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Abstract

Koopman operator theory, a powerful framework for discovering the underlying
dynamics of nonlinear dynamical systems, was recently shown to be intimately
connected with neural network training. In this work, we take the first steps in
making use of this connection. As Koopman operator theory is a linear theory,
a successful implementation of it in evolving network weights and biases offers
the promise of accelerated training, especially in the context of deep networks,
where optimization is inherently a non-convex problem. We show that Koopman
operator theoretic methods allow for accurate predictions of weights and biases of
feedforward, fully connected deep networks over a non-trivial range of training
time. During this window, we find that our approach is >10x faster than various
gradient descent based methods (e.g. Adam, Adadelta, Adagrad), in line with
our complexity analysis. We end by highlighting open questions in this exciting
intersection between dynamical systems and neural network theory, and additional
methods by which our results may be generalized.

1 Introduction

Despite their black box nature, the training of artificial neural networks (NNs) is a discrete dynamical
system. During training, weights/biases evolve along a trajectory in an abstract weight/bias space, the
path determined by the implemented optimization algorithm, the training data, and the architecture.
This dynamical systems picture is familiar: many introductions to optimization algorithms, such as
gradient descent (GD), visualize training as a process where weights/biases change iteratively under
the influence of the loss landscape. Yet, while dynamical systems theory has provided insight into the
behavior of many complex systems, its application to NNs has been limited.

Recent advances in Koopman operator theory (KOT) have made it a powerful tool in studying the
underlying dynamics of nonlinear systems in a data-driven manner [1–8]. This begs the question, can
KOT be used to learn and predict the dynamics present in NN training? If so, can such an approach,
which we call Koopman training, afford us benefits that traditional NN training approaches, like
backpropagation, cannot? This viewpoint was recently proposed in work by one of the authors, which
demonstrated that KOT and NN training are intimately connected [9]. While significant effort has
been dedicated to using NNs to discover important features of KOT [10–12], this work was, to our
knowledge, the first application of KOT for the training of NNs (see Sec. 1.1).

An appealing aspect of KOT is that it is a linear theory for nonlinear dynamical systems. In our
case, this means that evolving NN weights/biases using Koopman operators involves only matrix
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computations. We show, under certain mild assumptions, how these computations can be considerably
cheaper than standard NN training methods. Thus, we show how successful application of KOT to
NNs could lead to significantly accelerated training techniques. We demonstrate this potential in the
context of feedforward, fully connected NNs. We emphasize that our methods are applicable to a
wide range of NNs beyond the specific ones we study - indeed they should generalize well to a broad
variety of systems that make use of iterative optimization methods.

This work is structured as follows. We begin with a brief introduction to KOT. We describe and
deepen the existing argument that NN training can be viewed as a process that evolves weights/biases
through the action of a Koopman operator. We then discuss different implementations of Koopman
training, introducing a novel approach of partitioning the Koopman operator approximation. This
idea is crucial for ensuring that the run time complexity of Koopman training is comparable or better
than that of the standard training methods. We then present the results of Koopman training two
different feedforward, fully connected, deep NNs: an NN differential equation (DE) solver and a
classifier trained on the MNIST data set. These NNs show significant variation in architecture sizes,
objectives, optimizers, learning rate, etc, lending credence to our assertions that Koopman training is
a versatile and powerful technique. Our basic Koopman training implementations successfully predict
weight/bias evolutions over a non-trivial number of training steps, with computational costs one to
two orders of magnitude smaller than the standard methods we compared to. We end by discussing
future problems of interest in Koopman training and the potential more advanced KOT methods offer
in extending our results.

1.1 Related work

Earlier this year, one of the authors showed that the renormalization group (RG), a widely used
tool in theoretical physics, is a Koopman operator, and that KOT could help speedup computations
of relevance in the field (e.g. critical exponent calculations) [13]. These results were achieved by
viewing the RG as a discrete dynamical system in “algorithmic time”. The other author proposed
a similar view for NN training and showcased how it might lead to more efficient optimization
methods [9]. By suggesting a partitioning of the full weight/bias space into a collection of smaller
sub-spaces, [9] showed that Koopman training would be an economical optimization technique, if it
could accurately model weight/bias evolutions.

Unbeknownst (and in parallel) to us, general work connecting KOT to algorithms was recently
explored, and it was conjectured that KOT could be used to speed up NN training [14]. However,
[14] focused on solving non-NN numerical problems - we provide a full fledged study of optimizing
practically useful NNs. Additionally, we provide a complexity analysis and prove how/when Koopman
training is bound to provide computational savings over established methods.

Since our work, two other manuscripts have studied the application of KOT to NNs [15, 16]. In
[15], the authors showed how KOT could be used for weight pruning and estimating the number of
layers necessary to achieve a certain loss. In [16], the authors investigated how KOT could be used
to directly train NNs. Among other differences, a key distinction between [16] and this work is the
way in which KOT was implemented. Further, [16] was not able to achieve significant computational
cost reductions, while our approach clearly demonstrates how/when it is expected to have a run time
complexity better than that of standard optimization algorithms.

There has been little work in machine/deep learning that has leveraged the perspective that NN
training is a discrete dynamical system [17, 18]. Our work shares themes with [17–22], all of which
took general dynamical systems view points on NN problems, although only [21] looked at the
weights directly. However, the focus of [21] was on the macroscopic characteristics of the weight
trajectories, while we examined the specific evolution of weights/biases and made predictions using
KOT. Finally, recent work has argued that backpropagation is a functor [23]. As Koopman operators
are also functors, our work and [23] share themes, but no practical applications were pursued in [23].
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2 KOT and its connection to NN training

2.1 KOT background

KOT is a dynamical systems theory developed by Bernard Koopman in 1931, and then expanded
upon by Koopman and John von Neumann in 1932 [24, 25]. In the past two decades, it has had a
resurgence due to newly developed analytical and data driven methods [1–8, 26–31].

We begin with the classical perspective on dynamical systems. Let some discrete dynamical system
(M; t; T ) be parametrized by the state space variables [w1; w2; w3; ::; wN ] � w 2M � RN , where
the evolution of w over discrete time t 2 Z is governed by the dynamical map T :M!M

w(t+ 1) = T (w(t)) (1)

Tracking the evolution of w allows for knowledge of every quantity of interest in the system. To
simplify discussions here, we assume the systems under study are autonomous (T is not explicitly
dependent on t). However, generalizations of KOT to non-autonomous systems are available [32].

KOT takes a different perspective, namely that of studying the observables (state space functions) of
(M; t; T ). Let g :M! C be some observable of interest. Here, we assume that g 2 F = L2(M; �),
where jj�jjM =

R
M �(w)dw = 1 and � is a positive, single valued analytic function that supplies

the measure for the functional space. The Koopman operator is defined to be the object U : F ! F ,
that supplies the following action for g 2 F ,

Ug(w) = g � T (w) (2)

Eq. 2 shows that U is an object that lifts our perspective from the original, possibly nonlinear,
dynamical system (M; t; T ) to a new, certainly linear, dynamical system (F ; t; U ), thanks to the
linearity inherent to the composition g � T . Extending the definition to describe the associated
Koopman operator U : Fk ! Fk for some vector observable g � [g1; g2; :::; gk] is also natural

Ug(w) = g � T (w) (3)

While the linearity of U is an obvious advantage of working under this perspective, difficulties arise
from the fact that U is usually an infinite dimensional operator. However, a number of powerful,
data-driven methods based on rigorous theory have emerged to accurately approximate the action of
U (e.g. [3, 10, 29–31]). The finite section method is one such numerical technique: it constructs an
object ~U to approximate the action of U by using the available time series data [29, 31].

Let us say we have n time series values for m unique observables g1; g2; :::; gm. Let the vec-
tor g(t) = [g1(t) g2(t) ::: gm(t)]†. Define matrix F =

h
g(1) g(2) ::::: g(n � 1)

i
and F ′ =h

g(2) g(3) ::::: g(n)
i

(F ′ is F shifted one time step ahead). The finite section is

~U = F ′F+ (4)

where F+ = (F †F )−1F † is the Moore-Penrose pseudo-inverse and y is the transpose.

2.2 NN training as a dynamical system

As noted in Sec. 1, NN training is a discrete dynamical system. Let w � [w1; w2; :::; wN ] 2M �
RN be the N weights/biases of the NN and T be the training algorithm (e.g GD). Then

w(t+ 1) = T (w(t)) (5)

describes the training of the NN, where t is the number of completed training iterations. By definition
(Eq. 1), this describes a discrete dynamical system parameterized by w, with t serving as the
temporal parameter and the training algorithm T supplying the temporal map (also called the cascade
or evolution function).

2.3 The action of the Koopman operator on NN weights

An important vector observable of (M; t; T ) is the identity observable, I(w) = w. By definition,

w(t+ 1) = Uw(t) (6)
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