
Author Response ("Margins are Insufficient for Explaining Gradient Boosting")1

We thank the reviewers for the time and expertise invested in these reviews.2

Response to Reviewer 2. Addressing the reviewer’s concerns, we wish to stress that while for Gradient Boosters3

(GB) the sigmoid function may be used to define the loss function and to transform the (raw) output prediction of a4

(learned) ensemble into a probability, the sigmoid function is not used when studying margin theory. We compute the5

margin of a an ensemble of base learners ({αi, hi | hi(x) → [−1, 1]}) following classic margin theory (see Section6

2). Loosely speaking, the margin of a point depends on the output of the voting classifier, and does not involve the7

sigmoid function. Formally, for data point xi the margin is
∑n

j=1 αjhj(xi)∑n
j=1 |αj | . Note the final remark of Section 2 of how8

we transform the output of GB algorithms, e.g. LightGBM, to fit this framework. This is unencumbered by the loss9

function minimized in training or how sigmoid may be used to transform the output of the ensemble into to a probability10

distribution by setting P (y = 1 | x) = σ(
∑n
j=1 αjhj(xi)). We also note that as opposed to the margins, this probability11

is not scale-invariant as scaling the weights or adding copies of the base learners provide more extreme probabilities.12

Albeit unconnected to margin theory, the sigmoid function cannot make large changes to the output if the input is only13

changed by a small amount. In fact small changes to the input to the sigmoid function makes even smaller changes to14

the output since the derivative of the sigmoid function is at most 1/4 (and that is only at zero and the norm of derivative15

goes to zero as |x| goes to infinity very fast).16

Regarding the reason the margins are reduced with the number of base regressors in GB, in short this is due to the fact17

that gradient boosters may decide to focus on only a small subset of data in each iteration Consider the margin of a18

fixed data point x, and assume for simplicity that all weights (αj) are 1. Then the margin x is 1
n

∑
i hi(x), where n is19

the number of base learners, which drops towards zero as n increases unless hi(x) remains large (that is, close to 1)20

for all i = 1, . . . , n. Hence, if each round only focuses on a small subset of data points, meaning that the new base21

learner only gives non-negligible prediction on a small subset, then the margin of the remaining points decreases. If this22

happens in each round of boosting, the result is a smaller and smaller margin distribution, and this is what happens in23

the experiments shown in our paper. We will update our description of this argument in Section 3 of our paper to make24

it more clear (alse see the arguments presented in Section 4 under Potentially Much Better).25

We thank the reviewer for the specific comments as well. We will certainly take care of them for the final version.26

Response to Reviewer 1. As the reviewer suggests, the scope of our paper and theoretical contributions are more27

general than gradient boosted trees, as it applies to all voting classifiers irrespective of learning algorithm, including loss28

function optimized, and base learners. The paper investigates how the actual predictions of voting classifiers on the data29

may be very different than {−1, 1}, which is the standard assumption when proving margin bounds. Our theory, and30

margin theory in general, is orthogonal to specifics of the learning algorithm. We will think about ways of rephrasing31

our contributions to make it clearer that it is not only specific to gradient boosters with a concrete loss function. In32

practice, when conducting the numerical experiments, we chose to focus on comparing the classic AdaBoost algorithm33

where the base learner is restricted to map inputs to {−1, 1} with Gradient Boosters that very often returns negligible34

predictions, as this exactly highlight and fits the phenomena we are investigating. We stress, however, that this is a35

special case, and the theoretical results we present are significantly broader.36

For base learners, the same size means the same number of leaves (and no restriction on depth for both algorithms37

compared). We do not consider decision stumps as these are usually not used by GB in practice and lead to inferior38

performance (the default number of leaves for LightGBM is size 31, while XGBoost use a max depth default equal to39

6). Furthermore, with decision stumps, the base classifiers are to weak for the phenomenon with small predictions to40

even occur. That is, with decision stumps, most predictions are very close to {−1, 1}. This is most likely due to the41

fact that decision stumps are incapable of “focusing” on a small subset of training points as discussed above. We will42

elaborate more on this in the final version and if space allows it, we will also include a histogram of predictions when43

using decision stumps.44

In the supplemental material, submitted along with the paper, we included the same experiment on three more data45

sets to give 4 data sets of increasing size to analyze and demonstrate our new theoretical bound on. The observed46

behaviour was completely consistent. The mean validation error and standard deviation for the Forest Cover dataset47

example from the paper are (0.0298, 0.00037) for LightGBM and (0.0327, 0.00053) for AdaBoost. The standard48

deviation was so small that we chose to only show 3 runs on the plots. We will make sure to comment on this in a49

final version. For data sets included the in supp. material the mean, and standard deviation are as follows Boone:50

Lgb: mean=0.0574, std=0.00015, Ada: mean=0.0631, std=0.00068 Higgs: Lgb: mean=0.2530, std=0.00031, Ada:51

mean=0.2777, std=0.00009 Diabetes: Lgb: mean=0.2532, std=0.0255, Ada: mean=0.2692, std=0.0194 . for Boone52

and Higgs we used three runs and for Diabetes we used 10 (due to much smaller data size)53


