
A Theoretical Background and Derivations

In the following, we use ~P⇡(st�1, at�1|st) as a shorthand for ~P⇡(St�1 = st�1, At�1 = at�1|St = st) to
unclutter notation and drop the ? superscript in places where it is obvious we refer to the true transition model.

A.1 Backward Models are Policy Dependent

Using the stationarity assumption, we write d⇡(s) as the stationary distribution of ⇡ at s. The joint posterior of
the previous state and action can be expressed using Bayes rule as:

~P⇡(st�1, at�1|st) =
P(st|st�1, at�1)P⇡(st�1, at�1)P

s2S

P
a2A P(st|s, a)P⇡(s, a)

. (6)

We can express the prior as: P⇡(st�1, at�1) = ⇡(at�1|st�1)d⇡(st�1). The denominator can be folded into
the stationary distribution of the policy at the next state:

P
s2S

P
a2A P(st|s, a)P⇡(s, a) = d⇡(st). Then the

joint model is

~P⇡(st�1, at�1|st) =
P(st|st�1, at�1)⇡(at�1|st�1)d⇡(st�1)

d⇡(st)
(7)

A.2 Action Conditioned Backward Models

Backward models mirror their counterparts – forward models. As such, one may define action-condition
backward models, yet note that these too are dependent on a policy.

According to Bayes, the probability of a previous state ~P(st�1|st, at�1), conditioned on a previous action at�1

and policy ⇡, leading into the current state st is:

~P⇡(st�1|st, at�1) =
P(st|st�1, at�1)P⇡(st�1|at�1)

P⇡(st|at�1)
(8)

Applying Bayes rule again for the probability of a previous state P⇡(st�1|at�1) conditioned on a previous
action at�1 and policy ⇡

P⇡(st�1|at�1) =
⇡(at�1|st�1)d⇡(st�1)

⇡(at�1)
/ d⇡(st�1, at�1) (9)

The denominator can be rewritten using Bayes as

P⇡(st|at�1) =
 �⇡ (at�1|st)d⇡(st)

⇡(at�1)
/ d⇡(st, at�1) (10)

The posterior probability, i.e. the action-conditioned backward model for policy ⇡ becomes

~P⇡(st�1|st, at�1) =
P(st|st�1, at�1)d⇡(st�1, at�1)

d⇡(st, at�1)
(11)

=
⇡(at�1|st�1)

~⇡(at�1|st)
d⇡(st)

�1d⇡(st�1)P(st|st�1, at�1), (12)

where ~⇡(at�1|st) gives the marginal probability of an action, conditioned on the future state st.

A.3 Multi-step models

Policy-conditioned models hold many shapes and have the potential to be useful in reasoning over larger
timescales. To start, given a backward transition model ~P?

⇡ , we define ~P?(n)
⇡ (·|s) = ( ~P?

⇡)
n(·|s) as the

predecessor state distribution of having followed policy ⇡ for n steps, arriving at state s. Similarly, we
denote the associated n steps reward model as: r~

~

?
⇡ (s̃, s) = E

⇥Pn�1
t=0 �tRt+1|S0= s̃, Sn=, At+1⇠⇡(·|St)

⇤
.

For a single-step model we can marginalize the actions from the joint predecessor and action model as:
~P?
⇡(s̃|s) =

P
ã

~P?
⇡(s̃, ã|s). An n-step model is one that predicts the probability of a predecessor state n-steps in

the past.

A multi-time model is a combination of n-step models:

~P?(1:1)
⇡ (s̃|s) =

1X

n=1

wn
~P?(n)
⇡ (s̃|s), (13)

r~

~

?(1:1)
⇡ (s̃, s) =

1X

n=1

wnr~

~

?(n)
⇡ (s̃, s), (14)
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where
P

1

n=1 wn = 1. In the general case, the number of steps we “remember” the past can be a random
variable. We can augment the state space with an event indicating the decision to consider a state as predecessor
(and to re-evaluate predictions therefrom) or to look further back in time. If the probability associated with
the event is given by a function � : S ! [0, 1], we can write the model with the semantics of continuing the
backward process as ~P?

⇡,�(s̃|s) = ~P?
⇡(s̃|s)�(s̃), and denote backward bootstrapping with 1� �(s̃) at state s̃

and re-evaluating predictions.

N-step models involve a hard cutoff contingent on the number of steps. If � is a smooth function the resulting
models allow for a spectrum of time-extended models ranging from single-step models to n-step models and a
wide variety in between. Having a � independent of state defaults to interpolating between n-step predecessors
with a mixture:

~P?
⇡,�(s̃|s) = (1� �)

1X

n=0

�n ~P?(n)
⇡ (s̃|s), (15)

Likewise, a state dependent �-model is instrumental when the scale of prediction varies. Therefore, a backward
model conditioned on the smooth state-dependent � function can choose to ignore the inconsequential chaos
lying in-between cause and effect 3. We can obtain recursive formulations for these models (similarly to Bellman
equations):

~P?
⇡,�(s̃|s) = (1� �(s̃)) ~P?

⇡(s̃|s) +
X

˜̃s

�(˜̃s) ~P?
⇡(˜̃s|s) ~P?

⇡,�(s̃|s). (16)

Subsuming all other formulations, backward option models may also be defined as a special type of backward
value functions tethered, not just to a policy, but to a triple (⇡o, ◆o,�o), where ⇡o is the decision policy, ◆o and
�o determine the initiation and termination of the option. A backward option model is defined as:

~P?
⇡O

(s̃|s, o) = ◆o(s̃) ~P?
⇡o(s̃|s) +

X

˜̃s

�
1� ◆o(˜̃s)

�
~P?
⇡o(˜̃s|s) ~P?

⇡O
(s̃|˜̃s, o) (17)

where ◆(s̃) denotes initiation at the predecessor state s̃ and ⇡O denotes a policy over options.

Extended time models could be learned on-policy by Monte-Carlo methods by taking samples of trajectories
from the forward Markov chain induced by policy ⇡, or by TD-learning using a recursive formulation. For
instance, �-models could be updated with the rule:

~P⇡,�(s̃|st) = ~P⇡,�(s̃|st) + ↵
⇣
(1� �(st))1st�1=s̃ + �(st) ~P⇡,�(s̃|st�1)� ~P⇡,�(s̃|st)

⌘
(18)

One can use any of these models in computing value functions, yet some types of models will have different
properties. If we would have estimators for n-step models, 8n, or a �-model, notice that we can update backward
all trajectories at once, in contrast to a single trajectory as is the case for eligibility traces (Sutton, 1988), and
similarly to van Hasselt et al. (2020).

3Learning the � function is part of the ‘discovery problem’ and the best strategy still unclear, although a
meta-learning strategy is perhaps effective (Xu et al., 2018).
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B Forward-Backward Equivalences

In this appendix we review some equivalences of forward and backward views and include for completeness some
properties of forward and reverse Markov chains (cf. Morimura et al., 2010), along with other forward-backward
equivalences (cf. Sutton, 1988).

B.1 Forward-Backward Views – Equivalence of Temporal Difference Learning

The temporal difference learning over an episode of experience can be equivalently interpreted in the off-line
regime looking forward or backward (cf. Sutton, 1988):

w = w + ↵
1X

t=0

"
1X

k=t

�k�tRk+1 � vw(St)

#
rwvw(St) (forward view) (19)

= w + ↵
1X

t=0

1X

k=t

�k�t [Rk+1 + �vw(Sk+1)� vw(Sk)]rwvw(St) (20)

= w + ↵
1X

k=0

kX

t=0

�k�t�krwvw(St) (21)

= w + ↵
1X

t=0

�t

tX

k=0

�t�krwvw(Sk) (backward view). (22)

B.2 Relationship Forward-Backward Markov Chains

Detailed balance The relationship between the forward and the backward model can be written as

~P⇡(st�1, at�1|st) =
P(st|st�1, at�1)⇡(at�1|st�1)d⇡(st�1)

d⇡(st)
(23)

=
P⇡(st, at�1|st�1)d⇡(st�1)

d⇡(st)
. (24)

Multiplying by d⇡(st) and summing over all actions at�1 in the previous equation gives the detailed balance
equation (MacKay, 2002):

d⇡(st) ~P⇡(st�1|st) = P⇡(st|st�1)d⇡(st�1) (25)

Stationary distribution equivalence Summing over all states st
X

st2S

~P⇡(st�1|st)d⇡(xt) = d⇡(st�1) (26)

we have d⇡ also as the stationary distribution under the backward Markov chain, and consequently that the
forward and backward chains have the same stationary distribution.

Backward transition matrix The backward transition dynamics matrix can be written as

~P⇡ = diag(d⇡)
�1P>

⇡ diag(d⇡) (27)

B.3 Equivalence between Forward and Backward Planning

The expected parameter corrections for n-step learning updates are defined over the forward Markov chain F
induced by a policy ⇡ and such can be redefined in terms of the backward Markov chain B as:

EF(⇡)

h⇣
r~

~

?(n)(St, St+n) + �vw(St+n)� vw(St)
⌘
rwvw(St)|St+n, d⇡(St)

i
= (28)

= EF(⇡)

h⇣
r~

~

?(n)(St�n, St) + �vw(St)� vw(St�n)
⌘
rwvw(St�n)|St, d⇡(St�n)

i
(29)

= EB(⇡)

h⇣
r~

~

?(n)(St�n, St) + �vw(St)� vw(St�n)
⌘
rwvw(St�n)|St

i
, (30)
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since
~P⇡(st�1, at�1, . . . , st�n, at�n|st) = ~P⇡(st�1, at�1|st) . . . ~P⇡(st�n, at�n|st�n+1) (31)

=
P⇡(st, at�1|st�1) . . .P⇡(st�n+1, at�n|st�n)d⇡(st�n)

d⇡(st)
(32)

/ P⇡(st, at�1|st�1) . . .P⇡(st�n+1, at�n|st�n)d⇡(st�n) (33)

The backward parameter corrections can be defined over the backward distribution as:

~�(s) = E
h⇣

r~

~

?(n)(St�n, St) + �vw(St)� vw(St�n)
⌘
rwvw(St�n)|St = s, St�n ⇠ ~P?(n)

⇡ (·|St = s)
i

(34)
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C Model-Learning Objectives

C.1 Expected Linear Backward Models

We assume the linear representation vw(x) = x>w for the value function. For the reward model we express the
parameters of the reward using weights ⇥r 2 Rd⇥d, such that x(s̃)>⇥rx(s) ⇡ E[Rt|s̃ = St�1, s = St]. The
expected parameter corrections from some arbitrary features x can be written as:

X

x̃

Pr(x̃|x)
 
X

r̃

Pr(r̃|x̃,x)r̃ + �vw(x)� vw(x̃)

!
x̃ = (35)

=
X

x̃

Pr(x̃|x)
⇣
x̃>⇥rx+ �x>w � x̃>w

⌘
x̃ (36)

=
X

x̃

Pr(x̃|x)x̃x̃>⇥rx+ �
X

x̃

Pr(x̃|x)x̃x>w �
X

x̃

Pr(x̃|x)x̃x̃>w (37)

= E
h
x̃x̃>|x

i
⇥rx+ �E

h
x̃>|x

i
x>w � E

h
x̃x̃>|x

i
w (38)

= E
h
x̃x̃>|x

i
⇥rx+

⇣
�E [x̃|x]x> � E

h
x̃x̃>|x

i⌘
w (39)

= r~

~

x(x) +
⇣
� ~Px(x)x

> � ~Px2(x)
⌘
w, (40)

where ~Px(x) = E [x̃|x] is a backward expectation model, ~Px2(x) = E
⇥
x̃x̃>|x

⇤
is a predecessor features

covariance matrix and r~

~

x(x) = E
⇥
x̃x̃>|x

⇤
⇥rx is a vector reward model (⇥r are the parameters of the expected

linear reward model).

In contrast, the forward view update is:

X

x0

 
Pr(x0|x)

 
X

r

Pr(r|x,x0)r + �vw(x0)

!
� vw(x)

!
x = (41)

 
X

x0

Pr(x0|x)(x0)>⇥rx+ �
X

x0

Pr(x0|x)(x0)>w � x>w

!
x (42)

= E
⇥
x0|x

⇤
⇥rxx+

⇣
�xE

h
(x0)>|x

i
� xx>

⌘
w (43)

= x
⇣
r~

~

x(x,x
0) + �Px(x)

>w � x>w
⌘
, (44)

where Px = E
⇥
(x0)>|x

⇤
is the forward expectation model and r~

~

x(x,x
0) = E [x0|x]⇥rxx is the corresponding

reward expectation model.

C.2 Maximum Likelihood Estimation for Expectation Models

The expectation model approach trains a model predictor to output a point estimate as a function of the input.
When trained with mean-squared error, the probabilistic interpretation is that the point estimate corresponds
to the mean of a Gaussian distribution with fixed input-independent variance �2: P(x̃|x) = N(µ(x);�2).
Minimizing the negative log likelihood in this case leads to least-squares regression. Concretely, the empirical
loss for the MLE objective of backward model learning is

lMLE( ~P) =
1
n

X

(xi,Ai,x
0

i)2Dn

���� ~P(x0

i)� xi

����
2

⇡ E
"���� ~P(x0)� x

����
2
#
, (45)

where ~P � argmin ~P†2P lMLE( ~P†), P is the model space and Dn = {(xi, Ai, Ri,x
0

i)}ni=1 represents collected
data from interaction.

C.3 Planner-aware Models

If the true model does not belong to the model estimator’s space and approximation errors exist, a planner-aware
method can choose a model with minimum error with respect to  �����Planner’s objective. Both forward and
backward planning objectives for value-based methods try to find an approximation v to v⇡ by applying one
step of semi-gradient model-based TD update. The planner-aware model-learning (PlanML) objective is less
constrained than the MLE objective in that it only tries to ensure that replacing the true dynamics with the model
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is inconsequential for the internal mechanism of �����Planner. One choice of loss function of this objective could
be:

lPlanML( ~P)=
1
n

X

(xi,Ai,x
0

i)2Dn

���� ~�⇤� ~�

����
2

⇡E
"����rw

 �����Planner( ~P?,v)�rw
 �����Planner( ~P,v)

����
2
#
, (46)

where the value updates in the empirical loss are: ~�⇤ = (Ri+�vw (x0

i)�vw (xi))rwvw (xi) – the true
model update, and ~�=

⇣
r~

~⇣
~P (x0

i) ,x
0

i

⌘
+�vw (x0

i)�vw
⇣

~P (x0

i)
⌘⌘
rwvw

⇣
~P (x0

i)
⌘

– the update resulting
from using the estimated internal model. While this requires the true value function v in general, several
approximations are possible, such as (a) using the current estimate of the value function resulting from pure
planning – v

~P

w, or (b) using the current estimate value function resulting from direct learning and additional
planning – v

~P+ ~P
?

w . Combining �����Planner with policy gradients (PG), similarly to (Abachi et al., 2020), might
also be interesting.

Other objectives might be possible, such as directly parameterizing and estimating the expected parameter
updates of the value function, thus learning a fully abstract model. Learning of this kind would shadow the
internal arrow of time of the model. The ultimate unconstrained objective could meta-learn the model, such that,
after a model learning update, the model would be useful for planning.

Tabular planner-aware model learning
We derive the gradient of a model which uses a planner-aware objective (similarly to Farahmand et al., 2017).The
derivations hold for a probabilistic model and contrast the difference to a maximum likelihood model.

We consider the model to belong to an exponential family described by features x̃ : S! Rd and parameters ✓:

~P✓ (s̃|s, ) =
exp

�
x̃> (s̃, s) ✓

�
P

˜̃s exp
�
x̃>
�
˜̃s, s
�
✓
� (47)

Similarly, we take the value function to be a linear function of a (possibly) different set of features x : S! Rd

and parameters w: vw(s) = x>(s)w. Then the PlanML loss is:

lPlanML( ~P✓; s) =

����
X

s̃

⇣
~P✓(s̃|s)� ~P?(s̃|s)

⌘⇣
r(x(s̃),x(s)) + �x(s)>w � x(s̃)>w

⌘
x(s̃)>

����
2

(48)

=

����
X

s̃

⇣
~P✓(s̃|s)� ~P?(s̃|s)

⌘
~�(s̃, s)

����
2

(49)

Introducing an empirical measure of the state space corresponding to a distribution under which the data
is sampled by the agent and the true environment transition dynamics ~P? we have the observed empirical
distribution:

lPlanML( ~P✓) =
X

(S̃i,Ãi,Ri,Si)

����
⇣
ES̃⇠ ~P✓(·|Si)

h
~�(S̃, Si)

i
� ~�(S̃i, Si)

⌘ ����
2

(50)

The gradient of the estimated model’s output with respect to its internal parameters is:

r✓
~P✓(s̃|s) = ~P✓(s̃|s)

2

4x̃>(s̃, s)�
X

˜̃s

~P✓(˜̃s|s)x̃>(˜̃s, s)

3

5 (51)

As a result the gradient of the PlanML loss with respect to the model parameters is:

r✓lPlanML( ~P✓) =
1
n

X

(S̃i,Ãi,Ri,Si)

h
ES̃⇠ ~P✓(·|Si)

h
~�(S̃, Si)

i
� ~�(S̃i, Si)

i "X

s̃

~�(s̃, Si)
>r✓

~P✓(s̃|Si)

#

(52)

=
1
n

X

(S̃i,Ãi,Ri,Si)

h
ES̃⇠ ~P✓(·|Si)

h
~�(S̃, Si)

i
� ~�(S̃i, Si)

i
(53)

h
ES̃⇠ ~P✓(·|Si)

h
~�(S̃, Si)

>x̃>(S̃, Si)
i
� ES̃⇠ ~P✓(·|Si)

h
~�(S̃, Si)

>

i
ES̃⇠ ~P✓(·|Si)

h
x̃>(S̃, Si)

ii

(54)

=
1
n

X

(S̃i,Ãi,Ri,Si)

h
ES̃⇠ ~P✓(·|Si)

h
~�(S̃, Si)

i
� ~�(S̃i, Si)

i
CovS̃⇠ ~P✓(·|Si)

h
~�(S̃, Si)

>x̃>(S̃, Si)
i
,

(55)
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where Cov can be expanded using the TD error � as:

CovS̃⇠ ~P✓(·|Si)

h
~�(S̃, Si)

>x̃>(S̃, Si)
i
= CovS̃⇠ ~P✓(·|Si)

h
~�(S̃, Si)x(S̃, Si)x̃

>(S̃, Si)
i

(56)

= ES̃⇠ ~P✓(·|Si)

h
~�(S̃, Si)x(S̃|Si)x̃

>(S̃, Si)
i
� ES̃⇠ ~P✓(·|Si)

h
~�(S̃, Si)x(S̃, Si)

i
ES̃⇠ ~P✓(·|Si)

h
x̃>(S̃, Si)

i

(57)

In contrast the gradient of the MLE objective is:

r✓lMLE( ~P✓) =
1
n

X

(S̃i,Ãi,Ri,Si)

h
ES̃⇠ ~P✓(·|Si)

h
x̃>(S̃, Si)

i
� x̃>(S̃i, Si)

i
(58)

For the forward case, a similar result can be derived:

lPlanML(P✓; s) =

����
X

s0

�
P✓(s

0|s)� P?(s0|s)
� ⇣

r(x(s),x(s0)) + �x(s0)>w � x(s)>w
⌘
x(s)>

����
2

(59)

=

����
X

s0

�
P✓(s

0|s)� P?(s0|s)
�
�(s, s0)

����
2

(60)

Introducing an empirical measure of the state space corresponding to a distribution under which the data is
sampled by the agent and the true environment transition dynamics P? with the observed empirical distribution:

lPlanML(P✓) =
X

(Si,Ai,Ri,S
0

i)

����
�
ES0⇠P✓(·|Si)�(Si, S

0)��(Si, S
0

i)
� ����

2

(61)

The gradient of the estimated model is the same as in the backward case and as a result the gradient of the
forward PlanML loss is:

r✓lPlanML(P✓) =
1
n

X

(Si,Ai,Ri,S
0

i)

⇥
ES0⇠P✓(·|Si)

⇥
�(Si, s

0)
⇤
��(Si, S

0

i)
⇤
"
X

s0

�(Si, s
0)>r✓

~P✓(s
0|Si)

#

(62)

=
1
n

X

(Si,Ai,Ri,S
0

i)

h
ES0⇠ ~P✓(·|Si)

⇥
�(Si, s

0)
⇤
��(Si, S

0

i)
i

(63)

h
ES0⇠P✓(·|Si)

h
�(Si, S

0)>x̃>(S0, Si)
i
� ES0⇠P✓(·|Si)

h
�(Si, S

0)>
i
ES0⇠P✓(·|Si)

h
x̃>(S0, Si)

ii

(64)

=
1
n

X

(Si,Ai,Ri,S
0

i)

⇥
ES0⇠P✓(·|Si)

⇥
�(Si, S

0)
⇤
��(Si, S

0

i)
⇤
CovS0⇠P✓(·|Si)

h
�(Si, S

0)>x̃>(S0, Si)
i
,

(65)

where Cov can be expanded as:

CovS0⇠P✓(·|Si)

h
�(Si, S

0)>x̃>(S0, Si)
i
= CovS0⇠P✓(·|Si)

h
�(Si, S

0)x(Si)x̃
>(S0, Si)

i
(66)

= ES0⇠P✓(·|Si)

h
�(Si, S

0)x(Si)x̃
>(S0, Si)

i
� ES0⇠P✓(·|Si)

⇥
�(Si, S

0)x(Si)
⇤
ES0⇠P✓(·|Si)

h
x̃>(S0, Si)

i

(67)

In contrast the gradient of the forward MLE objective is:

r✓lMLE(P✓) =
1
n

X

(Si,Ai,Ri,S
0

i)

h
ES0⇠P✓(·|Si)

h
x̃>(S0, Si)

i
� x̃>(S0

i, Si)
i

(68)
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D Empirical Studies Details

The first setting in which we illustrate the antithesis between forward and backward planning is a Random
Markov Chain consisting of a leveled state space with one (or more) sets of states (or levels): {xi}i2[0:nx] and
{yj}j2[0:ny ] (Fig. 2), where we vary nx and ny in our experiments . We additionally experiment with adding
intermediary levels: {zlk}k2[0:nl

z ],l2[1:L], where L is the number of levels and nl
z is the size of level l. The

states from a particular level transition only to states in the next level, thus establishing a particular flow and
stationary structure of the Markov Chain under study. The transition probabilities between the leveled sets
of states are sampled randomly from a uniform distribution U(0, 1) and normalized accordingly. The states
{yj}j2[0:ny ] are terminal; their rewards are dependent on both ends of the transition and are sampled from
a normal distribution N (10, 10). The criteria we use to evaluate the quality of the estimated models is the
root mean squared value error (RMSVE):

p
(|v⇡ � v|22), which shows how close vP and v ~P

are to v⇡ . The
experiments are ablation studies of the effects of varying the fan-in (nx), the fan-out (ny) and the number of
levels l with their corresponding sizes nl

z .

Algorithm 4: Online Backward-Dyna: Learn-
ing & Backward Planning
1: Input policy ⇡, n
2: s ⇠ env()
3: for each interaction {1, 2 . . . T} do
4: a ⇠ ⇡(x)
5: r, �, s0 ⇠ env(a)
6: ~P, r~

~

 model_learning_update(s, a, s0)
7: v  learning_update(s, a, r, �, s0)
8: sref � planning_reference_state(s, s0)
9: for each s̃ 2 S do

10: y = r~

~

(s̃, sref) + �v(sref)

11: ~�(s̃) = ~P(s̃|sref) (y � v(s̃))

12: v(s̃) v(s̃) + ↵ ~�(s̃)
13: s s0

For this investigation we performed two types of
experiments: (i) on 3-level bipartite graphs as il-
lustrated in figure 1-Left,Center-Left (ii) on 2-level
bipartite graphs as shown in figure 1-Center-Right,
Right. All experiments start with learning rates of
1.0 for model-free learning, planning and model-
learning, which are linearly decayed over the course
of learning. For (a) the channelling structure we
use is: L = 1, nx = 500, n1

z = 50, ny = 5,
whereas the broadcasting pattern has the opposite
attributes: L = 1, nx = 5, n1

z = 50, ny = 500.
For (b) the results reported are for (nx, ny) 2
{(500, 5), (50, 5), (5, 5), (5, 50), (5, 500)}, labeling
the x-axis with the simplified ratio. Results shown in
the main text are averaged over 20 seeds and show
the standard error over runs.

All experiments use, for any transition s
a! s0, the

following reference frame for planning: background models – the current state s0 of a transition, forward models
– the previous state s of a transition. The exact definition of reference frames is given in the main text and below,
in the next experiment. To make things more concrete, we include the pseudo-code for the backward planning
algorithm used for this experiment in Algorithm 4 (forward planning is done similarly, see Alg. 2 and 3 for more
details on the differences).

D.1 Indirect effect of backward planning on control

Figure 5: Maze Navigation:
Illustration of the MDP used
in the control experiments.

In the following experiments, we perform ablation studies on the discrete
navigation task from (Sutton and Barto, 2018) illustrated in Fig. 5. "G" marks
the position of the goal and the end of an episode. "S" denotes the starting
state to which the agent is reset at the end of the episode. The maximum size
of episodes is set to 400 to allow the agent sufficient exploration. The state
space size is 48, � = 0.99. There are 4 actions that can transition the agent
to each one of the adjacent states.

The following two experiments use algorithms that perform background
planning with forward and backward mechanisms. Specifically, for the
forward case we use algorithm 2 and for the backward case algorithm 3. The
control algorithms interlace model-free learning of the optimal action-value
function q (line 7 – forward & backward) with model-learning (of forward
and backward models respectively – line 6) and additional planning steps (forward and backward – lines 8:10).
The model-free “learning_update” performs q-learning updates of the form:

q(s, a) = q(s, a) + ↵

✓
r
�
s, a, s0

�
+ �max

a0
q
�
s0, a0

�
� q (s, a)

◆
. (69)

The models are estimated using MLE – for the transition dynamics (and for the termination function �̄ in the
case of forward models) and regression - for the reward models. The planning processes add model-based
forward and backward updates using the estimated models. Forward planning updates perform an expected
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planning-update using the forward models (P, r~

~

, �̄), 8s 2 S, 8a 2 A:

q(sref, a) = q(sref, a) + ↵

 
X

s02S

P(s0|sref, a)

✓
r~

~

(s0) + �̄(s0)max
a0

q(s0, a0)

◆
� q(sref, a)

!
(70)

and the backward planning process adds the following updates according to the backward models ( ~P, r~

~

,
8s̃ 2 S, 8a 2 A:

q(s̃, ã) = q(s̃, ã) + ↵ ~P (s̃, ã|sref)
⇣ �r (sref) + �max

ā
q (sref, ā)� q (s̃, ã)

⌘
. (71)

The procedure specified in the pseudocode with “planning_reference_state” is the subject of the first
experiment we performed for this control setting.

Planning frame of reference
We first ask ourselves whether the frame of reference from which the agent starts planning matters. When
it encounters a transition s

a! s0, it could plan from either s or s0. This choice represents the output of
the procedure “planning_reference_state” in the pseudocode. In our experiments, we perform ablation
studies for pure planning, i.e. without the additional model-free procedure “learning_update”, and for the full
learning framework described in the pseudocode. The experiments are performed with deterministic dynamics.
The learning rates used for q-learning, model learning and planning are started at 1.0 and linearly decayed over
the course of training. The policy used for acting is ✏-greedy with ✏ decayed linearly over the course of training
from 0.5 to 0. Results shown in the main text are averaged over 20 seeds and show the standard error over runs.

Changing the level of stochasticity
We next investigate how stochasticity affects performance. The four settings we investigate are : (a) deterministic
dynamics – when the environment transitions the agent to the intended direction with probability 1; similarly
reward is +1 with probability 1; (b) stochastic dynamics – reward is still deterministic, yet the environment
transitions the agent to a random adjacent state with probability 0.5; stochastic rewards – transition dynamics are
deterministic, yet the rewards are +1 with probability 0.5, otherwise 0; (c) stochastic rewards identical to the
previous setting; rewards are +1 with probability 0.1. We apply the same algorithms described in the previous
section taking s to be the reference frame for backward planning and s0 for forward planning. Table 1 specifies
the learning rates used for q-learning, model learning and planning for each of the four settings we described
above. These are linearly decayed over the course of training. The policy used for acting is ✏-greedy with ✏
decayed linearly over the course of training from 0.5 to 0. Results shown in the main text are averaged over 20
seeds and show the standard error over runs. Hyperparameters have been chosen from {1.0, 0.5, 0.1, 0.05, 0.01}.

Environment Setting ↵(learning&planning) ↵m(model learning)
Deterministic rewards and transitions 1.0 1.0

Deterministic transitions/stochastic rewards (p=0.5) 0.1 0.5
Deterministic transitions/stochastic reward (p=0.1) 0.05 0.05
Stochastic transitions (p=0.5)/deterministic rewards 0.1 0.5

Table 1: Hyperparameters for tabular control on the Maze Gridworld
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