
A Proof of Theorem 1

Theorem 1 For a generator gθ(s) producing a set of policies over actions {πθ1 , . . . , πθm}, let

˜∇θuMU(gθ|s) ≡ ∇θ log πθ1(ã1|s)Q(s, ã1) +

m∑
i=2

∇θ log πθi (ãi|s)
(
Q(s, ãi)−max

j<i
Q(s, ãj)

)+

,

(1)
where ãi is an action sampled from policy πθi . Then, E

[
˜∇θuMU(gθ|s)

]
= ∇θuMU(gθ|s).

In order to understand the sampled gradient update we need to understand how expectations interact
with stop gradients (⊥).

Remark 1 We can use iterated expectation to remove the stop-gradient in a partial derivative.

∇θE[fθ(⊥(Xθ))] = ∇θE[E[fθ(⊥(X))|X = Xθ]]

= E[∇θE[fθ(⊥(X))|X = Xθ]]

= E[∇θE[fθ(X)|X = Xθ]]

= E[E[∇θfθ(X)|X = Xθ]]

We can now present the proof that the sampled gradient is unbiased.

Proof of Theorem 1. We begin by applying Remark 1 to the unsampled gradient.

∇θuMU(gθ|s) = ∇θE

[
Q(s, a1) +

m∑
i=1

(
Q(s, ai)−⊥

(
max
j<i

Q(s, aj)

))+
]

= ∇θE [Q(s, a1)] +

m∑
i=2

∇θE

[(
Q(s, ai)−⊥

(
max
j<i

Q(s, aj)

))+
]

= ∇θE [Q(s, a1)] +

m∑
i=2

∇θE

[
E

[(
Q(s, ai)−⊥

(
max
j<i

Q(s, aj)

))+∣∣∣∣ai,...,i−1
]]

= ∇θE [Q(s, a1)] +

m∑
i=2

E

[
∇θE

[(
Q(s, ai)−

(
max
j<i

Q(s, aj)

))+∣∣∣∣ai,...,i−1
]]

Let us now look at our expected sampled gradient.

E
[
∇θ ˜uMU(gθ|s)

]
≡ E

[
∇θ log πθ1(ã1|s)Q(s, ã1) +

m∑
i=2

∇θ log πθi (ãi|s)
(
Q(s, ãi)−max

j<i
Q(s, ãj)

)+
]

= E
[
∇θ log πθ1(ã1|s)Q(s, ã1)

]
+

m∑
i=2

E

[
∇θ log πθi (ãi|s)

(
Q(s, ãi)−max

j<i
Q(s, ãj)

)+
]

=
∑
a1

πθ1(a1|s)∇θ log πθ1(a1|s)Q(s, a1)

+

m∑
i=2

∑
a1,...,ai

∏
j<i

πθj (aj |s)

πθi (ai|s)∇θ log πθi (ai|s)
(
Q(s, ai)−max

j<i
Q(s, aj)

)+

1

Using the log-trick, we know∇θπθi (ai|s) = πθi (ai|s)
∇θπθi (ai|s)
πθi (ai|s)

= πθi (ai|s)∇θ log πθi (ai|s). Substi-
tuting, we get,

=
∑
a1

∇θπθ1(a1|s)Q(s, a1)

+

m∑
i=2

∑
a1,...,ai

∏
j<i

πθj (aj |s)

∇θπθi (ai|s)(Q(s, ai)−max
j<i

Q(s, aj)

)+

= ∇θ
∑
a1

πθ1(a1|s)Q(s, a1)

+

m∑
i=2

∑
a1,...,ai−1

∏
j<i

πθj (aj |s)

∇θ∑
ai

πθi (ai|s)
(
Q(s, ai)−max

j<i
Q(s, aj)

)+

= ∇θE [Q(s, a1)]

+

m∑
i=2

∑
a1,...,ai−1

∏
j<i

πθj (aj |s)

∇θE[(Q(s, ai)−max
j<i

Q(s, aj)

)+∣∣∣∣a1...i−1
]

= ∇θE [Q(s, a1)] +

m∑
i=2

E

[
∇θE

[(
Q(s, ai)−max

j<i
Q(s, aj)

)+∣∣∣∣a1...i−1
]]

= ∇θuMU(gθ|s).

.

B Diversity of Generated Continuous Actions

(a) uMU (b) Policy

(c) uMAX (d) uDIVERSITY

Figure B.1: Coverage of actions generated by methods trained on different objectives.

To further understand the behavior of the models, we can examine the ‘coverage’ of the actions
produced by the generators over the 2-dimensional action space (Figure B.1). We define coverage as

2

the region of the action space in which a particular action is generated. Each subplot illustrates the
coverage of actions generated by a model. To produce these plots, we calculated the densities over
the locations of each action over all test cases. The area covered by a particular action is illustrated as
a shaded region where darker regions are areas in which an action is more likely to be generated.

Figure B.1a plots the coverage of the action candidates produced by the marginal utility model over all
test cases. For uMU different actions cover separate regions in the space, i.e., the candidates generated
by marginal utilities are diverse. This contrasts with the actions generated by the policy (Figure B.1b),
which are all concentrated in one region of the action space; if one needs to find an action a outside
this region of the action space, it is unlikely the actions generated by the policy will be near a. Search
algorithms such as UCB will not find a as UCB is restricted to searching amongst the initial set of
generated actions. KR-UCB might find and return a, but it can require a large number of samples to
find a.

As observed in Figure B.1c the model trained while optimizing for uMAX produces a diverse set of
candidate actions. However, likely due to the low density of gradients for uMAX, the actions produced
are specialized in the sense that they cover a small portion of the space. The diversity of actions
generated by MAX can be helpful as they provide a diverse set of starting points for KR-UCB but
could fail to generate a good set of actions for search algorithms such as UCB.

Figure B.1d illustrates the coverage of the actions generated by the objective explicitly tyring the
encourage diversity. While the actions generated cover two very different regions of the action space,
the actions themselves group into clusters within these regions. The amount of clustering is affected
by the tuning parameter. However increasing the diversity in this setting comes at a cost to the overall
performance of search.

C Action Ordering Learnt Using Marginal Utility

Figure C.2: Frequency of action being selected after search.

When using marginal utility as a training objective, the gradients on the actions depend on the order
in which they are produced. As a result, there is an inherent ordering over the actions being produced.
Figure C.2 plots the frequency at which actions have been selected during evaluation. That is, we plot
the counts of the actions selected after search over all test cases. As can be seen, the action that is
selected most frequently is the action that is generated first. There is potential in using this ordering
in the selection policy or for progressive widening of actions in search.

3

	Proof of Theorem 1
	Diversity of Generated Continuous Actions
	Action Ordering Learnt Using Marginal Utility

