
Supplementary Material for
Adversarial Robustness of Supervised Sparse Coding

A Encoder Gap for k-sparse signals

Herein we show that a positive encoder gap exists for signals that are (approximately) k-sparse.
Consider signals x obtained as x = Dz + v, where D ∈ D, ‖v‖2 ≤ ν and z is sampled from
a distribution of sparse vectors with up to k non-zeros, with k < 1

3

(
1 + 1

µ(D)

)
, where µ(D) =

maxi6=j〈Di,Dj〉 is the mutual coherence of D. Then, from [Tropp, 2006], if λ = 4ν, the (unique)
solution recovered by α = ϕD(x + v) satisfies ‖α−z‖∞ ≤ 15

2 ν, and Supp(α) ⊆ Supp(z). Recall
the definition of encoder gap:

τs(x) := max
I∈Λp−s

min
i∈I

(λ− |〈Di,x−DϕD(x)〉|)

and pick s > k. Let S = Supp(z). Thus, the maximization over I is achieved by a subset I which
does not contain any of the active atoms in z (for which |〈Di,x−DϕD(x)〉| = λ, by optimality).

Now, define ∆ = α − z, and let ∆S denote the vector ∆ restricted to the support S and DS the
sub-dictionary obtained D by restricting it to the same set of atoms. We can then write

max
i

∣∣DT
i (x−Dα)

∣∣ = max
i

∣∣DT
i (x−Dz)−DT

i D∆
∣∣ (8)

= max
i

∣∣DT
i DS∆S

∣∣ (9)

≤ max
i
|DT

i DS |‖∆S‖∞ (10)

=
15

2
µ(D)ν, (11)

because i /∈ S. Thus,

min
i
λ− |〈Di,x−DϕD(x)〉| ≥ λ− 15

2
µ(D)ν. (12)

In fact, recalling that λ = 4ν, we have that τs ≥ ν(4− µ(D) 15
2 ).

B Robust Generalization Bound

Herein we prove our generalization bound, but first re-state it for completeness.

Theorem 4.1. LetW = {w ∈ Rp : ‖w‖2 ≤ B}, andD be the set of column-normalized dictionaries
with p columns and with RIP at most η∗s . Let H = {fD,w(x) = 〈w, ϕD(x)〉 : w ∈ W,D ∈ D}.
Denote τ∗s the minimal encoder gap over the m samples. Then, with probability at least 1− δ over the
draw of the m samples, the generalization gap for any hypothesis f ∈ H that achieves an encoder
gap of τ∗s > 2ν, satisfies

∣∣∣R̃S(f)−R̃(f)
∣∣∣≤ b√

m

(
(d+ 1)p log

(
3m

2λ(1− η∗s )

)
+ p log(B) + log

4

δ

) 1
2

+ b

√
2 log(m/2) + 2 log(2/δ)

m
+ 12

(1 + ν)2L`B
√
s

m
,

as long as m > λ(1−ηs)
(τ∗s−2ν)2Kλ, where Kλ =

(
2
(
1 + 1+ν

2λ

)
+ 5(1+ν)√

λ

)2

.

Proof. Fix ε > 0, and consider a minimal ε-cover for the parameter space (D,W) with respect to a
metric d and with the elements (Dj ,wj), j ∈ {1, . . . , N cov((D,W), ε)}. The metric we consider is
the max over the operator norm and `2 norm on D andW , respectively, i.e. d ((D,w), (D′,w′)) =
max{‖D−D′‖2, ‖w −w′‖2}. Now, fixing (D,w), by the definition of the ε-cover, there exist an
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index j so that d((Dj ,wj), (D,w)) ≤ ε. We thus expand the generalization gap into three terms, as
follows:∣∣∣R̃S(f)−R̃(f)

∣∣∣ =

∣∣∣∣∣ 1

m

m∑
i=1

˜̀
ν(yi, f(xi)) − E

(x,y)∼P

[
˜̀
ν(y, f(x))

]∣∣∣∣∣ (13)

≤ sup
k∈[N cov]

∣∣∣ 1

m

m∑
i=1

˜̀
ν(yi, fDk,wk(xi))− E

(x,y)

[
˜̀
ν(y, fDk,wk(x))

] ∣∣∣ (14)

+
∣∣∣ 1

m

m∑
i=1

˜̀
ν(yi, fD,w(xi))−

1

m

m∑
i=1

˜̀
ν(yi, fDj ,wj (xi))

∣∣∣ (15)

+
∣∣∣ E
(x,y)

[
˜̀
ν(y, fDj ,wj (x))

]
− E

(x,y)

[
˜̀
ν(y, fD,w(x))

] ∣∣∣. (16)

Let us bound the first of these terms. Let zi denote the random tuple (yi,xi), and Z =

[(y1,x1), . . . , (ym,xm)]. Let g(Z) = 1
m

∑m
i=1

˜̀
f (yi,xi). Furthermore, consider Z′ as the set

of m random variables z that only differs from Z in its ith variable, z′i = (y′i,x
′
i). Then, for any

i ∈ [m],

|g(Z)− g(Z′)| =
∣∣∣∣ 1

m

(
˜̀
νf (yi,xi)− ˜̀

νf (y′i,x
′
i)
)∣∣∣∣ ≤ b

m
, (17)

since `(y, f(x)), and thus ˜̀(y, f(x)), is bounded.

Pr [ |g(Z)− E[g(Z)]| ≥ t ] ≤ 2 exp

(
−2mt2

b2

)
. (18)

Furthermore, note that E[g(Z)] = E[˜̀νf (y,x)] (linearity of expectation), and thus we have that

Pr

[∣∣∣ 1

m

m∑
i=1

˜̀
ν(yi, fD,w(xi))− E

(x,y)

˜̀
ν(y, fD,w(x))

∣∣∣ > t

]
≤ 2 exp

(
−2mt2

b2

)
. (19)

Next, using a union bound argument, we can bound the probability over the supremum:

Pr

[
sup
j

∣∣∣ 1

m

m∑
i=1

˜̀(yi, fDj ,wj (xi))− E
(x,y)

˜̀(y, fDj ,wj (x))
∣∣∣ > t

]
≤

Ncov∑
j=1

Pr

[∣∣∣ 1

m

m∑
i=1

˜̀(yi, fDj ,wj (xi))− E
(x,y)

˜̀(y, fDj ,wj (x))
∣∣∣ > t

]
≤ 2N cov exp

(
−2mt2

b2

)
. (20)

Denote this failure probability as δ/2. Thus, with probability at least 1− δ/2, we get

sup
j

∣∣∣ 1

m

m∑
i=1

˜̀(yi, fDj ,wj (xi))− E
(x,y)

[
˜̀(y, fDj ,wj (x))

] ∣∣∣ ≤ b√ log(N cov) + log(4/δ)

2m
. (21)

Let us now focus on the second and third terms in Eq. (14). In particular, we will upper bound them
by analyzing the Lipschitz continuity of the loss function with respect to the parameters, D and w.
We assume that ` is L`-Lipschitz, and we analyze the Lipschitz continuity of ˜̀w.r.t D through fD(x).
Noting that the difference of the maxima is upper-bounded by the maximum of the difference, we
can write∣∣˜̀(y, fD(x))− ˜̀(y, fD′(x))

∣∣ =
∣∣max
v∈∆

`(y, fD(x + v))−max
v∈∆

`(y, fD′(x + v))
∣∣ (22)

≤ max
v∈∆

∣∣`(y, fD(x + v))− `(y, fD′(x + v))
∣∣ (23)

≤ L` max
v∈∆
|〈wT , ϕD(x + v)〉 − 〈wT , ϕD′(x + v)〉| (24)

≤ L`‖w‖2 max
v∈∆
‖ϕD(x + v)− ϕD′(x + v)‖2. (25)
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We will now bound the term maxv∈∆ ‖ϕD(x + v)− ϕD′(x + v)‖2. Notice that if the dictionary D
has an encoder gap of at least τ∗s for an input sample x, then we can use Lemma 4.2 to obtain

max
v∈∆
‖ϕD(x + v)− ϕD′(x + v)‖2 ≤

3

2

√
s(1 + ν)2

λ(1− ηs)
ε.

Denote the probability of this event (that τs(x) > τ∗s ) by 1−ρ. Note that ε ≤ 2λ/(1+ν)2 is required
in order to apply Lemma 4.2, but this condition is mild and we will later show that this holds under
the condition of minimal number of samples.

Likewise, ˜̀ is Lipschitz continuous w.r.t w,∣∣˜̀(y, fD,w(x))− ˜̀(y, fD,w′(x))
∣∣ ≤L` max

v∈∆
|〈wT , ϕD(x + v)〉 − 〈w′T , ϕD(x + v)〉| (26)

≤L`(1 + ν)2

λ
‖w −w′‖2, (27)

since maxv∈∆ ‖ϕD(x + v)‖2 = (1 + ν)2/λ ( Remark B.2). Furthermore, ‖w − w′‖2 ≤ ε, as
follows from our definition of ε-cover.

On the other hand, if D does not achieve this encoder gap (τs(x) < τ∗), which happens with probabil-
ity ρ, then we can simply upper bound the worst possible loss, i.e.

∣∣˜̀(y, fD(x))− ˜̀(y, fD′(x))
∣∣ ≤ b.

Let us now analyze this probability, ρ. For simplicity, assume that τs(xi) are i.i.d. random variables.
e.g. by computing τs(xi) on a held-out set with m2 samples, independent from the m1 samples
that are used to train the dictionary. In particular, we split training and development samples m1

and m2 equally m1 = m2 = m/2. Let Fm2(τ) := 1
m2

∑m2

i=1 1{τs(xi)<τ} denote the fraction
of training points that achieve the encoder margin smaller than τ . Let F (τ) := Pr(τs(x) < τ).
Then, uniform convergence [Mohri et al., 2018] yields that for any δ/2 > 0, with probability at

least 1 − δ/2, we have that supτ∈R |Fm2
(τ) − F (τ)| ≤ c

√
log(m2)+log(2/δ)

m2
, for some constant

c. Since this holds uniformly for any τ , it holds in particular for τ = τ∗s . This implies then that

F (τ) = Pr(τs(x) ≤ τ∗) ≤ c
√

log(m2)+log(1/δ2)
m2

= ρ.

Note that the third term in Eq. (14) involves the expectation over the population, and so we can upper
bound that term by

L`(1 + ν)2

λ

(
1 +

3

2

B
√
s

(1− ηs)

)
ε+

b
√
m2

c
(√

log(m2) + log(2/δ)
)
,

with probability at least 1− δ/2. The second term, on the other hand, is the average loss over the
training samples. For this, it suffices to note that the uniform bound supτ∈R |Fm2

(τ)− F (τ)| holds
for any choice of τ . In particular, it holds for τ∗s defined over both training and development samples.
As a result, the dictionary satisfies the encoder gap on those samples, and so the second term can be
simply upper bounded by

L`(1 + ν)2

λ

(
1 +

3

2

B
√
s

(1− ηs)

)
ε.

We finally get expressions for the covering number as a function of ε. For oblique manifolds
(matrices of size n × p with unit norm columns), N cov(D, ε) ≤ (3/ε)dp, while for B-bounded
vectors N cov(W, ε) ≤ (3B/ε)p [Seibert, 2019]. Thus, the covering number of the direct product of
the two constraint sets can be bounded by N cov(D,W, ε) ≤ (3/ε)(d+1)p Bp.

Gathering everything together, we can bound the generalization error by

∣∣∣R̃S(f)−R̃(f)
∣∣∣ ≤ b√ (d+ 1)p log(3/ε) + p log(B) + log(4/δ)

m
+ bc

√
2

log(m/2) + log(2/δ)

m

+
2L`(1 + ν)2

λ

(
1 +

3

2

B
√
s

(1− ηs)

)
ε. (28)
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All that remains is to set ε appropriately. Set ε = λ(1− ηs)/m, and so

∣∣∣R̃S(f)−R̃(f)
∣∣∣ ≤ b√ (d+ 1)p log(3m/(2λ(1− ηs))) + p log(B) + log 4/δ

m

+ bc

√
2

log(m/2) + log(2/δ)

m
+ 12

B
√
sL`(1 + ν)2

m
. (29)

Lastly, the results above holds for ε small enough. Due to Lemma Lemma B.6, one needs

τ∗s > 2ν +
√
ε

(√
25

λ
(1 + ν) + 2

(
(1 + ν)

2λ
+ 1

))
.

implying that √
λ(1− ηs)

m
<

τs − 2ν

2
(
1 + 1+ν

2λ

)
+ (1 + ν)

√
25
λ

.

Recalling that, naturally, 0 <
√

1/m, it is enough to require that τs > 2ν and that

m >
λ(1− ηs)
(τs − 2ν)2

(
2

(
1 +

1 + ν

2λ

)
+ (1 + ν)

√
25

λ

)2

. (30)

Lastly, we need to show that this condition guarantees the assumption ε ≤ 2λ/(1 + ν)2 is satisfied,
in order to apply Lemma 4.2 above. Note that ε = λ(1 − ηs)/m ≤ λ/m. Thus, we need λ/m ≤
2λ/(1 + ν)2, which is satisfied as long as m ≥ 2 ≥ (1 + ν)2/2, which is satisfied in all relevant
scenarios.

B.1 Parameter adversarial stability

In this section we prove the key result in Lemma 4.2, guaranteeing that the perturbation in the encoded
features under model deviations and adversarial contamination is bounded. The main difficulty here
is that the Lasso encoder solves a problem that is not strongly convex – due to the overcompleteness
of the dictionary – and thus showing that the encoded features satisfy a Lipschitz property w.r.t the
model parameters, particularly in the adversarial setting, is not trivial. As a result, this section will be
dedicated to showing that if the model perturbation and adversarial contamination is small enough
and there exist a positive encoder margin, then some sparsity is retained in the features after the
respective perturbations. With this result at hand, the proof of Lemma 4.2 follows directly from the
proof of Theorem 4 in [Mehta and Gray, 2013], albeit with different constants which account for
the perturbation v. This preservation of sparsity result is formalized later in Lemma B.6, and the
following immediate lemmata will build some intermediate results needed for it.

We first make a few remarks about the encoded features. We assume that x ∈ X = {x : ‖x‖2 ≤ 1},
and recall that ϕD(x) = arg minz

1
2‖x − Dz‖22 + λ‖z‖1. We are interested in the result of the

encoder when contaminated with an energy-bounded perturbation, namely

ϕD(x0 + v) = arg min
z

1

2
‖(x0 + v)−Dz‖22 + λ‖z‖1, (31)

where v ∈ ∆ν = {v : ‖v‖2 ≤ ν < 1}. We will often denote x = x0 + v for simplicity. Also, note
that there exist natural bounds for the penalty parameter, 0 ≤ λ ≤ (1 + ν). The upper bound follows
from the observation that as long as λ > ‖DTx‖∞, the solution of Eq.(31) is the zero vector. Since
the columns of D are normalized, ‖DT (x0 + v)‖∞ ≤ ‖x0 + v‖2 ≤ 1 + ν.

Recall that from optimality conditions of Lasso, the solution ϕD(x) satisfies

|DT
i (x−DϕD(x))| = λ if [ϕD(x)]i 6= 0 (32)

|DT
i (x−DϕD(x))| ≤ λ if [ϕD(x)]i = 0. (33)
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Lastly, recall that the encoder gap assumption (τs ≥ τ∗ > 0) implies that there exist a set of inactive
(p− s) atoms I so that

|DT
i (x−DϕD(x))| < λ− τs

for all i ∈ I.

Let us now formalize a few properties on the solution of the Lasso solution that will be used
throughout.

Remark B.2. For the setting above, we have that

a) ‖(x0 + v)−DϕD(x0 + v)‖2 ≤ (1 + ν),

b) ‖ϕD(x0 + v)‖2 ≤ (1 + ν)2/(2λ),

c) ‖DϕD(x0 + v)‖2 ≤ (1 + ν),

Proof. Remarks a) and b) can be shown by noting that, by definition of the encoder,

1

2
‖(x0 + v)−DϕD(x0 + v)‖22 + λ‖ϕD(x0 + v)‖1 ≤

1

2
‖(x0 + v)‖22 ≤

1

2
(1 + ν)2. (34)

The above follows since the LHS is the minimum function value, attained precisely ϕD(x0 + v),
whereas 1

2‖(x0 + v)‖22 is the function value for the alternative choice of z = 0. The right-most
inequality follows from the triangle inequality on ‖x0 + v‖2.

For remark c), denote x = x0 + v, and note that the minimizer of the above optimization prob-
lem satisfies (as follows from optimality of the minimizer [Mehta and Gray, 2013, Lemma 13 of
Supplementary])

1

2
‖x−DϕD(x)‖22 + λ‖ϕD(x)‖1 =

1

2
‖x‖22 −

1

2
‖DϕD(x)‖22. (35)

We expand the LHS and obtain a lower bound by Cauchy-Schwarz (and dropping the `1 term)

1

2
‖x‖+

1

2
‖DϕD(x)‖22 − xTDϕD(x) + λ‖ϕD(x)‖1 ≥

1

2
‖x‖+

1

2
‖DϕD(x)‖22 − ‖x‖2‖DϕD(x)‖2

(36)

≥ 1

2
‖x‖+

1

2
‖DϕD(x)‖22 − (1 + ν)‖DϕD(x)‖2

(37)

Thus, together with (35), we have that ‖DϕD(x + v)‖2 ≤ (1 + ν).

Lemma B.3. If ‖D−D′‖ ≤ ε ≤ 2λ/(1 + ν)2, then

max
v∈∆ν

∣∣‖DϕD(x0 + v)‖22 − ‖D′ϕD′(x0 + v)‖22
∣∣ ≤ 5ε

2λ
(1 + ν)2. (38)

The proof mimics that in [Mehta and Gray, 2013, Lemma 10-11], though accommodating for the
adversarial perturbation. We include it here for completeness. Note that the above assumption on
ε ≤ 2λ/(1 + ν)2 is mild, and it will hold under the setting of later lemmata.

Proof. Denote x = x0 + v. Let us further denote the optimal value attained by the encoders with
one and other model as

v∗D = min
z

1

2
‖x−Dz‖22 + λ‖z‖1,

v∗D′ = min
z

1

2
‖x−D′z‖22 + λ‖z‖1.
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Then, since this cost is only increased if using a different representation, we have that:

v∗D′ ≤
1

2
‖x−D′ϕD(x)‖22 + λ‖ϕD(x)‖1 (39)

=
1

2
‖x−D′ϕD(x) + (D−D)ϕD(x)‖22 + λ‖ϕD(x)‖1 (40)

≤1

2
‖x−DϕD(x)‖22 + |〈x−DϕD(x), (D−D′)ϕD(x)〉|+ 1

2
‖(D−D′)ϕD(x)‖22 + . . .

(41)
· · ·+ λ‖ϕD(x)‖1 (42)

≤v∗D + ‖x−DϕD(x)‖2‖D−D′‖2‖ϕD(x)‖2 +
1

2
(‖D−D′‖2‖ϕD(x)‖2)

2 by C.Swz.

(43)

≤v∗D + (1 + ν)ε
(1 + ν)2

2λ
+

1

2

(
ε(1 + ν)2

2λ

)2

by Remark B.2 (44)

We further simplify the expression above by noting that ν < 1 and that ε(1+ν)2

2λ ≤ 1 by assumption,
obtaining

v∗D′ ≤ v∗D +
5ε

4λ
(1 + ν)2. (45)

Thus, from this (and a symmetric argument) follows that

|v∗D′ − v∗D| ≤
5ε

4λ
(1 + ν)2. (46)

Lastly, recall from Eq. (35) that v∗D = 1
2‖x‖

2
2 − ‖DϕD(x)‖22. Thus, using this expression for v∗D

and v∗D′ above, we get

∣∣‖DϕD(x)‖22 − ‖D′ϕD′(x)‖22
∣∣ ≤ 2 |v∗D′ − v∗D| ≤

5ε

2λ
(1 + ν)2. (47)

We now show that if the dictionaries are close, then the reconstructions from one and other encoded
representation are not too far either.

Lemma B.4. If ‖D− D̃‖ ≤ ε ≤ 2λ/(1 + ν)2, then

max
v∈∆ν

‖DϕD(x0 + v)−DϕD̃(x0 + v)‖22 ≤
25ε

λ
(1 + ν)2. (48)
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Proof. For simplicity, denote x = x0 + v, as well as α = ϕD(x) and α̃ = ϕD̃(x), where
‖D− D̃‖2 ≤ ε. We first upper bound

∣∣‖Dα‖22 − ‖Dα̃‖22
∣∣ by a sequence of algebraic manipulations:∣∣‖Dα‖22 − ‖Dα̃‖22

∣∣ ≤ ∣∣∣‖Dα‖22 − ‖D̃α̃‖22
∣∣∣+
∣∣∣‖Dα̃‖22 − ‖D̃α̃‖22

∣∣∣ ±‖D̃α̃‖22, triang. inq.

(49)

Lemma B.3, ±D̃ ≤ 5ε

2λ
(1 + ν)2 +

∣∣∣〈Dα̃, (D− D̃ + D̃)α̃〉 − 〈D̃α̃, D̃α̃〉
∣∣∣ (50)

=
5ε

2λ
(1 + ν)2 +

∣∣∣〈Dα̃, (D− D̃)α̃〉+ 〈Dα̃− D̃α̃, D̃α̃〉
∣∣∣ (51)

by ±D =
5ε

2λ
(1 + ν)2 +

∣∣∣〈Dα̃, (D− D̃)α̃〉+ 〈Dα̃− D̃α̃, (D̃−D + D)α̃〉
∣∣∣
(52)

=
5ε

2λ
(1 + ν)2+

∣∣∣〈Dα̃, (D− D̃)α̃〉+ 〈(D− D̃)α̃,Dα̃〉 − 〈(D− D̃)α̃, (D− D̃)α̃〉
∣∣∣

(53)

≤ 5ε

2λ
(1 + ν)2 + 2

∣∣∣〈Dα̃, (D− D̃)α̃〉
∣∣∣ by dropping −‖(D− D̃)α̃‖22

(54)

≤ 5ε

2λ
(1 + ν)2 + 2‖Dα̃‖2‖D− D̃‖2‖α̃‖2 by C.S. and operator norm

(55)

≤ 5ε

2λ
(1 + ν)2 + 2

ε

2λ
(1 + ν)2‖Dα̃‖2 by Remark B.2 (56)

The term ‖Dα̃‖2 cannot be directly bounded via Remark B.2 because α̃ is the representation
computed via D̃ (not D). Instead, by letting ∆ = D − D̃, we can simplify the above bound as
‖Dα̃‖2 ≤ ‖D̃α̃‖2 + ‖∆α̃‖2 ≤ (1 + ν) + ε(1 + ν)2/(2λ) ≤ 2 + 1 = 3. Then, resuming above,

∣∣‖Dα‖22 − ‖Dα̃‖22
∣∣ ≤ 5ε

2λ
(1 + ν)2 +

6ε

2λ
(1 + ν)2 =

11ε

2λ
(1 + ν)2. (57)

Now, by definition of α (as the minimizer of the Lasso problem), we have that

v∗D(x) =
1

2
‖x−Dα‖22 + λ‖α‖1 ≤

1

2

∥∥∥∥x−D

(
α + α̃

2

)∥∥∥∥2

2

+ λ

∥∥∥∥α + α̃

2

∥∥∥∥
1

. (58)

We now expand the RHS above through the same algebraic manipulations:

v∗D(x) ≤ 1

2

∥∥∥∥x−D

(
α + α̃

2

)∥∥∥∥2

2

+ λ

∥∥∥∥α + α̃

2

∥∥∥∥
1

(59)

=
1

2

(
‖x‖22 − 〈x, (Dα + Dα̃)〉+

1

4
‖Dα + Dα̃‖22

)
+ λ

∥∥∥∥α + α̃

2

∥∥∥∥
1

(60)

=
1

2
‖x‖22 −

1

2
〈x,Dα〉 − 1

2
〈x,Dα̃〉+

1

8

(
‖Dα‖22 + ‖Dα̃‖22 + 2〈Dα,Dα̃〉

)
+ λ

∥∥∥∥α + α̃

2

∥∥∥∥
1

(61)

≤ 1

2
‖x‖22 −

1

2
〈x,Dα〉 − 1

2
〈x,Dα̃〉+

1

4
‖Dα‖22 +

1

4
〈Dα,Dα̃〉+ . . . (62)

· · ·+ λ

2
‖α‖1 +

λ

2
‖α̃‖1 +

11

16

ε

λ
(1 + ν)2, (63)

where the last step follows by adding and subtracting ‖Dα‖22 and employing the bound obtained
above in (57). Now, from Eq. (35), we can write

λ‖α‖1 = 〈x−Dα,Dα〉 = 〈x,Dα〉 − ‖Dα‖22. (64)
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The expression for ‖α̃‖1 is expanded similarly but then upper bounded via Lemma B.3 by adding
and subtracting ‖Dα‖22:

λ‖α̃‖1 = 〈x− D̃α̃, D̃α̃〉 ≤ 〈x, D̃α̃〉 − ‖Dα‖22 +
5ε

2λ
(1 + ν)2 (65)

= 〈x,Dα̃〉+ 〈x, (D̃−D)α̃〉 − ‖Dα‖22 +
5ε

2λ
(1 + ν)2 by ±D

(66)

by C.S. ≤ 〈x,Dα̃〉+ ‖x‖2‖D̃−D‖2‖α̃‖2 − ‖Dα‖22 +
5ε

2λ
(1 + ν)2 (67)

≤ 〈x,Dα̃〉+ (1 + ν)ε
(1 + ν)2

2λ
− ‖Dα‖22 +

5ε

2λ
(1 + ν)2 (68)

≤ 〈x,Dα̃〉 − ‖Dα‖22 +
7ε

2λ
(1 + ν)2. (69)

Thus, we can now upper bound the expression for v∗D in Eq. (35) by combining Eq. (62), (64) and
(69) as follows. From Eq. (35) and the bound in Eq. (62) we get:

v∗D =
1

2
‖x‖22 −

1

2
‖Dα‖22 (70)

≤1

2
‖x‖22 −

1

2
〈x,Dα〉 − 1

2
〈x,Dα̃〉+

1

4
‖Dα‖22 +

1

4
〈Dα,Dα̃〉+ . . . ... (71)

· · ·+ λ

2
‖α‖1 +

λ

2
‖α̃‖1 +

11

16

ε

λ
(1 + ν)2. (72)

Replacing now the expression for λ‖α‖1 from (64) and the upper bound for λ‖α̃‖1 from (69):

v∗D =
1

2
‖x‖22 −

1

2
‖Dα‖22 ≤

1

2
‖x‖22 −

3

4
‖Dα‖22 +

1

4
〈Dα,Dα̃〉+

39

16

ε

λ
(1 + ν)2, (73)

which leads to

−1

2
‖Dα‖22 ≤ −

3

4
‖Dα‖22 +

1

4
〈Dα,Dα̃〉+

39

16

ε

λ
(1 + ν)2, (74)

and so
‖Dα‖22 ≤ 〈Dα,Dα̃〉+

39

4

ε

λ
(1 + ν)2. (75)

Finally, with this expression we can now bound the distance

‖Dα−Dα̃‖22 = ‖Dα‖22 + ‖Dα̃‖22 − 2〈Dα,Dα̃〉 (76)

≤ ‖Dα‖22 + ‖Dα̃‖22 − 2‖Dα‖22 +
39

2

ε

λ
(1 + ν)2 by the expression above

(77)

= ‖Dα̃‖22 − ‖Dα‖22 +
39

2

ε

λ
(1 + ν)2 (78)

≤ 25
ε

λ
(1 + ν)2, (79)

where the last inequality follows from Eq. (57).

We will now show that if the dictionaries are close enough and if the solution of one of them was at
most s-sparse and has a positive encoder gap, then the solution with the perturbed model retains the
sparsity. This is inspired by the result in [Mehta and Gray, 2013]. However, because of the adversarial
perturbation, extra work is required to provide a condition on the unperturbed gap, i.e. that which
will withstand adversarial energy-bounded perturbation. The following Lemma will be necessary to
show the result:
Lemma B.5. If ‖v‖2 ≤ ν, then

‖DϕD(x)−DϕD(x + v)‖22 ≤ ν2. (80)
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Let us postpone the proof of this result for later. We are now ready to state and prove the preservation
of sparsity result:
Lemma B.6. (Preservation of sparsity under model deviation and adversarial perturbations) Con-
sider ϕD(x0 + v), for ‖v‖2 ≤ ν, and an alternative dictionary D̃ so that ‖D − D̃‖2 ≤ ε ≤
2λ/(1 + ν)2. If there exist a set of inactive (p− s) atoms I so that

|DT
i (x0 −DϕD(x0))| < λ− τs (81)

for all i ∈ I, and

τs > 2ν +
√
ε

(√
25

λ
(1 + ν) + 2

(
(1 + ν)

λ
+ 1

))
, (82)

then [ϕD̃(x0 + v)]i = 0 ∀i ∈ I, where (reminder)

ϕD̃(x0 + v) = arg min
z

1

2
‖(x0 + v)− D̃z‖22 + λ‖z‖1. (83)

Proof. Let x = x0 + v, as well as α = ϕD(x), α̃ = ϕD̃(x), and let I be the set of (p− s) inactive
atoms with positive gap τs.

In order for the inactive set of atoms I to remain inactive, we need to show that ∀i ∈ I,∣∣∣〈D̃i,x− D̃α̃〉
∣∣∣ < λ.

Consider the following upper bound to the LHS above:∣∣∣〈D̃i,x− D̃α̃〉
∣∣∣ ≤ ∣∣∣〈Di,x− D̃α̃〉

∣∣∣+ ‖D̃i −Di‖2‖x− D̃α̃‖2 by ±Di and C.S. (84)

≤
∣∣∣〈Di,x− D̃α̃〉

∣∣∣+ ε(1 + ν) (85)

≤ |〈Di,x−Dα̃〉|+
∣∣∣〈Di, (D̃−D)α̃〉

∣∣∣+ ε(1 + ν) by ±D and triang ineq.

(86)

≤ |〈Di,x−Dα̃〉|+ ‖Di‖2‖D̃−D‖2‖α̃‖2 + ε(1 + ν) (87)

≤ |〈Di,x−Dα̃〉|+ ε

2λ
(1 + ν)2 + ε(1 + ν). by Remark B.2 and unit-norm columns

(88)

Thus, it is sufficient to show that

|〈Di,x−Dα̃〉| < λ− ε(1 + ν)

(
(1 + ν)

2λ
+ 1

)
. (89)

Let us now replace x, α and α̃ by their definitions and upper bound the left hand side above by using
Lemma B.4 and Lemma B.5

|〈Di,x−Dα̃〉| = |〈Di, (x0 + v)−DϕD̃(x0 + v)〉| (90)

≤
∣∣〈Di, (x0 + v)−DϕD(x0 + v)

∣∣+ |〈Di,DϕD(x0 + v)−DϕD̃(x0 + v)| by ±α
(91)

≤
︷ ︸︸ ︷
|〈Di,x0 −DϕD(x0 + v)|+ ‖Di‖2‖v‖2 + ‖Di‖2‖DϕD(x0 + v)−DϕD̃(x0 + v)‖2

(92)

≤ |〈Di,x0 −DϕD(x0 + v)|+ ν +

√
25ε

λ
(1 + ν) by Lemma B.4 (93)

by ±ϕD(x0) ≤ |〈Di,x0 −DϕD(x0)|+ ‖Di‖2‖DϕD(x0)−DϕD(x0 + v)‖2 + ν +

√
25ε

λ
(1 + ν)

(94)

≤ |〈Di,x0 −DϕD(x0)|+ 2ν +

√
25ε

λ
(1 + ν) by Lemma B.5 (95)

<λ− τs + 2ν +

√
25ε

λ
(1 + ν) (96)
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where the last step follows from the assumption of the encoder gap in Eq. (81). Thus, merging with
(89), we require

−τs + 2ν +

√
25ε

λ
(1 + ν) < −ε(1 + ν)

(
(1 + ν)

2λ
+ 1

)
,

implying that as long as

τs > 2ν +

√
25ε

λ
(1 + ν) + ε(1 + ν)

(
(1 + ν)

2λ
+ 1

)
(97)

the inactive set I remains inactive. For the sake of simplicity, we will make the above condition more
stringent. Using the fact that ν < 1 and that ε ≤ 1. Thus,

τs > 2ν +
√
ε

(√
25

λ
(1 + ν) + 2

(
(1 + ν)

2λ
+ 1

))
. (98)

The lemma above is central, as it guarantees that a sparsity of up to s non-zeros is retained under
model deviations and adversarial perturbations. Lemma B.3 now follows directly from the proof
of Theorem 4 in [Mehta and Gray, 2013], albeit with the constants provided by Remark B.2 which
account for the perturbation v.

We owe the proof of Lemma B.5. This Lemma will also be instrumental in the proof of Theorem C.1.
We now re-state it, and proceed to prove it.

Lemma B.7. 5.4 (Norm Stability under adversarial perturbations)
If ‖v‖2 ≤ ν, then

‖DϕD(x)−DϕD(x + v)‖22 ≤ ν2 (99)

Proof. We will re-formulate the Lasso problem as an equivalent quadratic program, and then utilize
optimality properties of its solution. Let us define the vector z̄ ∈ R3p such that z̄ = [z, z+, z−]T ,
with z+ and z− containing all positive and negative elements in z, respectively. Define then the
following quadratic cost

Q(z̄,x) =
1

2
z̄T
[
DTD 0p×2p

02p×p 02p×2p

]
z̄− z̄T

[
DT

02p×d

]
x + λ[0Tp ,1

T
2p]z̄. (100)

With this definition, the Lasso problem can be re-formulated as the following quadratic program:

min
z̄∈R3p

Q(z̄,x) subject to z̄ ∈ K = {z̄ : z = z+ − z−; z+, z− ≥ 0}. (101)

Let us denote Q(z̄) = Q(z̄,x0) and Q̃(z̄) = Q(z̄,x0 + v) for short, and β and β̃ as the solution
to the quadratic program with Q(z̄) and Q̃(z̄), respectively. Moreover, denote α = ϕD(x0) and
α̃ = ϕD(x0 + v). With this notation, note that

β =

 α
α+

α−

 and β̃ =

 α̃
α̃+

α̃−

 .
Note that the above problem in (101) is the minimization of a convex differentiable function over a
convex set and therefore, for every z̄ ∈ K,

(z̄− β)T∇zQ(β) ≥0 (102a)

(z̄− β̃)T∇zQ̃(β̃) ≥0. (102b)

This gradient can be written as

∇Q(z̄) =

[
DTD 0p×2p

02p×p 02p×2p

]
z̄−

[
DT

02p×d

]
x + λ

[
0p
12p

]
. (103)
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Now, choosing β̃ as z̄ in (102a), β as z̄ in (102b) and subtracting one from the other, we get

(β̃ − β)T
(
∇Q(β)−∇Q̃(β̃)

)
≥ 0 (104)

which after employing the definitions for β, β̃,∇Q and ∇Q̃ results in

(α̃−α)T
(
DTD(α− α̃) + DTv

)
≥0. (105)

The lemma is proven by finally expanding the above and employing Cauchy-Schwarz:

‖Dα̃−Dα‖22 ≤(α̃−α)TDTv ≤ ‖v‖2‖Dα̃−Dα‖2 ≤ ν‖Dα̃−Dα‖2. (106)

C Robustness Certificate

Theorem C.1 (Robustness certificate for binary predictive sparse coding). Consider the predictor
fD,w(x), computed via ϕD(x) with an encoder gap of τs(x) and ηs-RIP dictionary D. Then,

sign(fD,w(x)) = sign(fD,w(x + v)), ∀v : ‖v‖2 ≤ ν (107)

so long as ν < min{ τs(x)/2 , ρx
√

1− ηs }.

We now proceed to prove Theorem C.1. We first must show that if there exist a positive encoder
gap for a particular inactive set, this set will remain inactive under adversarial perturbations. This
follows as a particular case of Lemma B.6 with ε = 0, i.e. when there is no difference between the
dictionaries: ‖D− D̃‖2 = 0. We re-state it here for completeness in this simplified form.

Corollary C.2. Consider ϕD(x0) and ϕD(x0 + v), for ‖v‖2 ≤ ν. If there exist a set of inactive
(p− s) atoms I in ϕD(x0) so that

|DT
i (x0 −DϕD(x0))| < λ− τs (108)

for all i ∈ I, and
τs > 2ν, (109)

then [ϕD̃(x0 + v)]i = 0 ∀i ∈ I.

With this result, we now present a Lemma guaranteeing that the original and adversarially perturbed
representation are not too far.

Lemma 5.2 (Stability of representations under adversarial perturbations). Let ϕD(x0) and
ϕD(x0 + v), for ‖v‖2 ≤ ν. If ϕD(x0) has an encoder gap τs > 2ν, and the dictionary is RIP with
constant ηs, then

‖ϕD(x0)− ϕD(x0 + v)‖2 ≤
ν√

1− ηs
. (110)

Proof. The proof of this result is now simple given our previous developments. On one hand, we
have from Lemma B.7 that

‖DϕD(x0)−DϕD(x0 + v)‖22 ≤ ν2. (111)

On the other hand, since ϕD(x0) has an encoder gap of τs > 2ν, there exist an inactive set of (p− s)
atoms that is retained in ϕD(x0 + v) by Corollary C.2. Thus, ‖ϕD(x0)− ϕD(x0 + v)‖0 ≤ s. As a
result, since D is ηs-RIP, we can write

‖DϕD(x0)−DϕD(x0 + v)‖22 ≥ (1− ηs)‖ϕD(x0)− ϕD(x0 + v)‖22. (112)

Combining the lower and upper bounds proves the claim.

We are now ready to prove the result in Theorem C.1.
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Proof. The proof is simple and inspired by the analysis in [Romano et al., 2019]. Recall that the
hypothesis is implemented by fD,w(x) = 〈w, ϕD(x)〉. Since ϕD(x) has an encoder gap τs ≥ 2ν,
then it follows from the above Lemma 5.2 that

‖ϕD(x0)− ϕD(x0 + v)‖2 ≤
ν√

1− ηs
. (113)

Without loss of generality, consider the case when fD,w(x) > 0. Let us lower bound fD,w(x + v)
as follows:

〈w, ϕD(x + v)〉 = 〈w, ϕD(x)〉+ 〈w, ϕD(x + v)− ϕD(x)〉 (114)
≥ ρx‖w‖2 − |〈w, ϕD(x + v)− ϕD(x)〉| (115)

≥ ‖w‖2
(
ρx −

ν√
1− ηs

)
. (116)

(117)

Therefore, as long as ρx > ν√
1−ηs

(and w 6= 0), sign(fD,w(x)) = sign(fD,w(x + v)).

Theorem 5.1 (Robustness Certificate for multiclass supervised sparse coding). Let ρx be the mul-
ticlass classifier margin of fD,w(x), with ρx > 0, composed of an encoder with gap of τs(x) and
ηs-RIP dictionary D. Furthermore, denote by cW = maxi6=j ‖Wi −Wj‖2 Then,

arg max
j∈[K]

[WT fD,w(x)] = arg max
j∈[K]

[WT fD,w(x + v)], ∀ v : ‖v‖2 ≤ ν (118)

so long as ν ≤ min{τs(x)/2, ρx
√

1− ηs/cW}.

Proof. Consider a sample with a positive multiclass margin:

ρx = WT
y ϕD(x)−max

j 6=y
WT

j ϕD(x) > 0,

and let us lower-bound the margin on the perturbed input fD,w(x + v) as follows:

ρx+v =WT
y ϕD(x + v)−max

j 6=y
WT

j ϕD(x + v) (119)

= min
j 6=y
〈Wy −Wj , ϕD(x + v)〉 (120)

≥ min
j 6=y
〈Wy −Wj , ϕD(x)〉 − ‖Wy −Wj‖2‖ϕD(x + v)− ϕD(x)‖2 (121)

≥ ρx − cW ν/
√

1− ηs, (122)

where the second-to-last inequality follows from hypothesis and Lemma 5.2. Therefore, as long as
ρx >

cWν√
1−ηs

, ρx+v > 0.

D Numerical Experiments Details

The models on images (MNIST and CIFAR10) were trained by minimizing the following regularized
empirical risk

min
W,D

1

m

m∑
i=1

` (yi, 〈W, ϕD(xi)〉) + α‖I−DTD‖2F + β‖W‖2F , (123)

over the training set with m samples. We use the default training/testing split provided in the datasets.
The difficulty in this optimization problem resides in computing the derivative of this loss w.r.t. the
dictionary D via the solution of the encoder ϕD(x). Our approach relies on using an approximate
but differentiable solution for ϕD(x): we compute the features (by solving the corresponding Lasso
problem) via Fast Iterative Soft Thresholding [Beck and Teboulle, 2009]. This algorithm enjoys a fast
convergence rate of O(1/T 2), and we use T = 25 iterations within the optimization problem above.
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We found it useful to pre-train the model, D, in an unsupervised manner first. This is done by simply
minimizing a regression problem of the form

min
D

1

m

m∑
i=1

‖xi −DϕD(xi)‖22.

Additionally, when performing the supervised learning stage, if progressively increase the value
of λ through the iterations until the pre-specified target value (which where set to 0.2 and 0.3 in
Figure 2c and Figure 2c, respectively). We employ Adam [Kingma and Ba, 2014] with a mini-batch
size of 128, and train for 35 epochs. The dictionary is normalized after each weight-update. All other
hyper-parameters are detailed in the accompanying code.

At deployment time, however, it is important that the solution computed by ϕD(x) is exact, because
the encoder gap τs is defined in terms of these optimality conditions. Therefore, we use FISTA to
find the estimated support of the solution, and then compute the exact solution analytically given this
support.

All experiments were coded in Python and employing pytorch for GPU acceleration. All other
employed packages are detailed in the accompanying code.
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