
Supplementary material

Full version. We refer to the full version of this work [18] (arXiv: 2011.06186) for more general
results and more complete proofs.

Organization. In Appendix A we will present problem-dependent bounds that can be computed
from data, where the unknown quantity L∗ and V∗ are replaced by some empirical estimates. In
Appendix B we will discuss several application areas of our theoretical results. In Appendix C-H, we
will present proofs of the theoretical results.

A Estimating the loss-dependent and variance-dependent rates from data

In the remarks following Theorem 1, we comment that fully data-dependent loss-dependent bounds
can be derived using the empirical “effective loss," Pn[`(ĥERM; z) − infH `(h; z)] to estimate the
unknown parameter L∗. Here we present the full details and some discussion of this approach.
Corollary 3 (estimate of the loss-dependent rate from data). Recall the term L∗ is P[`(h∗; z)−
infH `(h

∗; z)] and denote L̂∗ = Pn[`(ĥERM; z)− infH `(h; z)]. Under the conditions of Theorem 1,
setting Cn = 2 log2 n+ 6, then for any fixed δ ∈ (0, 12 ), with probability at least 1− 2δ, we have

E (ĥERM) ≤ ψ
(
cBL̂∗; δ

Cn

)
∨ cr

∗

B
∨
cB log 2

δ

n
(A.1)

and

L∗ ≤ c1
(
L̂∗ ∨ r

∗

B
∨
B log 2

δ

n

)
≤ c2

(
L∗ ∨ r

∗

B
∨
B log 2

δ

n

)
, (A.2)

where c, c1, c2 are absolute constants.

Remarks. 1) The B log 2
δ /n terms (A.1) and (A.2) are negligible, because r∗ is at least of order

B2 log 1
δ /n for most practical applications. This order is unavoidable in traditional “local Rademacher

complexity" analysis and two-sided concentration inequalities.

2) The generalization error bound (A.1) shows that without knowledge of L∗, one can estimate the
order of our loss-dependent rate by using L̂∗ = Pn[`(ĥERM; z)− infH `(h; z)] as a proxy. Despite
replacing L∗ by L̂∗, other quantities in the bound remain unchanged in order.

3) The inequality (A.2) shows that the estimation of L∗ is tight.

The proof of Corollary 3 can be found in Appendix F.

In the remark following Theorem 2, we comment that fully data-dependent variance-dependent
bounds can be derived by employing an empirical estimate to the unknown parameter V∗. Here we
present the full details and some discussion of this approach.
Corollary 4 (estimate of the variance-dependent rate from data). Consider the empirical cen-
tered second moment

V̂∗ := Pn
[
`(ĥNMP; z)− L̂∗0)2

]
,

where L∗S′ ∈ [−B,B] is the preliminary estimate of L∗ obtained in the first-stage, ψ is defined in
Strategy 2, and

ĥNMP ∈ arg min
H

Pn`(h; z)− 2ψ
(

16Pn
[
(`(h; z)− L̂∗0)2

])
.

For any fixed δ ∈ (0, 1), by performing the moment-penalized estimator in Strategy 2, with probability
at least 1− δ,

E (ĥMP) ≤ 4ψ

(
16V̂∗; δ

Cn

)
∨ r∗

8B
, (A.3)

where r∗ is the fixed point of 16Bψ(r; δ
Cn

).
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Remarks. 1) The subscript “NMP" within ĥNMP means “negative moment penalization." Note that
ĥNMP may not have good generalization performance, it is only used to compute V̂∗ so that we can
evaluate the estimator ĥMP proposed in Strategy 2.

2) While the fully data-dependent generalization error bound (A.3) provides a way to evaluate
the moment-penalized estimator in Strategy 2 from training data, it seems that V̂∗ and V∗ are not
necessarily of the same order. Therefore, (A.3) may not be as tight as the original variance-dependent
rate in Theorem 2. One should view (A.3) as a relaxation of the original variance-dependent rate in
Theorem 2.

3) We also comment that the “sub-root" assumption in Theorem 2 is not needed here as we do not
discuss the precision of L̂∗0. It is easy to combine Corollary 4 with the guarantee on L̂∗0 proved in
Appendix E.2.

The proof of Corollary 4 can be found in Appendix G.

B Application areas of problem-dependent rates

In Section 6 we illustrate the advantages of our problem-dependent rates in “rich" non-parametric
and VC classes, where we use metric entropy conditions of the loss/excess loss class. In practical
applications it is more standard to consider metric entropy conditions of the hypothesis class H.
In view of this, we introduce two important settings where the metric entropy on the loss/excess
loss class can be obtained from metric entropy conditions on the hypothesis class H. Thus, the
improvements illustrated in Section 6 can be directly transferred to these application areas.

Supervised learning with Lipchitz continuous cost. In supervised learning, the data z is a feature-
label pair (x, y), and the loss `(h; z) is of the form

`(h; z) = `sv(h(x), y),

where `sv is a fixed cost function that is Lsv−Lipchitz continuous with respect to its first argu-
ment, namely, Lipchitz with parameter Lsv. For hypothesis classes characterized by metric entropy
conditions, properties are preserved because

logN (ε, ` ◦H, L2(Pn)) ≤ logN (
ε

Lsv
,H, L2(Pn)).

Note that Lsv only depends on the cost function and is usually of constant order. Our theory naturally
applies to supervised learning problems where the cost function is Lipchitz continuous and not
strongly-convex (for example, the `1 cost, the hinge cost, the ramp cost, etc.).

Counterfactual risk minimization. Denote x ∈ X the feature and t ∈ T the treatment (e.g. T =
{0, 1} in binary treatment experimental design), and c(x, t) the unknown cost function. A hypothesis
(policy) h is a map from X × T to [0, 1] such that

∑
t∈T h(x, t) = 1. Thus, a hypothesis (policy)

essentially maps features to a distribution over treatments. We consider the standard formulation
of “learning with logged bandit feedback," dubbed “counterfactual risk minimization" [15]: a batch
of samples {(xi, ti, ci)}ni=1 are obtained by applying a known policy h0, so that ti is sampled from
h0(xi, ·) and one can only observe the cost ci associated with ti. We write z = (x, t, c) and let

`(h; zi) =
ci

h0(xi, ti)
h(xi, ti), (B.1)

be the “constructed loss" using importance sampling. It is straightforward to show that the population
risk P`(h; z) is equal to the expected cost of policy h, so determining good policies requires one to
minimize the generalization error E (ĥ). It is usually convenient to obtain metric entropy condition
of the loss/excess loss class by using the linearity structure of (B.1). In particular, from the Cauchy-
Schwartz inequality we can prove that

logN (ε, ` ◦H, L2(Pn)) ≤ logN (
ε

γn
,H, L4(Pn)), (B.2)

where γn := 4

√
Pn
[
( c(x,t)
h0(x,t)

)4
]

only depends on the functions c, h0 in the given problem, and

the samples rather than the worst-case parameters. A systematical challenge in counterfactual risk
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minimization is that the worst-case boundedness parameter, suph,z |`(h; z)|, is typically very large,
since the inverse probability term 1

h0(xi,ti)
in (B.1) is typically large in the worst case.

C Proof of Proposition 1

Given any r0 ∈ (0, R], take rk = 2kr0, k = 1, · · · , dlog2
R
r0
e. Note that dlog2

R
r0
e ≤ log2

2R
r0

.

We use a union bound to establish that supT (f)≤r(P − Pn)f ≤ ψ(r; δ) holds for all these rk
simultaneously: ∀δ ∈ (0, 1), with probability at least 1− δ,

sup
T (f)≤rk

(P− Pn)f ≤ ψ

(
rk;

δ

log2
2R
r0

)
, k = 1, · · · ,

⌈
log2

R

r0

⌉
.

For any fixed f ∈ F , if T (f) ≤ r0 is false, then let k be the non-negative integer such that
2kr0 < T (f) ≤ 2k+1r0, we further know that rk+1 = 2k+1r0 ≤ 2T (f). Therefore, with probability
at least 1− δ,

(P− Pn)f ≤ sup
f̃∈F :T (f̃)≤rk+1

(P− Pn)f̃

≤ ψ

(
rk+1;

δ

log2
2R
r0

)

≤ ψ

(
2T (f);

δ

log2
2R
r0

)
.

Therefore, with probability at least 1− δ, ∀f ∈ F , either T (f) ≤ r0 or

(P− Pn)f ≤ ψ

(
2T (f);

δ

log2
2R
r0

)
.

This completes the proof. �

D Proof of Theorem 1

Let F be the excess loss class in (3.2). Clearly, its members f are uniformly bounded in [−2B, 2B].
Let T (f) = P[f2]. Define f̂ by f̂(z) = `(ĥERM; z)− `(h∗; z),∀z ∈ Z .

For a fixed r0 ∈ (0, 4B2), Denote Cr0 = 2 log2
8B2

r0
. Then from Proposition 1 we know with

probability at least 1− δ
2 , either T (f̂) ≤ r0 or

(P− Pn)f̂ ≤ ψ

(
2T (f̂);

δ
2

log2
8B2

r0

)
= ψ

(
2T (f̂);

δ

Cr0

)
. (D.1)

We denote the events A1 = {T (f̂) ≤ r0} and A2 = {inequality (D.1) holds true}, then we have

Prob(A1) + Prob(A1) ≥ 1− δ

2
.

Consider the event A1. From the surrogate property of ψ, we have

Prob
(

A1 ∩
{

(P− Pn)f̂ ≤ ψ(2r0;
δ

Cr0
)

})
≥ Prob(A1)− δ

Cr0
≥ Prob(A1)− δ

2
.

Combine the events A1 and A2, we have

Prob
({

(P− Pn)f̂ ≤ ψ
(

2T (f̂) ∨ 2r0;
δ

Cr0

)})
≥ Prob(A1)− δ

2
+ Prob(A2) ≥ 1− δ.
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From the property of ERM we have Pnf̂ ≤ 0, so with probability at least 1− δ,

E (ĥERM) ≤ (P− Pn)f̂ ≤ ψ
(

2T (f̂) ∨ 2r0;
δ

Cr0

)
. (D.2)

From now to the end of this proof, we will prove the generalization error bound on the event

A = {the inequality (D.2) holds true}, (D.3)

whose measure is at least 1 − δ. Define ĝ by ĝ(z) = `(ĥERM; z) − infH `(h; z),∀z ∈ Z . Let
T (ĝ) = P[ĝ2]. We have f̂(z) = ĝ(z)− (`(h∗; z)− infH `(h; z)),∀z so that

P[f̂2] ≤ 2P[ĝ2] + 2P[(`(h∗; z)− inf
H
`(h; z))2]

≤ 2P[ĝ2] + 4BL∗ ≤ 4P[g2] ∨ 8BL∗.

That is,

T (f̂) ≤ 4T (ĝ) ∨ 8BL∗. (D.4)

From (D.2) and (D.4) we have

Pĝ − L∗ = E (ĥERM) ≤ ψ
(

8T (ĝ) ∨ 16BL∗ ∨ 2r0;
δ

Cr0

)
. (D.5)

Since ĝ(z) ∈ [0, 2B] for all z, we have T (ĝ) ≤ 2BPĝ. From this fact and (D.5) we obtain

T (ĝ) ≤ 2BPĝ

≤ 2B

(
L∗ + ψ

(
8T (ĝ) ∨ 16BL∗ ∨ 2r0;

δ

Cr0

))
= 2BL∗ + 2Bψ

(
8T (ĝ) ∨ 16BL∗ ∨ 2r0;

δ

Cr0

)
.

Whether BL∗ is less than 2Bψ
(

8T (ĝ) ∨ 16BL∗ ∨ 2r0; δ
Cr0

)
, or BL∗ is greater or equal to

2Bψ
(

8T (ĝ) ∨ 16BL∗ ∨ 2r0; δ
Cr0

)
, the above inequality always implies that

T (ĝ) ≤ 3BL∗ ∨ 6Bψ

(
8T (ĝ) ∨ 16BL∗ ∨ 2r0;

δ

Cr0

)
≤ 3BL∗ ∨ 6Bψ

(
8T (ĝ);

δ

Cr0

)
∨ 6Bψ

(
16BL∗ ∨ 2r0;

δ

Cr0

)
. (D.6)

Let r∗ be the fixed point of 6Bψ(8r; δ
Cn

). From the definition of fixed points whether 2BL∗∨ r04 ≤ r∗
or 2BL∗ ∨ r0

4 > r∗, we always have

6Bψ

(
16BL∗ ∨ 2r0;

δ

Cr0

)
≤ r∗ ∨ 2BL∗ ∨ r0

4
.

Combine the above inequality with (D.6), we have

T (ĝ) ≤ 3BL∗ ∨ 6Bψ

(
8T (ĝ);

δ

Cr0

)
∨ r∗ ∨ r0

4
.

From the above inequality and again the definition of fixed points, it is straightforward to prove that

T (ĝ) ≤ 3BL∗ ∨ r∗ ∨ r0
4
.

Combining the above inequality with (D.4), we have

T (f̂) ≤ 12BL∗ ∨ 4r∗ ∨ r0.
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From the above inequality and (D.2) we have

E (ĥERM) ≤ (P− Pn)f̂ ≤ ψ
(

24BL∗ ∨ 8r∗ ∨ 2r0;
δ

Cr0

)
, (D.7)

which implies that

E (ĥERM) ≤ ψ
(

24BL∗; δ

Cr0

)
∨ ψ

(
8r∗ ∨ 2r0;

δ

Cr0

)
.

Recall that r∗ is the fixed point of 6Bψ(8r; δ
Cr0

). Since r∗ ∨ r0
4 ≥ r

∗, from the definition of fixed
points we have

6Bψ(8r∗ ∨ 2r0;
δ

Cr0
) ≤ r∗ ∨ r0

4
.

So we finally obtain

E (ĥERM) ≤ ψ
(

24BL∗; δ

Cr0

)
∨ r∗

6B
∨ r0

24B
.

Recall that the generalization error bound holds true on the event A defined in (D.3), whose measure
is at least 1− δ. This completes the proof. �

E Proof of Theorem 2

The main goal of this subsection is to prove Theorem 2. We first prove Theorem 5 (the bound (5.2)
in the main paper), a guarantee for the second-stage moment penalized estimator ĥMP. In order to
prove Theorem 2, we then combine Theorem 5 with a guarantee for the first-stage empirical risk
minimization (ERM) estimator.

E.1 Analysis for the second-stage moment-penalized estimator

Theorem 5 (variance-dependent rate of the second-stage estimator). Given arbitrary preliminary
estimate L∗S′ ∈ [−B,B], the generalization error of the moment-penalized estimator ĥMP in Strategy
2 is bounded by

E (ĥMP) ≤ 2ψ

(
c0
[
V∗ ∨ (L∗S′ − L∗0)2 ∨ r∗

]
;
δ

Cn

)
,

with probability at least 1 − δ, where c0 is an absolute constant and r∗ is the fixed point of
16Bψ(r; δ

Cn
).

Proof of Theorem 5: the proof of Theorem 5 consist of four parts.

Part I: use ψ to upper bound localized empirical processes
Lemma 1 (bound on localized empirical processes). Given a fixed δ1 ∈ (0, 1), let r∗1(δ1) be the
fixed point of 16Bψ(r; δ1) where ψ is defined in Strategy 2. Then with probability at least 1− δ1, for
all r > 0,

sup
P[f2]≤r

(P− Pn)f ≤ ψ (r ∨ r∗1(δ1); δ1) . (E.1)

Proof of Lemma 1: Recall that F is the excess loss class in (3.2). Clearly, its members f are
uniformly bounded in [−2B, 2B]. When P[f2] ≤ r, we have P[f4] ≤ 4B2r. From Lemma 4 (the
two-sided version of its second inequality), with probability at least 1− δ1

2 ,

sup
P[f2]≤r

∣∣(P− Pn)f2
∣∣

≤ 4Rn{f2 : P[f2] ≤ r}+ 2B

√
2r log 8

δ1

n
+

18B2 log 8
δ1

n

≤ 16BRn{f : P[f2] ≤ r}+ 2B

√
2r log 8

δ1

n
+

18B2 log 8
δ1

n
,
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where the last inequality follows from the Lipchitz contraction property of Rademahcer complexity
(see, e.g., [10, Theorem 7]), and the fact that for all f1, f2 ∈ F , |f21 (z)−f22 (z)| ≤ 4B|f1(z)−f2(z)|.
We conclude that with probability at least 1− δ1

2 ,

sup
P[f2]≤r

∣∣(P− Pn)f2
∣∣ ≤ ϕδ1(r), (E.2)

where ϕδ1(r) := 16BRn{f : P[f2] ≤ r}+ 2B

√
2r log 8

δ1

n +
18B2 log 8

δ1

n .

Denote r∗2(δ1) the fixed point of 4ϕδ1(r) (the fixed point must exist as 4ϕδ1(r) is a non-decreasing,
non-negative and bounded function). From (E.2) and the fact that r∗2(δ1) is the fixed point of 4ϕδ1(r),
if r > r∗2(δ1), then with probability at least 1− δ1

2 ,

sup
P[f2]≤r

∣∣(P− Pn)f2
∣∣ ≤ r

4
. (E.3)

(E.3) implies that with probability at least 1− δ1
2 , for all r > r∗2(δ1), P[f2] ≤ r implies that

Pn[f2] ≤ 5

4
r ≤ 2r. (E.4)

Again from the two-sided version of the second inequality in Lemma 4, we know that with probability
at least 1− δ1

2 ,

sup
P[f2]≤r

|(P− Pn)f | ≤ 4Rn{f : P[f2] ≤ r}+

√
2r log 8

δ1

n
+

9B log 8
δ1

n
.

Combining the above inequality and (E.4) using a union bound, we know that with probability at
least 1− δ1

2 −
δ1
2 = 1− δ1, if r > r∗2(δ1), then

sup
P[f2]≤r

(P− Pn)f ≤ 4Rn{f : P[f2] ≤ r}+

√
2r log 8

δ1

n
+

9B log 8
δ1

n

≤ 4Rn{f : Pn[f2] ≤ 2r}+

√
2r log 8

δ1

n
+

9B log 8
δ1

n
. (E.5)

Recall that the ψ function satisfies that ∀r > 0,

4Rn{f : Pn[f2] ≤ 2r}+

√
2r log 8

δ1

n
+

9B log 8
δ1

n
≤ ψ(r; δ1).

From this fact and (E.5), we see that with probability at least 1− δ1, for all r > 0,
sup

P[f2]≤r
(P− Pn)f ≤ ψ (r ∨ r∗2(δ1); δ1) . (E.6)

From (E.6), in order to prove the result (E.1) in Lemma 1, we only need to prove that
r∗2(δ1) ≤ r∗1(δ1). (E.7)

Assume this is not true, i.e. r∗2(δ1) > r∗1(δ1). Since r∗1(δ1) is the fixed point of 16Bψ(r; δ1), from
the definition of fixed points we have

r∗2(δ1) > 16Bψ(r∗2(δ1); δ1).

From the definitions of ψ and ϕδ1 , for all r > r∗1(δ1),
4ϕδ1(r) ≤ 16Bψ(r; δ1).

From the above two inequalities and r∗2(δ1) > r∗1(δ1), we have
r∗2(δ1) > 16Bψ(r∗2(δ1); δ1) ≥ 4ϕδ1(r∗2(δ1)). (E.8)

From the fact that r∗2(δ1) is the fixed point of 4ϕδ1 , we have
4ϕδ1(r∗2(δ1)) = r∗2(δ1). (E.9)

The above two inequalities (E.8) and (E.9) result in a contradiction. So the assumption r∗2(δ1) >
r∗1(δ1) is false. Therefore r∗2(δ1) ≤ r∗1(δ1), and this completes the proof of Lemma 1. �
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Part II: a “uniform localized convergence" argument with data-dependent measurement.

Based on Lemma 1, we will modify the proof of Proposition 1 to obtain a “uniform localized
convergence" argument with the data-dependent “measurement" functional Pn[f2].
Lemma 2 (a “uniform localized convergence" argument with the data-dependent “measure-
ment" functional). Given a fixed δ1 ∈ (0, 1), let r∗1(δ1) be the fixed point of 16Bψ(r; δ1) where ψ

is defined in Strategy 2. Then with probability at least 1 − 2
(

log2
8B2∨2r∗1 (δ1)

r∗1 (δ1)

)
δ1, for all f ∈ F

either P[f2] ≤ r∗1(δ1), or

(P− Pn)f ≤ ψ
(

4Pn[f2]; δ1

)
. (E.10)

Proof of Lemma 2: from the definition of ψ and the fact that r∗1(δ1) is the fixed point of

16Bψ(r; δ1), we know that r∗1(δ1) ≥
144B2 log 8

δ1

n > 0. Take r0 = r∗1(δ1).

Take R = 4B2 ∨ r0 to be a uniform upper bound for Pf2, and take rk = 2kr0, k = 1, · · · , dlog2
R
r0
e.

Note that dlog2
R
r0
e ≤ log2

2R
r0

. We use the union bound to establish that supP[f2]≤r(P − Pn)f ≤
ψ(r; δ1) holds for all {rk} simultaneously: with probability at least 1− log2

2R
r0
δ1,

sup
P[f2]≤rk

(P− Pn)f ≤ ψ(rk; δ1), k = 1, · · · ,
⌈

log2

R

r0

⌉
.

For any fixed f ∈ F , if P[f2] ≤ r0 is false, let k be the non-negative integer such that 2kr0 <
P[g(h; z)2] ≤ 2k+1r0. We further have that rk+1 = 2k+1r0 ≤ 2P[f2]. Therefore, with probability
at least1− log2

2R
r0
δ1,

Pf ≤ Pnf + sup
f̃∈F :P[f̃2]≤rk+1

(P− Pn)f̃

≤ Pnf + ψ(rk+1; δ1) (E.11)

By (E.2) we know that with probability at least 1− δ1
2 ,

sup
P[f2]≤r

(
P[f2]− Pn[f2]

)
≤ r

4

for all r > r0 (here we have used the fact r0 = r∗1(δ1) ≥ r∗2(δ1), which is the result (E.7) in the proof
of Lemma 1). From the union bound, with probability at least 1−(log2

2R
r0

+ 1
2 )δ1 ≥ 1−2(log2

2R
r0

)δ1,
the condition rk+1 ≥ P[f2] > rk will imply

Pn[f2] ≥ P[f2]− 1

4
rk+1 ≥

1

4
rk+1,

so

rk+1 ≤ 4Pn[f2].

Combining this result with (E.11), we have that for all f such that T (f) > r0, with probability at
least 1− 2(log2

2R
r0

)δ1,

Pf ≤ Pnf + ψ(rk+1; δ1)

≤ Pnf + ψ

(
4Pn[f2]; δ1

)
.

We conclude that with probability at least 1− 2(log2
2R
r0

)δ1, for all f ∈ F , either P[f2] ≤ r∗1(δ1), or

(P− Pn)f ≤ ψ
(

4Pn[f2]; δ1

)
.

This completes the proof of Lemma 2. �
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Part III: specify the moment-penalized estimator and its error bound. We specify the moment-
penalized estimator to be

ĥMP = arg min
H

{
Pn`(h; z) + ψ

(
16Pn[(`(h; z)− L∗S′)2]; δ1

)}
. (E.12)

Define f̂ by f̂(z) = `(ĥMP; z)− `(h∗; z),∀z ∈ Z , We define the event

A1 = {P[f̂2] ≤ r∗1(δ1)},
and event

A2 = {the inequality (E.10) holds true at f̂}.
Lemma 2 has proven that

Prob(A1) + Prob(A2) ≥ 1− 2

(
log2

8B2 ∨ 2r∗1(δ1)

r∗1(δ1)

)
δ1.

Consider the event A1 where P[f̂2] ≤ r∗1(δ1) holds true. Due to the surrogate property of ψ,

Prob
(
A1 ∩

{
(P− Pn)f̂ ≤ ψ(r∗1(δ1); δ1)

})
≥ Prob(A1)− δ1.

Combining events A1 and A2, we conclude that with probability at least 1 −
2
(

log2
8B2∨2r∗1 (δ1)

r∗1 (δ1)
+ 1
)
δ1, we have

(P− Pn)f̂ ≤ ψ
(

4Pn[f̂2] ∨ r∗1(δ1); δ1

)
. (E.13)

Denote w(h; z) = `(h; z)− L∗S′ . Then f̂(z) = w(ĥMP; z)− w(h∗; z),∀z ∈ Z , and we have that

4Pn[f̂2] ≤ 8Pn[w(ĥMP; z)2] + 8Pn[w(h∗; z)2]

≤ 16Pn[w(ĥMP; z)2] ∨ 16Pn[w(h∗; z)2].

From the above conclusion and (E.13) we obtain with probability at least 1 −
2
(

log2
8B2∨2r∗1 (δ1)

r∗1 (δ1)
+ 1
)
δ1,

E (ĥMP) + Pn`(h∗; z) ≤ Pn`(ĥMP; z) + ψ(4Pn[f̂2] ∨ r∗1(δ1); δ1)

≤ Pn(ĥMP; z) + ψ

(
16Pn[w(ĥMP; z)2] ∨ 16Pn[w(h∗; z)2] ∨ r∗1(δ1); δ1

)
≤ Pn(ĥMP; z) + ψ

(
16Pn[w(ĥMP; z)2]δ1

)
+ ψ

(
16Pn[w(h∗; z)2] ∨ r∗1(δ1); δ1

)
. (E.14)

From the definition (E.12) of ĥMP, we have

Pn`(ĥMP; z) + ψ

(
16Pn[w(ĥMP; z)2]; δ1

)
≤ Pn`(h∗; z) + ψ

(
16Pn[w(h∗; z)2]; δ1

)
(E.15)

Therefore, with probability at least 1− 2
(

log2
8B2∨2r∗1 (δ1)

r∗1 (δ1)
+ 1
)
δ1,

E (ĥMP) ≤ Pn`(ĥMP; z) + ψ

(
16Pn[w(ĥMP; z)2]; δ1

)
+ ψ

(
16Pn[w(h∗; z)2] ∨ r∗1(δ1); δ1

)
− Pn`(h∗; z)

= arg min
H

{
Pn`(h; z) + ψ

(
16Pn[w(h; z)]; δ1

)}
− Pn`(h∗; z) + ψ

(
16Pn[w(h∗; z)2] ∨ r∗1(δ1); δ1

)
≤ ψ

(
16Pn[w(h∗; z)2]; δ1

)
+ ψ

(
16Pn[w(h∗; z)2] ∨ r∗1(δ1); δ1

)
≤ 2ψ

(
16Pn[w(h∗; z)2] ∨ r∗1(δ1); δ1

)
,

(E.16)
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where the first inequality is due to (E.14) and the second inequality is due to (E.15).

From Bernstein’s inequality at the single element h∗, for any fixed δ2 ∈ (0, 1), with probability at
least 1− δ2,

Pn[w(h∗; z)2] ≤ P[w(h∗; z)2] + 2B

√
2P[w(h∗; z)2] log 2

δ2

n
+

4B2 log 2
δ2

n

≤ 2P[w(h∗; z)2] +
6B2 log 2

δ2

n
.

Therefore, we conclude that with probability at least 1− 2
(

log2
8B2∨2r∗1 (δ1)

r∗1 (δ1)
+ 1
)
δ1 − δ2,

E (ĥMP) ≤ 2ψ

(
16Pn[w(h∗; z)] ∨ r∗1(δ1) ∨ B

2

n
; δ1

)
≤ 2ψ

((
32P[w(h∗; z)2] +

96B2 log 2
δ2

n

)
∨ r∗1(δ1) ∨ B

2

n
; δ1

)
. (E.17)

Part IV: final steps.

From the definition of ψ and the fact that r∗1(δ1) is the fixed point of 16Bψ(r; δ1), we know that

r∗1(δ1) ≥
144B2 log 8

δ1

n
. (E.18)

Denote Cn := 4 log2 n+ 10 ≥ 4 log2 and take

δ1 =
δ

Cn
, (E.19)

then we have

4 log2

8B2 ∨ 2r∗1(δ1)

r∗1(δ1)
+ 6 ≤ max

{
4 log2

8n

144 log 8
, 4 + 6

}
≤ max{4 log2 n, 10} ≤ Cn,

so (
2 log2

8B2 ∨ 2r∗1(δ3)

r∗1(δ3)
+ 3

)
δ1 ≤

δ

2
.

Set r∗ = r∗1(δ1) and take δ2 = δ
2 . From (E.17), we obtain that with probability at least 1 − δ, the

generalization error of ĥMP is upper bounded by

E (ĥMP) ≤ 2ψ

(
c

[
P[w(h∗; z)2] ∨ r∗ ∨

B2 log 4
δ

n

]
;
δ

Cn

)
, (E.20)

where c is an absolute constant. From (E.18) we have r∗1(δ1) ≥ 144B2 log 8Cn
δ

n ≥ B2 log 4
δ

n . Combine
this fact with the inequality (E.20), we obtain that

E (ĥMP) ≤ 2ψ

(
c
[
P[(`(h∗; z)− L∗S′)2] ∨ r∗

]
;
δ

Cn

)
≤ 2ψ

(
c0
[
V∗ ∨ r∗ ∨ (L∗S′ − L∗0)2

]
;
δ

Cn

)
. (E.21)

where c0 is an absolute constant. This completes the proof of Theorem 5. �

E.2 Analysis of the first-stage ERM estimator

After proving Theorem 5, the remaining part needed to prove Theorem 2 is to bound (L∗S′−L∗0)2—the
error of the first-stage ERM estimator.
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The remaining steps in the proof of Theorem 2: We will give a guarantee on the first-stage ERM
estimator, and combine this guarantee with Theorem 5 to prove Theorem 2. Recall that PS′ is the
empirical distribution of the “auxiliary" data set. Denote ĥERM ∈ arg minH PS′`(h; z).

From Part I in the proof of Theorem 5, ∀δ ∈ (0, 12 ), with probability at least 1− δ,

sup
F
|(P− Pn)f | ≤ ψ(4B2; δ) ≤ ψ

(
4B2;

δ

Cn

)
.

Since ψ is sub-root with respect to its first argument, we have

ψ(4B2; δ
Cn

)
√

4B2
≤
ψ(r∗; δ

Cn
)

√
r∗

=

√
r∗

16B
,

where r∗ is the fixed point of 16Bψ(r; δ
Cn

). So we have proved that ψ(4B2; δ
Cn

) ≤
√
r∗

8 . Therefore,

sup
F
|(P− Pn)f | ≤

√
r∗

8
.

Because ĥERM ∈ arg minH PS′`(h; z) and PS′`(ĥERM; z) = L∗S′ , we have

L∗S′ − L∗0 = (PS′`(ĥERM; z)− PS′`(h∗; z)) + (PS′`(h∗; z)− P`(h∗; z))
≤ PS′`(h∗; z)− P`(h∗; z) ≤ sup

F
|(P− Pn)f |,

and

L∗S′ − L∗0 = (PS′`(ĥERM; z))− P`(ĥERM; z)) + (P`(ĥERM; z)− P`(h∗; z))

≥ PS′`(ĥERM; z))− P`(ĥERM; z) ≥ − sup
F
|(P− Pn)f |.

Hence we have

(L∗S′ − L∗0)2 ≤ (sup
F
|(P− Pn)f |)2 ≤ r∗

64
.

Combine this result with (E.21), we have that ∀δ ∈ (0, 12 ), with probability 1− 2δ,

E (ĥMP) ≤ 2ψ

(
c1 (V∗ ∨ r∗) ;

δ

Cn

)
≤ 2

(
ψ

(
c1V∗;

δ

Cn

)
∨ ψ

(
c1r
∗;

δ

Cn

))
≤ 2ψ

(
c1V∗;

δ

Cn

)
∨ c1r

∗

8B
,

where c1 = max{c0, 16} is an absolute constant, and the last inequality follows from the fact that
c1r
∗

16 > r∗ and the definition of fixed points. This completes the proof of Theorem 2. �

F Proof of Corollary 3

From the definitions, we know that L∗ = P[`(h∗; z) − infH `(h
∗; z)], L̂∗ = Pn[`(ĥERM; z) −

infH `(h; z)] and P`(h∗; z) ≤ P`(ĥERM; z). As a result, we have

L∗ − L̂∗ = P`(h∗; z)− Pn`(ĥERM; z)− (P− Pn)[inf
H
`(h; z)]

≤ (P− Pn)`(ĥERM; z)− (P− Pn)[inf
H
`(h; z)]

= (P− Pn)f̂ + (P− Pn)[`(h∗; z)− inf
H
`(h; z)], (F.1)

where f̂ is defined by f̂(z) = `(ĥERM; z)− `(h∗; z),∀z ∈ Z .

21



We take r0 = B2

n in Theorem 1, and denote Cn := Cr0 = 2 log2 n+ 6. From (D.7) in the proof of
Theorem 1, on the event A defined in (D.3) (whose measure is at least 1− δ),

E (ĥERM) ≤ (P− Pn)f̂ ≤ ψ(24BL∗ ∨ 8r∗ ∨ 2B2

n
;
δ

Cn
). (F.2)

Since 3BL∗ ∨ r∗ ∨ B2

4n ≥ r
∗, from the definition of fixed points we have

(P− Pn)f̂ ≤ ψ
(

8

(
3BL∗ ∨ r∗ ∨ B

2

4n

)
;
δ

Cn

)
≤

3BL∗ ∨ r∗ ∨ B2

4n

6B
≤ L

∗

2
+

r∗

6B
+

B

24n
. (F.3)

This result holds together with the result of Theorem 1 on the event A .

The random variable `(h∗; z) − infH `(h; z) is uniformly bounded by [0, 2B]. From Bernstein’s
inequality and the fact Var[`(h∗; z)− infH `(h; z)] ≤ 2BL∗, with probability at least 1− δ,

∣∣∣∣(P− Pn)[`(h∗; z)− inf
H
`(h; z)]

∣∣∣∣ ≤
√

4BL∗ log 2
δ

n
+

2B log 2
δ

n
≤ L

∗

4
+

3B log 2
δ

n
. (F.4)

Consider the event
A3 = A ∪ {inequality (F.4) holds true},

whose measure is at least 1− 2δ. On the event A3, from inequalities (F.1) (F.3) (F.4), it is straightfor-
ward to show that

L∗ − L̂∗ ≤ 3

4
L∗ +

r∗

6B
+

4B log 2
δ

n
,

which implies

L∗ ≤ 4L̂∗ +
2r∗

3B
+

16B log 2
δ

n
. (F.5)

From this result and (F.2), it is straightforward to show that

E (ĥERM) ≤ ψ
(
cBL̂∗; δ

Cn

)
∨ cr

∗

n
∨
cB log 2

δ

n
,

where c is an absolute constant.

We also have

L̂∗ − L∗ = Pn`(ĥERM)− P`(h∗; z)− (Pn − P)[inf
H
`(h; z)]

≤ (Pn − P)`(h∗; z)− (Pn − P)[inf
H
`(h; z)]

= (Pn − P)[`(h∗; z)− inf
H
`(h; z)].

From this result and (F.4), on the event A3,

L̂∗ ≤ 5

4
L∗ +

3B log 2
δ

n
. (F.6)

Combine (F.5) and (F.6) we obtain

L∗ ≤ c1
(
L̂∗ ∨ r

∗

B
∨
B log 2

δ

n

)
≤ c2

(
L∗ ∨ r

∗

B
∨
B log 2

δ

n

)
,

where c1 and c2 are absolute constants. This completes the proof. �
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G Proof of Corollary 4

Define f̂NMP by f̂NMP(z) = `(ĥNMP; z)− `(h∗; z),∀z ∈ Z , and w(h; z) = `(h; z)− L̂∗0. In the proof
of Theorem 5, the result (E.16) and the specification of δ1 in (E.19) show that with probability at
least 1− δ

2 ,

E (ĥMP) ≤ 2ψ

(
16Pn[w(h∗; z)2] ∨ r∗; δ

Cn

)
. (G.1)

We also refer to another implication of the proof of Theorem 5. Note that the proof of the result (E.13)
does not depends on any property of the estimator ĥMP. By the repeating the lines between (E.12)
and (E.13) for the estimator ĥNMP, and use the specification of δ1 in (E.19), it is straightforward to
show that with probability at least 1− δ

2 ,

(P− Pn)f̂NMP ≤ ψ
(

4Pn[f̂2NMP] ∨ r∗; δ

Cn

)
. (G.2)

We continue the proof on the event

A := {the inequalities (G.2) and (G.1) hold true},
whose measure is at least 1− δ.

From the definition of ĥNMP,

Pn`(ĥNMP; z)− 2ψ

(
16Pn[w(ĥNMP; z)2];

δ

Cn

)
≤ Pn`(h∗; z)− 2ψ

(
16Pn[w(h∗; z)2];

δ

Cn

)
.

(G.3)

Therefore, we have

2ψ

(
16Pn[w(h∗; z)2];

δ

Cn

)
≤ 2ψ

(
16Pn[w(ĥNMP; z)2];

δ

Cn

)
+ Pn`(h∗; z)− Pn`(ĥNMP; z)

= 2ψ

(
16Pn[w(ĥNMP; z)2];

δ

Cn

)
+ P[`(h∗; z)− `(ĥNMP; z)] + (Pn − P)[`(h∗; z)− `(ĥNMP; z)]

≤ 2ψ

(
16Pn[w(ĥNMP; z)2];

δ

Cn

)
+ (P− Pn)f̂NMP

≤ 2ψ

(
16Pn[w(ĥNMP; z)2];

δ

Cn

)
+ ψ

(
4Pn[f̂2NMP];

δ

Cn

)
, (G.4)

where the first inequality is due to (G.3), the second inequality is due to the fact that h∗ minimizes
the population risk; and the last inequality is due to (G.2).

Note that

4Pn[f̂2NMP] ≤ 8Pn[w(ĥNMP; z)2] + 8Pn[w(h∗; z)2]

≤ 16Pn[w(ĥNMP; z)2] ∨ 16Pn[w(h∗; z)2].

From the above inequality and (G.4), we have

2ψ

(
16Pn[w(h∗; z)2];

δ

Cn

)
≤ 2ψ

(
16Pn[w(ĥNMP; z)2];

δ

Cn

)
+ ψ

(
16Pn[w(ĥNMP; z)2];

δ

Cn

)
∨ ψ

(
16Pn[w(h∗; z)2];

δ

Cn

)
.

(G.5)

Whether Pn[w(h∗; z)2] ≤ 16Pn[w(ĥNMP; z)2] or Pn[w(h∗; z)2] > 16Pn[w(ĥNMP; z)2], the inequal-
ity (G.5) always implies

ψ

(
16Pn[w(h∗; z)2];

δ

Cn

)
≤ 2ψ

(
16Pn[w(ĥNMP; z)2];

δ

Cn

)
= 2ψ

(
16V̂∗; δ

Cn

)
. (G.6)
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(Note that V̂∗ := Pn[w(ĥNMP; z)2].) We conclude that with probability at least 1− δ,

E (ĥMP) ≤ 2ψ

(
16Pn[w(h∗; z)2] ∨ r∗; δ

Cn

)
= 2ψ

(
16Pn[w(h∗; z)2];

δ

Cn
) ∨ 2ψ(r∗;

δ

Cn

)
≤ 4ψ

(
16V̂∗; δ

Cn

)
∨ r∗

8B
,

where the first inequality is due to (G.1) and the last inequality is due to (G.6). This completes the
proof. �

H Auxiliary lemmas

Lemma 3 (Dudley’s integral bound, [14]). Given r > 0 and a class F that consists of functions
defined on Z ,

Rn{f ∈ F : Pn[f2] ≤ r} ≤ inf
ε0>0

{
4ε0 + 12

∫ √r
ε0

√
logN (ε,F , L2(Pn))

n
dε

}
.

Lemma 4 (Talagrand’s concentration inequality for empirical processes, [2]). Let F be a class
of functions that map Z into [B1, B2]. Assume that there is some r > 0 such that for every f ∈ F ,
Var[f(zi)] ≤ r. Then, for every δ ∈ (0, 1), with probability at least 1− δ,

sup
f∈F

(P− Pn)f ≤ 3RF +

√
2r log 1

δ

n
+ (B2 −B1)

log 1
δ

n
,

and with probability at least 1− δ,

sup
f∈F

(P− Pn)f ≤ 4RnF +

√
2r log 2

δ

n
+

9

2
(B2 −B1)

log 2
δ

n
.

Moreover, the same results hold for the quantity supf∈F (Pn − P)f .

Lemma 5 (Bernstein’s inequality). Let X1, · · · , Xn be real-valued, independent, mean-zero ran-
dom variables and suppose that for some constants σ,B > 0,

1

n

n∑
i=1

E|Xi|k ≤
k!

2
σ2Bk−2, k = 2, 3, · · ·

Then, ∀δ ∈ (0, 1), with probability at least 1− δ∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ ≤
√

2σ2 log 2
δ

n
+
B log 2

δ

n
. (H.1)
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