are homogeneous within subgroups.
In particular, the population (or any previously identified subgroup) would be partitioned into two
subgroups provided that the sample means of these subgroups are sufficiently different, ignoring
the possibility that treatment effects might be very heterogeneous within the groups identified. Put
differently, these methods focus on inter-group heterogeneity but ignore intra-group heterogeneity.

Figure 1: A toy example with two sub-
groups identified by HTE method in [10].
The solid red line shows the ITE estima-
tion and their 95% confidence interval is
filled in red.

An important problem with this approach is that, because
it relies solely on inter-group heterogeneity based on sam-
ple means, it may lead to false discovery. To illustrate,
consider the toy example depicted in Fig. 1. In this ex-
ample, the true treatment effect (shown on the vertical
axis) was generated by iid random draws from the normal
distribution having mean 0.0 and standard deviation 0.1.
In truth, the treatment under consideration is in fact totally
ineffective and innocuous; on average, it has no effect at
all and the treatment effects are entirely uncorrelated with
the single covariate (shown on the horizontal axis). How-
ever if the observed data – the realization of the random
draws – happens to be the one shown in Fig. 1, standard
methods will typically partition the population as shown in
the figure, thereby “discovering” a segment of the population for whom the treatment is effective and
a complementary segment where the treatment is dangerous. Obviously, decisions based on such false
discovery are useless – or worse. Note that this false discovery occurs because, although the outcome
variations between the two groups are indeed substantially different, the outcome variations within
each group are just as different – but the latter variation is entirely ignored in the creation of subgroups.

This paper proposes a robust recursive partitioning (R2P)2 method that avoids such false discovery.
R2P has several distinctive characteristics.

• R2P discovers interpretable subgroups in a way that is not tied to any particular ITE estimator. This
is in sharp contrast with previous methods [8–12], each of which relies on a specific ITE estimator.
R2P can leverage any ITE estimator for subgroup analysis, e.g. an ITE estimator based on Random
Forest [13], or on multi-task Gaussian processes [14] or on deep neural networks [15–17]. This
flexibility is important because no one ITE estimator is consistently the best in all different settings
[18]. Furthermore, these ITE estimators are non-interpretable black-box models. R2P divides units
into subgroups with respect to an interpretable tree-structure, and provides subgroup coverage
guarantees for the ITE estimates in each subgroup. R2P enables these ITE estimators to produce
trustworthy and interpretable ITE estimates in practice.

• R2P makes a conscious effort to guarantee homogeneity of treatment effects within each of the
subgroups while maximizing heterogeneity across subgroups. This is also different from previous
methods, e.g., [8, 10] where variation within the subgroup is largely ignored.

• R2P produces confidence guarantees with narrower confidence intervals than previous methods. It
accomplishes this by using methods of conformal prediction [19] that produce valid confidence
intervals. Quantifying the uncertainty allows R2P to employ a novel criterion we call confident
homogeneity in order to create partitions that take account of both heterogeneity across groups and
homogeneity within groups.

These characteristics make R2P both more reliable and more informative than the existing methods
for subgroup analysis. Extensive experiments using synthetic and semi-synthetic datasets (based
on real-world data) demonstrate that R2P outperforms state-of-the-art methods by more robustly
identifying subgroups while providing much narrower confidence intervals.

2The code of R2P is available at: https://bitbucket.org/mvdschaar/mlforhealthlabpub.
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2 Robust Recursive Partitioning with Uncertainty Quantification

To highlight the core design principles, we begin by introducing robust recursive partitioning (R2P)
in the regression setting; we extend to the more complicated HTE setting in the next section.

2.1 Preliminaries
We consider a standard regression problem with a d-dimensional covariate (input) space X ⊆ Rd
and a outcome space Y ⊆ R. We are given a dataset D = {(xi, yi)}ni=1, where, for the i-th sample,
xi ∈ X is the vector of input covariates and yi ∈ Y is the outcome. We assume that samples are
independently drawn from an unknown distribution PX,Y on X × Y . We are interested in estimating
µ(x) = E[Y |X = x], which is the mean outcome conditional on x. We denote the estimator by
µ̂ : X → Y ; µ̂ predicts an outcome ŷ = µ̂(x) on the basis of the covariate information x. To quantify
the uncertainty in the prediction, we apply the method of split conformal regression (SCR) [19] to
construct a confidence interval Ĉ that satisfies the rigorous frequentist guarantee in the finite-sample
regime. (To the best of our knowledge, SCR is the simplest method that achieves this guarantee.)

In SCR, we take as given a miscoverage rate α ∈ (0, 1). We split the samples in D into a training set
I1 and a validation set I2 that are disjoint and have the same size. We train the estimator µ̂I1 on I1

and compute the residual of µ̂I1 on each sample in I2. For a testing sample x the confidence interval
is given by

ĈI1,I2(x) =
[
µ̂lo(x), µ̂up(x)

]
=
[
µ̂I1(x)− Q̂I21−α, µ̂

I1(x) + Q̂I21−α

]
, (1)

where Q̂I21−α is defined to be the (1 − α)(1 + 1/|I2|)-th quantile of the set of residuals {|yi −
µ̂I1(xi)|}i∈I2 . Assuming that the training and testing samples are drawn exchangeably from PX,Y ,
the confidence intervals defined in (1) satisfy the coverage guarantee P[y ∈ ĈI1,I2 ] ≥ 1− α [19].3

To illustrate, assume the miscoverage rate α is 0.05 and we are given 1000 testing samples. SCR
prescribes a confidence interval for each sample in such a way that for at least 950 samples the
prediction is within the prescribed confidence interval. (We often say the sample is covered.) However
this coverage guarantee is marginal over the entire covariate space. If we perform a subgroup analysis
that partitions the covariate space X into subgroups X1,X2 in such a way that X1 has 800 samples
and X2 has 200 samples, it might be the case that 790 samples in X1 are covered but only 160 samples
in X2 are covered. In this case, 80% of the samples in X2 would be covered. It seems obvious that
such a situation is undesirable for subgroup analysis; we want to achieve the prescribed coverage rate
for each subgroup, not just for the population as a whole. R2P overcomes this problem.

We begin by discussing how we use confidence intervals to quantify outcome homogeneity within a
subgroup. We then introduce our space partitioning algorithm and provide the required theoretical
guarantee of subgroup coverage.

2.2 Partitioning for Robust Heterogeneity Analysis

Let Π be a partition of the covariate space X into (disjoint) subgroups. Write |Π| for the number
of subgroups in the partition, lj for an element of Π and l(x; Π) for the subgroup that contains
the sample x. Write Dl = {(xi, yi) ∈ D|xi ∈ l} for the samples whose covariates belong to the
subgroup l. Note that when we restrict to covariates in the subgroup l, the samples are drawn from the
truncated distribution P lX,Y which is the distribution conditional on the requirement that the vector
of covariates of samples lie in the subgroup l.

We evaluate homogeneity within the subgroup l by the concentration of outcome values for covariate
vectors in the subgroup l. To do this, we apply SCR to the samples in Dl by splitting it into
two sets, Il1 and Il2. Write µ̂l(x) denote the mean outcome model trained on Il1. As in (1), we
obtain the confidence interval Ĉl(x) for subgroup l by setting the upper and lower endpoints to

be µ̂up
l (x) = µ̂l(x) + Q̂

Il2
1−α and µ̂lo

l (x) = µ̂l(x) − Q̂
Il2
1−α, respectively. (To avoid notational

complications, omit reference to the subsets Il1 and Il2 hereafter; this should not cause confusion.
Throughout, we follow the convention that the confidence bound have been computed on the basis of
the split.) To estimate the center of the subgroup l, we use the average outcome µ̂l,mean = E[µ̂l(x)].

3Recall that assuming exchangeability is weaker than assuming iid.
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Figure 2: Illustration of partitioning and impurity of the confident homogeneity. The regions
shaded in red and gray (roughly) represent Wl and Sl, respectively. Partitioning the heterogeneous
covariate space (left panel) reduces its impurity of the confident homogeneity. The partition with
the smaller impurity (middle panel) makes the heterogeneity across subgroups and the homogeneity
within subgroups both stronger compared to others with the larger impurity (e.g., right panel).

We define the expected absolute deviation in group l to be Sl = E[vl(x)], where

vl(x) =
(
µ̂l,mean − µ̂up

l (x)
)
I
[
µ̂l,mean > µ̂up

l (x)
]

+
(
µ̂lo
l (x)− µ̂l,mean

)
I
[
µ̂l,mean < µ̂lo

l (x)
]
. (2)

By definition, µ̂up
l (x) is larger than µ̂lo

l (x) provided the residual quantile Q̂1−α > 0. When the first
indicator function is one, i.e. the average outcome (the group center) µ̂l,mean is larger than the upper
bound µ̂up

l (x) at x, we are confident that the outcome value at x is smaller than the group center
(and perhaps smaller than the outcome value for many covariate vectors in l). Similarly, when the
second indicator function is one, we are certain that the outcome value at x is larger than the group
center (and perhaps larger than the outcome value for many covariate vectors in l). It is worth noting
that when Ĉl(x) =

[
µ̂lo
l (x), µ̂up

l (x)
]

contains the center µ̂l,mean, both indicator functions are zero and
vl(x) = 0. The quantity vl(x) evaluates the homogeneity in subgroup l on the basis of the confidence
interval for each x in l. (It is more conservative than the mean discrepancy |µ̂l(x) − µ̂l,mean| for
partitioning, and hence provides greater protection against false discovery because of uncertainty.)

However, minimizing Sl is not enough to maximize subgroup homogeneity. If the intervals Ĉl(x) for
all x ∈ l are very wide and contain the average outcome µ̂l,mean, homogeneity can be very low even
though Sl = E[vl(x)] is zero. To resolve this issue, when partitioning the covariate space we jointly
minimize Sl and the expected confidence interval width Wl = E

[
|Ĉl(x)|

]
. We formalize the robust

partitioning problem as
minimize

Π

∑
l∈Π

λWl + (1− λ)Sl, (3)

where λ ∈ [0, 1] is a hyperparameter that balances the impact of Wl and Sl. We call the weighted
sum, λWl + (1− λ)Sl, the impurity of the confident homogeneity for subgroup l. Fig. 2 illustrates
how minimizing the impurity of the confident homogeneity improves both homogeneity within
subgroups and heterogeneity across subgroups. There may be more than one partition that achieves
the minimum; because a larger number of subgroups is harder to interpret, we will choose a minimizer
with the smallest number of subgroups.

2.3 Robust Recursive Partitioning Method with Confident Homogeneity

We can now describe our robust recursive partitioning (R2P) method for solving the optimization
problem (3). We begin with the trivial partition Π = {X}. We denote the set of subgroups whose
objectives in (3) can be potentially improved by Πc. In the initialization step, we set Πc = Π and
apply the SCR on D to obtain the confidence intervals in (1). Based on these intervals, we compute
ŴX and ŜX . More generally, using the intervals for subgroup l, we can estimate Wl and Sl by

Ŵl =
1

N l
2

∑
i∈Il2

|Ĉl(xi)| and Ŝl =
1

N l
2

∑
i∈Il2

vl(xi),

respectively, where N l
2 is the number of samples in the validation set Il2.

After initialization, we recursively partition the covariate space by splitting the subgroups in Πc

with respect to the criterion in (3). To split each subgroup l ∈ Πc, we first consider the two disjoint
subsets from subgroup l given by l+k (φ) = {x ∈ l|xk ≥ φ} and l−k (φ) = {x ∈ l|xk < φ}, where
φ ∈ (xl,min

k , xl,max
k ) is the threshold for splitting, xk is the k-th covariate element, and xl,min

k and
xl,max
k are the minimum and maximum values of the k-th covariate within the subgroup l, respectively.
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We then apply SCR to each of these subsets. Specifically, we split the samples corresponding to l+k (φ)

and l−k (φ) into training and validation sets: Dl+k (φ) = Il
+
k (φ)

1 ∪Il
+
k (φ)

2 and Dl−k (φ) = Il
−
k (φ)

1 ∪Il
−
k (φ)

2 ,

where the split subsets are Il
+
k (φ)

1 = {(xi, yi) ∈ Il1 : xi ∈ l+k (φ)} and Il
+
k (φ)

2 = {(xi, yi) ∈
Il2 : xi ∈ l+k (φ)} (same for l−k (φ)). To compute residuals, we do not train new estimators for
l+k (φ) and l−k (φ); instead we use the previously trained estimator µ̂X ; this provides consistency of
estimators across groups and within groups. (It also avoids the enormous computational burden
of training new estimators for all the possible splits.) Using the residuals, we can construct the
confidence intervals Ĉl+k (φ)(x) and Ĉl−k (φ)(x) and the associated quantities in the objective function,

Ŵl+k (φ), Ŵl−k (φ), Ŝl+k (φ) and Ŝl−k (φ). Then we find the optimal covariate k∗l and threshold φ∗l for
splitting subgroup l as

(k∗l , φ
∗
l ) = argmin

(k,φ)

λ
(
Ŵl+k (φ) + Ŵl−k (φ)

)
+ (1− λ)

(
Ŝl+k (φ) + Ŝl−k (φ)

)
.

For (k∗l , φ
∗
l ), we compute Ŵ ∗l± = Ŵl+

k∗ (φ∗) + Ŵl−
k∗ (φ∗) and Ŝ∗l± = Ŝl+

k∗ (φ∗) + Ŝl−
k∗ (φ∗). To improve

the objective in (3), we split the subgroup l into l+k∗(φ∗) and l−k∗(φ∗) only if the reduction in the
impurity of the confident homogeneity is sufficiently large:

(1− γ)
[
λŴl + (1− λ)Ŝl

]
≥ λŴ ∗l± + (1− λ)Ŝ∗l± (4)

Here, γ ∈ [0, 1) is a hyperparameter for regularization. We refer to (4) as the confident criterion.
With an appropriate choice of γ, this criterion prevents overfitting, prevents the number of subgroups
from becoming too large and prevents the size of each subgroup from becoming too small. Confident
homogeneity does not necessarily improve as the group size shrinks because smaller groups lead to
greater uncertainty. This alleviates the issue of generalization to unseen data in HTE analysis [8, 10].

After the splitting decision, we remove l from Πc; if we have split l, we remove l from Π and
add the two split sets to both Π and Πc. We continue recursively until Πc is empty, at which
point no further splitting is productive. When the procedure stops, we will have obtained an
estimator µX and a partition Π and for each l ∈ Π we will have corresponding confidence intervals
Ĉl(x) =

[
µ̂X (x)− Q̂l1−α, µ̂X (x) + Q̂l1−α

]
, where Q̂l1−α is the (1 − α)(1 + 1/|Il2|)-th quantile

of the set of the residuals on the validation set Il2 using µ̂X , {|yi − µ̂X (xi)|}i∈Il2 . The following

theorem guarantees that the R2P partition Algorithm 1 provides a valid confidence interval Ĉl for
each subgroup l ∈ Π; this is exactly what a user would want in subgroup analysis. The proof is
provided in the supplementary material.

Theorem 1 Given a prescribed miscoverage rate α, the created partition Π, estimator µ̂X , and
confidence interval function Ĉl(·) have the following property: for each l ∈ Π and for new samples
(x, y) drawn from the truncated distribution P lX,Y , we have P[y ∈ Ĉl(x)] ≥ 1− α.

Algorithm 1 Robust Recursive Partitioning

1: Input: Samples D = {(xi, yi)}ni=1, miscoverage rate α ∈ (0, 1), Π = {X}
2: Initialize: Πc = Π, split D into IX1 and IX2 , train µ̂X , compute its confidence interval ĈX using

the split subsets, and obtain ŴX and ŜX using IX2
3: for l ∈ Πc do
4: Obtain Ŵ ∗l± , Ŝ∗l± , i∗, and φ∗

5: if (1− γ)
[
λŴl + (1− λ)Ŝl

]
≥ λŴ ∗l± + (1− λ)Ŝ∗l± then . Confident criterion

6: Partition l into l+(i∗, φ∗) and l−(i∗, φ∗)
7: Π← Π \ {l}
8: Π← Π ∪ {l+(i∗, φ∗), l−(i∗, φ∗)} and Πc ← Πc ∪ {l+(i∗, φ∗), l−(i∗, φ∗)}
9: end if

10: Πc ← Πc \ {l}
11: end for
12: Output: Π, µ̂X , and Ĉl for all l ∈ Π

5



3 Robust Recursive Partitioning for Heterogeneous Treatment Effects
In this section, we extend the R2P method to the setting of HTE estimation, resulting in the R2P-HTE
design as detailed below.

Heterogeneous Treatment Effect Model We consider a setup with n units (samples), For the unit
i ∈ {1, 2, ..., n}, there exists a pair of potential outcomes, Yi(1) and Yi(0) that are independently
drawn from an unknown distribution, where 0 and 1 represent whether the unit is treated or not,
respectively. We define the treatment indicator as ti ∈ {0, 1}, where ti = 1 and 0 indicate the unit
i is treated and untreated, respectively. The outcome for unit i is realized as the potential outcome
corresponding to its treatment indicator yi = Yi(ti). A dataset is given as DHTE = {(xi, ti, yi)}ni=1.
The ITE for a given x is defined as τ(x) = E[Y (1) − Y (0)|X = x]. Since the ITE is defined as
the expected difference between the two potential outcomes Y (1) and Y (0), its estimator τ̂(x) is
given as the contrast between two regression models: µ̂0(x) for the conditional non-treated outcome
E[Y (0)|X = x], and µ̂1(x) for the conditional treated outcome E[Y (1)|X = x].

R2P-HTE We adapt R2P to HTE estimation by constructing the quantitiesWl and Sl in (3) based on
the ITE estimator τ̂(x). To construct an ITE estimator, many popular machine learning models have
been considered in the literature [8, 13–17]. R2P-HTE can use one of these models to parameterize
the outcome models µ̂0(x) and µ̂1(x). We set the target coverage rate of µ̂0(x) and µ̂1(x) as

√
1− α.

As in the previous section, we can construct a confidence interval for each estimator by using the
split conformal regression. Let us denote the

√
1− α confidence intervals for Y (1) and Y (0) by

Ĉ1(x) =
[
µ̂1(x)− Q̂1√

1−α, µ̂
1(x) + Q̂1√

1−α

]
and Ĉ0(x) =

[
µ̂0(x)− Q̂0√

1−α, µ̂
0(x) + Q̂0√

1−α

]
,

respectively. We set the confidence interval for τ(x) to be

Ĉτ (x) =
[
µ̂1(x)− µ̂0(x)− Q̂1√

1−α − Q̂
0√

1−α, µ̂
1(x)− µ̂0(x) + Q̂1√

1−α + Q̂0√
1−α

]
.

This confidence interval ensures the coverage rate 1−α for the estimated ITE τ̂(x) = µ̂1(x)− µ̂0(x),
because its upper endpoint is given as the difference between the upper endpoint of Ĉ1 and the lower
endpoint of Ĉ0, and its lower endpoint is given as the difference between the lower endpoint of Ĉ1

and the upper endpoint of Ĉ0. If the coverage rates for Ĉ1 and Ĉ0 are
√

1− α, the coverage rate for
Ĉτ will be 1− α.

From the ITE estimator τ̂(x) and its confidence interval Ĉτl (x) for each subgroup l, we can calculate
Wl and Sl and adapt the R2P method to HTE estimation. The robust partitioning problem for HTE in
(3) is solved by applying the R2P method in Algorithm 1, with two minor changes: 1) each sample in
the HTE dataset is a triple (xi, ti, yi) consisting of the covariate vector, the treatment indicator, and
the observed outcome; 2) the outcome model µ̂(x) in R2P is replaced by the ITE estimator τ̂(x). As
before, we show that this procedure achieves the specified coverage guarantee. The proof is provided
in the supplementary material.

Theorem 2 Given a prescribed miscoverage rate α, the created partition Π, estimator τ̂X , and
confidence interval function Ĉτl (·) have the following property: for each l ∈ Π and for new samples
(x, τ) drawn from the truncated distribution of the subgroup l, we have P[τ ∈ Ĉτl (x)] ≥ 1− α.

Well-identified subgroups and false discovery Theorem 2 guarantees that confidence intervals
achieve the required finite sample coverage for the ITE estimates in each subgroup, regardless of how
(in)accurate the underlying ITE estimator τ̂X is. If the confidence intervals exhibit large overlap across
the constructed subgroups, we can conclude that the constructed subgroups are not well-identified.
Conversely, if the confidence intervals have little or no overlap across subgroups, we conclude that
the subgroups are well-identified. Given the theoretical guarantee of the confidence intervals in R2P,
the subgroups are robust against false discoveries if they are well-identified.

4 Related Work
Subgroup analysis methods with recursive partitioning have been widely studied based on regression
trees (RT) [8–11]. In these methods, the subgroups (i.e., leaves in the tree structure) are constructed
and the individualized outcome or treatment effects are estimated by the corresponding sample mean
estimator to the leaf for given covariates. To overcome the limitations of the traditional trees to

6



represent the non-linearity such as interactions between treatment and covariates [20], a parametric
model is integrated into regression trees for subgroup analysis [12]. However, such approach can be
used only for the limited types of estimator models, which is particularly undesirable since advanced
causal inference models based on deep neural networks or multi-task Gaussian processes have
been studied which outperform the traditional estimators [14–17]. The global model interpretation
method in [21] can analyze the subgroup structure of arbitrary models but it depends on local model
interpreters and does not consider the treatment effects.

For recursive partitioning, various criteria have been proposed. In the traditional RT, the criterion
based on the mean squared error between the sample mean estimations from the training samples
and the test samples is used [11], and it is referred to as the adaptive criterion. Based on the adaptive
criterion, an honest criterion is proposed in [8] by splitting the training samples into the training set
and the estimation set to eliminate the bias of the adaptive criterion. In addition, a generalization cost
is introduced to the adaptive or honest criterion in [10] to encourage generalization of the analysis.
The interaction measure between the treatment and covariates is used as a partitioning criterion in [9]
and the parameter instability of the parametric models is used in [12]. In [21], the contribution matrix
of the samples from local model interpreters is used. Some of these criteria implicitly consider the
confidence of the estimation by the variance, but most of them do not provide a valid confidence
interval of the estimation for each subgroup. In [11], a conformal regression method based on
regression trees that provides the confidence interval is proposed, but the adaptive criterion is used
for partitioning without any consideration of the confidence interval.

5 Experiments
In this section, we evaluate R2P-HTE by comparing its performance with state-of-the-art HTE
methods. Specifically, we compare R2P-HTE with four baselines: standard regression trees for causal
effects (CT-A) [22], conformal regression trees for causal effects (CCT) [11], causal trees with honest
criterion (CT-H) [8], and causal trees with generalization costs (CT-L) [10]. We implement CCT
and CT-A by modifying the conformal regression tree and conventional regression tree methods
for causal effects. Details of the baseline algorithms are provided in the supplementary material.
For the ITE estimator of R2P-HTE, here abbreviate as R2P, we use the causal multi-task Gaussian
process (CMGP) [14]. Because individual ground-truth treatment effects can never be observed in
real data, we use two synthetic and two semi-synthetic datasets. The first synthetic dataset (Synthetic
dataset A) is the simple one proposed in [8]. Because dataset A possesses little of the homogeneity
within subgroups that is often found in the real world, we offer a second synthetic dataset B that
possesses greater homogeneity within subgroups and greater heterogenity across subgroups and
has many more features than A. B was inspired by the initial clinical trial of remdesivir [23] as a
treatment for COVID-19 and uses the patient features listed in that trial, but not the data. In specific, it
represents a discovery that remdesivir results in a faster time to clinical improvement for the patients
with the shorter time from symptom onset to starting trial. Aside from inspiration and features, B is
relevant to COVID-19 only in that the COVID-19 is known to be a disease which displays in very
heterogeneous ways. The two semi-synthetic datasets are based on real world data; the first uses the
Infant Health and Development Program (IHDP) dataset [24] and the second uses the Collaborative
Perinatal Project (CPP) dataset [25]. Details of all these datasets are provided in the supplementary
material. For each experiment, we conduct 50 simulations.

The “optimal” ground-truth of subgroups depends on multiple objectives, including homogeneity,
heterogeneity, and the number of subgroups. In the literature, a commonly adopted metric is the
variance, because greater heterogeneity across subgroups and homogeneity within each subgroup
generally imply well-discriminated subgroups. We denote the set of test samples by Dte and the
test samples that belong to subgroup l as Dtel . We define the mean and variance of the treatment
effects of the test samples in subgroup l as Mean(Dtel ) and Var(Dtel ), respectively. We define
heterogeneity across subgroups to be the variance of the mean of the treatment effects: V across =
Var({Mean(Dtel )}Ll=1), where L is the number of subgroups; we define the average in-subgroup
variance to be V in(Dte) = 1

L

∑L
l=1 Var(Dtel ). We also provide the average number of subgroups for

better understanding of the results. We set the miscoverage rate to be α = 0.05, so we demand a
95% ITE coverage rate. (We do not report actual coverage rates here because all methods achieve the
target coverage rate, but they are reported in the supplementary material, along with other details.)

Results Table 1 reports the performances of R2P and the baselines for all four datasets. Keep in
mind that larger V across means greater heterogeneity across subgroups, while smaller V in means
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Table 1: Comparison of methods For the measures V across and V in, and for the widths of confidence
intervals, we highlight the best results in bold.

Synthetic dataset A Synthetic dataset B

V across V in # SGs CI width V across V in # SGs CI width

R2P 0.22±.01 0.03±.001 4.9±.16 0.08±.003 2.39±.04 0.12±.01 5.0±.16 0.88±.06
CCT 0.18±.02 0.05±.01 4.4±.24 7.42±.48 1.97±.14 0.58±.15 5.0±.13 5.95±.59
CT-A 0.19±.02 0.04±.01 4.7±.21 3.96±.16 2.24±.06 0.30±.05 5.1±.15 2.77±.20
CT-H 0.12±.03 0.11±.02 3.1±.39 4.39±.22 2.01±.13 0.53±.13 4.5±.15 3.38±.32
CT-L 0.12±.02 0.10±.02 2.9±.35 5.22±.02 0.80±.26 1.77±.27 3.1±.28 6.92±.53

IHDP dataset CPP dataset

V across V in # SGs CI width V across V in # SGs CI width

R2P 0.46±.04 0.38±.03 4.1±.12 1.27±.22 0.06±.02 0.10±.01 5.7±.30 1.11±.13
CCT 0.30±.04 0.43±.05 4.3±.13 5.70±.23 0.03±.02 0.12±.01 6.4±.20 3.60±.12
CT-A 0.31±.04 0.57±.05 4.1±.08 3.71±.08 0.03±.01 0.12±.01 6.6±.18 2.45±.06
CT-H 0.28±.05 0.56±.05 3.8±.14 3.76±.14 0.01±.00 0.14±.01 5.2±.23 2.67±.06
CT-L 0.27±.06 0.64±.05 2.8±.23 4.75±.15 0.01±.01 0.14±.01 2.9±.29 3.23±.07

Figure 3: Treatment effects for subgroups identified by each algorithm when applied to Synthetic
dataset B. Each box represents the range between the 25th and 75th percentiles of the treatment
effects on the test samples; each whisker represents the range between the 5th and 95th percentiles.

greater homogeneity within subgroups. As the table shows, R2P displays by far the best performance
on all four datasets: the greatest heterogeneity across subgroups, the greatest homogeneity within
subgroups, and the narrowest confidence intervals. It accomplishes all this while identifying compa-
rable numbers of subgroups. We conclude that R2P identifies subgroups more effectively than any of
the other methods, and allows fewer false discoveries (as was illustrated in the Introduction). The
performance of R2P reflects one of its strengths: the ability to use any method of estimating ITE.

The effectiveness of R2P can also be seen in Fig. 3, which provides, for R2P and each of the four
baseline algorithms, boxplots of the distribution of the treatment effects for each identified subgroup
for Synthetic dataset B. We see that that R2P identifies subgroups reliably: different subgroups
have very different average treatment effects and their distributions are non-overlapping or well-
discriminated. All the other methods are unreliable: false discovery occurs for all four baseline
methods, and occurs frequently for three of the four.

Table 2: Normalized V in of R2P

Synth A Synth B IHDP CPP

0.110±.005 0.046±.003 0.459±.033 0.691±.076

Gain from subgroup analysis To indicate
the gain from subgroup analysis obtained by
R2P, and hence to indicate the effectiveness of
recursive partitioning, we compare V in, the ho-
mogeneity within subgroups obtained by R2P
in Table 1, against the homogeneity within the
entire population, V pop. We divide V in by V pop to obtain the normalized V in in Table 2. Subgroup
analysis with R2P reduces the average in-subgroup variance by 89% and more than 95% on Synthetic
dataset A and B, respectively. For the semi-synthetic datasets, it reduces the average in-subgroup
variance by more than 50% and 30% on the IHDP and CPP datasets, respectively. (Keep in mind that
R2P constructs subgroups in a way that produces both strong heterogeneity across subgroups and
strong homogeneity within subgroups.)
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6 Conclusion
In this paper, we have studied robust HTE analysis based on recursive partitioning. The algorithm
proposed, R2P-HTE, recursively partitions the entire population by taking into account both hetero-
geneity across subgroups and homogeneity within subgroups, using the novel criterion of confident
homogeneity that is based on the quantification of uncertainty of the ITE estimation. R2P-HTE ro-
bustly constructs subgroups and also provides confidence guarantees for each subgroup. Experiments
for synthetic and semi-synthetic datasets (the latter based on real data) demonstrate that R2P-HTE
outperforms state-of-the-art baseline algorithms in every dimension: greater heterogeneity across
subgroups, greater homogeneity within subgroups, and narrower confidence intervals. One of the
strengths of R2P-HTE is that it can employ any method for interpretable ITE estimation, including
improved methods that will undoubtedly be developed in the future.

Broader Impact

The understanding of treatment effects plays an important role in many areas, and especially in
medicine and public policy. In both areas, it is often the case that the same treatment has different
effects on different groups; hence subgroup analysis is called for. In medicine, subgroup analysis
may make it possible to identify groups of patients (defined by covariates such as age, body mass
index, blood pressure, etc.) suffering from a particular disease for whom a particular drug is effective
and safe and other groups for whom the same drug is ineffective and unsafe. Similarly, subgroup
analysis may make it possible to identify groups of patients for whom one course of treatment (e.g. a
particular mode of radiotherapy or chemotherapy) is preferable (more likely to be successful with
fewer side effects) to another. In public policy, subgroup analysis may make it possible to identify
groups of people or geographic regions for which particular interventions (e.g., providing mosquito
nets to combat malaria) are likely to be successful or unsuccessful. The method for subgroup analysis
that is developed in this paper, R2P, is an enormous improvement over state-of-the-art methods and
therefore has the potential to make enormous and widespread impact. Moreover, because R2P can
make use of improvements in the underlying estimation methods, this impact may grow over time.
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