
We humbly thank all of our reviewers for their time and effort in considering our paper. We are encouraged by the1

general appreciation of the simplicity and wide applicability of GradDrop in our diverse test scenarios. If given the2

privilege of proceeding, we will address all comments (including any we couldn’t address here) within the final version.3

[R1] We want to reassure R1 that our toy example methods are well-trained (and repeated 200 times), but SGD/PCGrad4

perform poorly due to the 1D setting. E.g. it is well known that SGD performs poorly with local minima, and our 1D5

setting manifests this drawback in a dramatic way. In regards to Table 2, our improvements lie well outside error bars6

and milder improvements on CelebA are typical (e.g. see [34] and [41]). We included fewer setting descriptions in7

Section 4.3 because most details were standard, but please reference Section A.4 for a fuller description. We can also8

certainly apply GradDrop to NYUv2, but chose the Waymo Open Dataset as it is more modern, larger, and difficult.9

[R2] Regarding experiment stats in Tables 3/4, we did perform multiple runs, and we will include the error bars in a10

final version. But we should mention that our method’s improvements lie well outside any error bars. We did not include11

per-method variances as they were similar across methods, but can clarify that within the paper. We also appreciate12

your suggestion on the synthetic experiments; we can already show that more closely overlapping sines within our toy13

setting will reduce the performance gap between methods, and will include such a study in a revision.14

[R3] First, there may have been a small misunderstanding regarding page limits, as the Broader Impacts section is not15

included in the 8-page limit. But more importantly, new Grad Clipping (GC) and Grad Penalty (GP) baselines are shown16

in Table I. GradDrop handily beats both methods. During training, GP tends to converge faster, but often converges to a17

worse value. GP is also ≈30% slower per step than GradDrop on CelebA, and ≈45% slower on CIFAR-100. For 3D18

detection, we cannot use GP as it takes up too much memory, but in fact GC was already in use in our main paper19

results. So, GradDrop not only beats GC for 3D detection, but can be applied together with GC in synergistic fashion.20

Indeed, we also tested GC+GradDrop on CIFAR-100 and it beats GC-Only by 0.3% accuracy (not shown in Table I).21

[R4] Regarding pre-multiplication, the 1.0 initialization is necessary as otherwise the layer nontrivially transforms its22

inputs and is no longer “virtual." Please also see additional discussion in A.1. Thanks for citing Tseng et al; although23

this counts as contemporaneous work, we will add discussion in a revision but also note that despite the cosmetic24

similarity of randomly dropping gradients, their work operates on a specific metalearning setting, assumes a random25

distribution of added grads, and does not consider the sign of the gradient, which is at the heart of multitask gradient26

conflict. We thus believe GradDrop is significantly different and provides important insight not present elsewhere.27

[R1, R4] Regarding MGDA/GradNorm performance, please see Section A.5. We also agree that combining methods is28

optimal only sometimes (e.g. CIFAR-100), but just having this option is compelling. As to the crux of GradDrop’s29

efficacy: Proposition 2: Given continuous, lower-bounded component loss functions Li(w) with local minima w(i)30

and a GradDrop update ∇(GD), then to second order around each w(i), E[|∇(GD)L|2] is monotonically increasing31

w.r.t. |w − w(i)|,∀i. Sketch of proof: Expand Li around w(i) to second order to show that |∇Li| increases w.r.t.32

|w −w(i)|.� As R4 mentions, we do not claim convergence properties, but GradDrop produces larger gradients when33

any loss term is far from a minimum. Thus, if a model converges, the convergence point likely has better overlap34

between component loss minima. Similarly, any “minimum hopping" as posited by R4 will favor overlapping minima.35

[R1, R4] More on why we outperform SGD and Random GradDrop (RGD): Proposition 3: Suppose for 1D loss36

function L =
∑

i Li(w) an SGD grad reduces total loss by a linear estimate |∆L(SGD)|. For GradDrop (GD) with prob37

keep fn f(x) = x and RGD, we have |∆L(SGD)| = E[|∆L(GD)|] ≥ E[|∆L(RGD)|]. Proof: Set p =
∑
∇i≥0 |∇i|38

and n =
∑
∇i<0 |∇i|. Then E[|∆L(GD)|] = (p − n)(Pp − (1 − P)n) = (p − n)2 = ∆L(SGD) ≥ 0.5(p − n)2 =39

E[|∆L(RGD)|].� Thus, GradDrop preserves SGD statistics on average, but unlike SGD can also detect and penalize40

inconsistent task grads. We also beat RGD both theoretically (Prop 3) and empirically (Table I and main paper Table 3).41

[R1, R2, R3, R4] Thank you all again for your feedback. We believe GradDrop is not only general and practical, but42

also gives new insight into the challenges of multitask optimization that will be of interest to the NeurIPS community.43

Table I: New Baselines. Std dev per metric, CelebA: (±0.02%, ±0.04 and ±0.05) and CIFAR-100: (±0.2%,±0.02)

CelebA CIFAR-100
Method Err Rate (%) ↓ F1max ↑ Test Loss ↓ Err Rate (%) ↓ Test Loss ↓
Baseline 8.71 29.35 8.00 29.8 1.22
Gradient Clipping (GC) R3 8.70 29.34 7.93 29.4 1.22
Gradient Penalty (GP) R3 8.63 29.43 7.96 30.6 1.28
Random GradDrop (RGD) R1, R4 8.60 29.42 7.86 29.6 1.16
Ours 8.52 29.57 7.80 28.9 1.06

https://nips.cc/Conferences/2020/PaperInformation/NeurIPS-FAQ
https://nips.cc/Conferences/2020/PaperInformation/NeurIPS-FAQ
https://nips.cc/Conferences/2020/PaperInformation/NeurIPS-FAQ
https://nips.cc/Conferences/2020/PaperInformation/ReviewerGuidelines

