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1 Experiment details
In this section, we describe our experimental procedures in more details including
hyperparameters, and intermediate results. Because of the file size limit, we will
release the source code and pretrained checkpoints after the anonymity period.

1.1 Preprocessing details
To be able to make a fair comparison, we followed the same preprocessing steps
as described in [13]. We use the same sentence-piece model [10] used in [7] and
[13], which is learned on the full Common Crawl data [18] with 250, 000 subword
tokens. We apply the BPE model directly on raw text for all languages without
additional processing.

1.2 Mining details
In each iteration, we mine all 90 language pairs in parallel, using 8 GPUs for
each pair, each pair taking about 15− 30 hours to finish. We lightly tune the
margin score threshold using validation BLEU (using threshold score between
1.04 and 1.07.) We noticed small variations between different score thresholds in
sentence retrieval accuracy and translation quality. The mined bi-text size for
English-centric directions at each iteration are reported in Figure 1

1.3 Multilingual training details
For all experiments, we use Transformer with 12 layers of encoder and 12 layers
of decoder with model dimension of 1024 on 16 heads (∼ 680M parameters). 1

We trained for maximum 20, 000 steps using label-smoothed cross-entropy loss
with 0.2 label smoothing, 0.3 dropout, 2500 warm-up steps. We sweep for the
best maximum learning rate using validation BLEUs, arriving at learning rate of

1We include an additional layer-normalization layer on top of both the encoder and decoder,
which we found stabilized training at FP16 precision.
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Figure 1: Mined bi-text sizes for English-centric directions at each iteration

5e−5 for iteration 1, 3e−4 for iteration 2, 5e−5 for iteration 3. For all iterations,
we train on 16 GPUs using batches of 1024 tokens per GPU.

1.4 Evaluation details
For unsupervised machine translation task, we evaluate BLEU scores using multi-
bleu.perl2 to be comparable with previous literature [8], [17], [12], [16] . For
supervised machine translation task, we evaluate BLEU scores using sacreBLEU
to be comparable with [13]. For both tasks, we compute the BLEU scores over
tokenized text for both the reference text and system outputs. We refer readers
to [13] for a detailed list of the tokenizers used.

2 Supplemented Tables and Figures

2.1 Monolingual corpus statistics
In Table 1, we report the statistics of the monolingual data we used for mining
stage in CRISS.

2.2 Extra unsupervised machine translation results
In Table 3, we report unsupervised machine translation results for language pairs
that do not have previous benchmarks. These results are generated using the

2https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-
bleu.perl
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Language code Language name Data size Number of sentences
ar Arabic 20G 100M
cs Czech 9.6G 100M
de German 11G 100M
en English 9.3G 100M
es Spanish 13G 100M
et Estonian 2.1G 21.8M
fi Finnish 9.8G 100M
fr French 11G 100M
gu Gujarati 747M 3.9M
hi Hindi 11G 47M
it Italian 13G 100M
ja Japanese 8.6G 100M
kk Kazakh 1.3G 7.5M
ko Korean 8.7G 100M
lt Lithuanian 4.2G 38.5M
lv Latvian 2.1G 18.6M
my Burmese 972M 3.3M
ne Nepali 1.2G 4.8M
nl Dutch 9.9G 100M
ro Romanian 14G 100M
ru Russian 19G 100M
si Sinhala 3.5G 20M
tr Turkish 9.2G 100M
vi Vietnamese 11G 100M
zh Chinese (Simplified) 9.9G 100M

Table 1: Statstics of monolingual data used for mining

same models that were described in section 5.1

2.3 Supervised Machine Translation data source
We use the same supervised machine translation data as described in [13]
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Language code Language name Data source
ar Arabic IWSLT17 [5]
cs Czech WMT17 [15]
es Spanish WMT13 [2]
et Estonian WMT18 [4]
fi Finnish WMT17 [15]
gu Gujarati WMT19 [1]
hi Hindi ITTB [11]
it Italian IWSLT17 [5]
ja Japanese IWSLT17 [5]
kk Kazakh WMT19 [1]
ko Korean IWSLT17 [5]
lt Lithuanian WMT19 [1]
lv Latvian WMT17 [15]
my Burmese WAT19 [14]
nl Dutch IWSLT17 [5]
ru Russian WMT16 [3]
tr Turkish WMT17 [15]
vi Vietnamese IWSLT15 [6]

Table 2: Test set used for unsupervised machine translation

Direction en-ar ar-en en-cs cs-en en-es es-en en-et et-en en-fi fi-en

CRISS Iter 1 7.9 20.6 11.1 19.0 26.4 27.6 11.4 17.6 12.2 17.3
CRISS Iter 2 13.9 27.0 16.4 26.4 32.5 33.4 16.5 24.2 19.0 25.3
CRISS Iter 3 16.1 28.2 17.9 26.8 33.2 33.5 16.8 25.0 20.2 26.7
Direction en-gu gu-en en-hi hi-en en-it it-en en-ja ja-en en-kk kk-en
CRISS Iter 1 9.7 11.2 9.2 13.6 21.1 27.2 4.9 4.6 2.9 7.4
CRISS Iter 2 19.2 22.2 17.4 22.5 29.1 32.0 9.9 8.7 6.8 16.1
CRISS Iter 3 22.8 23.7 19.4 23.6 29.4 32.7 10.9 8.8 6.7 14.5

Direction en-ko ko-en en-lt lt-en en-lv lv-en en-my my-en en-nl nl-en

CRISS Iter 1 5.5 9.3 9.2 15.0 10.0 13.3 3.8 2.5 22.0 28.7
CRISS Iter 2 12.8 15.1 14.4 21.2 13.6 18.6 9.5 4.9 29.0 34.0
CRISS Iter 3 14.0 15.4 15.2 20.8 14.4 19.2 10.4 7.0 30.0 34.8

Direction en-ru ru-en en-tr tr-en en-vi vi-en

CRISS Iter 1 13.4 20.0 9.8 10.8 21.0 24.7
CRISS Iter 2 21.5 27.6 15.9 19.1 29.6 29.9
CRISS Iter 3 22.2 28.1 17.4 20.6 30.4 30.3

Table 3: Unsupervised machine translation results on language directions without
previous benchmarks. Refer to Table 2 for the test data source used for these
language pairs.
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Language code Language name Data source Number of sentence pairs
ar Arabic IWSLT17 [5] 250K
et Estonian WMT18 [4] 1.94M
fi Finnish WMT17 [15] 2.66M
gu Gujarati WMT19 [1] 10K
hi Hindi ITTB [11] 1.56M
it Italian IWSLT17 [5] 250K
ja Japanese IWSLT17 [5] 223K
kk Kazakh WMT19 [1] 91K
ko Korean IWSLT17 [5] 230K
lt Lithuanian WMT19 [1] 2.11M
lv Latvian WMT17 [15] 4.50M
my Burmese WAT19 [14] 259K
ne Nepali FLoRes [9] 564K
nl Dutch IWSLT17 [5] 237K
ro Romanian WMT16 [3] 608K
si Sinhala FLoRes [9] 647K
tr Turkish WMT17 [15] 207K
vi Vietnamese IWSLT15 [6] 133K

Table 4: Statistics of data used in supervised machine translation downstream
task
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