
A Proofs

We first introduce two useful known lemmas, and prove the propositions in their order of appearance.

A.1 Useful lemmas

First, under Assumption 1, we note that the soft C-transforms are uniformly contracting on the
distribution space P(X). This is clarified in the following lemma, extracted from Vialard (2019),
Proposition 19. We refer the reader to the original references for proofs.

Lemma 1. Unser Assumption 1, let κ = 1− exp(−Ldiam(X)). For all α̂ ∈ P(X) and β̂ ∈ P(X),
for all f, f ′, g, g′ ∈ C(X),

‖Tα̂(f ′)− Tα̂(f ′)‖var 6 κ‖f − f ′‖var, ‖Tβ̂(g)− Tβ̂(g′)‖
var

6 κ‖g − g′‖var.

We will also need a uniform law of large numbers for functions. The following lemma is a conse-
quence of Example 19.7 and Lemma 19.36 of Van der Vaart (2000), and is copied in Lemma B.6 in
Mairal (2013).

Lemma 2. Under Assumption 1, let (ft)t be an i.i.d sequence in C(X), such that E[f0] = f ∈ C(X).
Then there exists A > 0 such that, for all n > 0,

E sup
x∈X
| 1
n

n∑
i=1

fi(x)− f(x)| 6 A√
n
.

Finally, we need a result on running averages using the sequence (ηt)t. The following result stems
from a simple Abel transform of the law of large number, and is established by Mairal (2013), Lemma
B.7.

Lemma 3. Let (ηt)t be a sequence of weights meeting Assumption 2. Let (Xt)t be an i.i.d sequence
of real-valued random variables with existing first moment E[X0]. We consider the sequence (X̄t)t
defined by X̄0 , X0 and

X̄t , (1− ηt)X̄t−1 + ηtXt.

Then X̄t →t→∞ E[X0].

A.2 Proof of Proposition 1

Proof. We use Theorem 1 from Diaconis and Freedman (1999). For this, we simply note that the
space C(X)×C(X) in which the chain xt , (ft, gt)t, endowed with the metric ρ((f1, g1), (f2, g2)) =
‖f1 − f2‖var + ‖g1 − g2‖var, is complete and separable (the countable set of polynomial functions
are dense in this space, for example). We consider the operator Aθ , Tβ̂(Tα̂(·)). θ , (α̂, β̂) denotes
the random variable that is sampled at each iteration. We have the following recursion:

xt+2 = Aθt(xt).

From Lemma 1, for all α̂ ∈ P(X), β̂ ∈ P(X), Aθ with θ = (α̂, β̂) is contracting, with module
κθ < κ < 1. Therefore ∫

θ

κθdµ(θ) < 1,

∫
θ

log κθdµ(θ) < 0.

Finally, we note, for all f ∈ C(X)

‖Tβ(Tα̂(f))‖∞ 6 ‖f‖∞ + 2 max
x,y∈X

C(x, y),

therefore ρ(Aθ(x0), x0) 6 2‖x0‖∞ + 2 maxx,y∈X C(x, y) for all θ (α̂, β̂). The regularity condition
of the theorem are therefore met. Each of the induced Markov chains (f2t, g2t)t and (f2t+1, g2t+1)t
has a unique stationary distribution. These stationary distributions are the same: the stationary
distribution is independent of the initialisation and both sequences differs only by their initialisation.
Therefore (ft, gt)t have a unique stationary distribution (F∞, G∞).

12

A.3 Proof of Proposition 2

For presentation purpose, we first show that the “slowed-down” online Sinkhorn algorithm converges
in the absence of noise. We then turn to prove Proposition 2.

A.3.1 Noise-free online Sinkhorn

Proposition 5. We suppose that α̂t = α, β̂t = β for all t. Then the updates (6) yields a (deterministic)
sequence (ft, gt)t such that

‖f̂t − f?‖var + ‖ĝt − g?‖var → 0,
1

2
〈α, ft + Tα(ĝt)〉+ 〈β, ĝt + Tβ(ft)〉 → W(α, β).

Note that, as we perform simultaneous updates, we only obtain the convergence of ft → f? +A, and
gt → g?, where f? and g? are solutions of (1) and A is a constant depending on initialization.

The “slowed-down” Sinkhorn iterations converge toward an optimal potential couple, up to a constant
factor: this stems from the fact that we apply contractions in the space (C(X), ‖ · ‖var) with a
contraction factor that decreases sufficiently slowly.

Proof. We write (ft, gt)t the sequence of iterates. Given a pair of optimal potentials (f?, g?), we
write ut , ft − f?, vt , gt − g?, uTt , Tα(ft) − g? and vTt , Tα(gt) − f?. For all t > 0, we
observe that

maxut+1 = − log min exp(−ut+1)

= − log
(

min
(
(1− ηt) exp(−ut) + ηt exp(−vTt)

))
6 − log

(
(1− ηt) min exp(−ut) + ηt min exp(−vTt)

)
6 −(1− ηt) log min exp(−ut)− ηt log min exp(−vTt)

= (1− ηt) maxut + ηt max vTt ,

where we have used the algorithm recursion on the second line, min f + g > min f + min g on the
third line and Jensen inequality on the fourth line. Similarly

minut+1 > (1− ηt) minut + ηt min vTt ,

and mirror inequalities hold for vt. Summing the four inequalities, we obtain

et+1 , ‖ut+1‖var + ‖vt+1‖var

= maxut+1 −minut+1 + max vt+1 −min vt+1

6 (1− ηt)(‖ut‖var + ‖vt‖var) + ηt(‖uTt ‖var + ‖vTt ‖var),

6 (1− ηt)(‖ut‖var + ‖vt‖var) + ηtκ(‖ut‖var + ‖vt‖var),

where we use the contractivity of the soft-C-transform, that guarantees that there exists κ < 1 such
that ‖vTt ‖var 6 κ‖vt‖var and ‖uTt ‖var 6 κ‖ut‖var (Peyré and Cuturi, 2019).

Unrolling the recursion above, we obtain

log et =

t∑
s=1

log(1− ηt(1− κ)) + log(e0)→ −∞,

provided that
∑
ηt =∞. The proposition follows.

Proof of Proposition 2. For discrete realizations α̂ and β̂, we define the perturbation terms

εβ̂(·) , f? − Tβ̂(g?), ια̂(·) , g? − Tα̂(f?),

so that the updates can be rewritten as

exp(−ft+1 + f?) = (1− ηt) exp(−ft + f?) + ηt exp(−Tβ̂t(gt) + Tβ̂t(g
?) + εβ̂t)

exp(−gt+1 + g?) = (1− ηt) exp(−gt + g?) + ηt exp(−Tα̂t(ft) + Tα̂t(f
?) + ια̂t).

13

We denote ut , −ft + f?, vt , −gt + g?, uTt , Tβ̂t(ft) − Tβ̂t(f
?), vTt , Tβ̂t(gt) − Tβ̂t(g

?).
Reusing the same derivations as in the proof of Proposition 5, we obtain

‖ut+1‖var 6 (1− ηt)‖ut‖var

+ ηt log
(

max
x,y∈X

exp(εβ̂t(x)− εβ̂t(y)) exp(vTt (x)− vTt (y))
)

6 (1− ηt)‖ut‖var + ηt‖vTt ‖var + ηt‖εβ̂t‖var,

where we have used maxx f(x)g(x) 6 maxx f(x) maxx f(x) on the second line. Therefore, using
the contractivity of the soft C-transform,

et+1 6 (1− η̃t)et +
η̃t

1− κ
(‖εβ̂t‖var

+ ‖ια̂t‖var), (8)

where we set et , ‖ut‖var + ‖vt‖var, η̃t = ηt(1 − κ) and κ is set to be the biggest contraction
factor over all empirical realizations α̂t, β̂t of the distributions α and β. It is upper bounded by
1− e−Ldiam(X), thanks to Assumption 1 and Lemma 1.

The realizations β̂t and α̂t are sampled according to the same distribution α̂ and β̂. We define the
sequence rt to be the running average of the variational norm of the (functional) error term:

rt+1 , (1− η̃t)rt +
η̃t

1− κ
(‖εβ̂t‖var

+ ‖ια̂t‖var).

We thus have, for all t > 0, et 6 rt. Using Lemma 3, the sequence (rt)t converges towards the scalar
expected value

r∞ ,
1

1− κ
Eα̂,β̂ [‖εβ̂‖var

+ ‖ια̂‖var] > 0. (9)

We now relate r∞ to the number of samples n using a uniform law of large number result on
parametric functions. We write β̂ = β̂n to make explicit the dependency of the quantities on the
batch size n.

Using Lemma 2, we bound the quantity

En , Eβ̂n‖εβ̂n‖var
= Eβ̂n‖ exp(−Tβ(g?0))− exp(−Tβ̂n(g?0))‖∞

= EY1,...Yn∼β sup
x∈X

∣∣∣ 1
n

n∑
i=1

exp(g?(Yi))− C(x, Yi))

− EY∼β [exp(g?0(Y))− C(x, Y)]
∣∣∣

= E sup
x∈X
| 1
n

n∑
i=1

ϕi(x)− ϕ(x)|,

where we have defined ϕi : x→ exp(g?(Yi)− C(x, Yi)) and set ϕ to be the expected value of each
ϕi. The compactness of X ensures that the functions are square integrable and uniformly bounded.
Lemma 2 ensures that there exists S(g?) such that

En 6
S(g?)√

n
.

We now bound Eβ̂n ||εβ̂n ||var
using the quantity En. First, we observe that ‖var = g?min < g? < 0, and

there exists Cmax > 0 such that 0 6 C(x, y) 6 Cmax for all x, y ∈ X , thanks to the Assumption 1.

δ , exp(−‖g?‖var − Cmax) 6 exp(−Tβ(g?)) 6 1

exp(−‖g?‖var − Cmax) 6 exp(−Tβ̂n(g?)) 6 1,

where we have used g? = ‖g?‖var. For all x ∈ X ,

|εβ̂n | = | log
exp(−Tβ̂n(g?))

exp(−Tβ(g?))
| =

∣∣∣ log
(
1 +

exp(−Tβ̂n(g?))− exp(−Tβ(g?))

exp(−Tβ(g?))

)∣∣∣. (10)

14

We first obtain an upper-bound independent of n with the first equality in (10):
||εβ̂n ||var

6 ||εβ̂n ||∞ 6 ‖g?‖var + Cmax. (11)

We now use the second expression in (10): for n large enough, En < δ

||εβ̂n ||var
6 max(log(1 +

En
δ

),− log(1− En
δ

)) = − log(1− Ẽn), (12)

where we have set Ẽn , En
δ . On the event Ωn = {Ẽn 6 1

2}, a simple calculation gives − log(1−
Ẽn) 6 (2 log 2)Ẽn 6 2Ẽn. Thanks to Markov inequality, P[Ẽn >

1
2] 6 2E[Ẽn]. We then split the

expectation over the event Ωn, and use inequalities (12) and (11) on each conditional expectation:

E||εβ̂n ||var
= P

[
Ẽn 6

1

2

]
E
[
||εβ̂n ||var

∣∣∣Ẽn 6
1

2

]
(13)

+ P
[
Ẽn >

1

2

]
E
[
||εβ̂n ||var

∣∣∣Ẽn > 1

2

]
6

2ϕ(‖g?‖var + Cmax)S(g?)√
n

6
4 exp(‖g?‖var + Cmax)S(g?)√

n
,
A(g?)√

n

The constants S depends on the complexity of estimating the functional x →
∫
y

exp(g?(y) −
C(x, y))dβ(y) with samples from β. A parallel result holds for Eα̂n‖ια̂n‖var. Therefore, there
exists A(f?), A(g?) > 0 such that r∞ 6 A(f?)+A(g?)√

n
. As for all t > 0, et 6 rt →t→∞ r∞, the

proposition follows, writing A = A(f?) +A(g?).

The constant A is larger than exp(Cmax) when Cmax → ∞; Hence it behaves at least like exp(1
ε)

when ε→ 0.

Note that we have used twice a corollary of the law of large numbers: once when averaging over t
with t→∞ (Eq. (9)), and once when averaging over n with n finite (Eq. (13)).

A.4 Proof of Proposition 3

In the proof of Proposition 2 and in particular Eq. (8), the term that prevents the convergence of et is
ηt(‖εβ̂t‖var

+ ‖ια̂t‖var),

which is not summable in general. We can control this term by increasing the size of α̂t and β̂t with
time, at a sufficient rate: this is what Assumption 3 ensures.

Proof. From Eq. (8), for all t > 0, we have
0 6 et+1 6 (1− η̃t)et + ηt(‖εβ̂t‖var

+ ‖ια̂t‖var). (14)

Taking the expectation and using the uniform law of large number (13),

Eet+1 6 (1− (1− κ)ηt)Eet + ηt
A√
n(t)

(15)

= (1− (1− κ)ηt)Eet +Aηtwt,

where we have used the definition of n(t) from Assumption 3 in the last line.

The proof follows from a simple asymptotic analysis of the sequence (Eet)t, following recursion
(15). For all t > 0,

Eet+1 − Eet = −(1− κ)ηtEet +Aηtwt 6 Aηtwt (16)
Therefore, from Assumption 3, (Eet+1 − Eet)t is summable and Eet →t→∞ ` > 0. Let’s assume
` > 0. Summing (16) over t, we obtain

Eet 6 Ee1 − (1− κ)

t−1∑
s=1

ηsEs +A

t−1∑
s=1

ηsws →t→∞ −∞,

which leads to a contradiction. Therefore Eet →t→∞ 0. As et > 0 for all t > 0, this implies that
et →t→∞ 0 almost surely.

15

A.5 Proof of Proposition 4

Proof. The proof of Proposition 3 allows us to derive non-asymptotic rates for potential estimations
using the online Sinkhorn algorithm. Let us set ηt = λ

ta , n(t) = dBt2be in (14), so that Assumption 3
is met. d·e denotes the ceiling function. We are left to study the recursion (15):

δt+1 , Eet+1 6 (1− λ(1− κ)

ta
)δt +

Aλ√
Bta+b

Following the derivations of Moulines and Bach (2011, Theorem 2), we have the following bias-
variance decomposed upper-bound, provided that 0 6 a < 1 and a+ b > 1. For all t > 0,

δt 6 (δ0 +
AS

(a+ b− 1)
√
B

) exp(−S(1− κ)

2
t1−a) +

2AS√
B(1− κ)ta

. (17)

Let us now relate the iteration number t to the number of seen sample N . By definition

nt =

t∑
s=1

n(s) 6 B

t∑
s=1

s2b + t 6 t+
(t+ 1)2b+1 − 1

2b+ 1
6 (2t)2b+1.

Therefore, when we have seen N samples, the iteration number is superior to t(N), and the expected
error δN is of the order of δt(N), with

t(N) = (N/2)
1

2b+1 . (18)

We write δN = δt(N). Replacing (18) in (17) yields

δn 6 (δ0 +
Aλ

(a+ b− 1)
√
B

) exp

(
−λ(1− κ)

2
(n/2)

1−a
2b+1

)
+

2Aλ
√
B(1− κ)(n/2)

a
2b+1

. (19)

We note that b and a should be as close to 0 as possible to reduce the bias term, while a should be
as close to 1 and b as close to 0 as possible to reduce the variance term. Of course, b should remain
larger than 1− a to ensure convergence.

To obtain the best asymptotical rates (the error is always dominated by the variance term), we set
a = 1− ι, b = 2ι, with ι % 0. This yields

δn 6 (δ0 +
Aλ

ι
√
B

) exp

(
−λ(1− κ)

2
(n/2)

ι
1+4ι

)
+

2Aλ
√
B(1− κ)(n/2)

1−ι
1+4ι

= O(n−
1−ι
1+4ι).

This rate is as close to the rate O(1
n) as desired. We may then perform a last soft C-transform

(using the nt seen samples) over the estimated ft(n), gt(n) to obtain a estimated solution of the dual
optimisation problem (2). The Sinkhorn potentials can therefore be estimated with fast rates. Note
that the upper bound explodes when ε→ 0, as Cmax →∞, hence A→∞, and (1− κ)→ 0.

Estimating the Sinkhorn distance. The Sinkhorn distance requires to estimate the integral

W(α, β) =

∫
x

f?(x)dα(x) +

∫
y

g?(y)dβ(y).

At iteration t(n), with empirical realization ᾱt and β̄t, containing n samples, we use the estimator

Ŵ(α, β) =
1

n

n∑
i=1

ft(n)(xi) +
1

n

n∑
i=1

gt(n)(yi),

We can bound the estimation error |Ŵ(α, β) − W(α, β)| = O(1√
n

), dominated by the integral
evaluation noise. We thus recover a new estimator of the Sinkhorn distance with the same sample
complexity as the batch Sinkhorn estimator (Genevay, Chizat, et al., 2019). Our estimator enjoys an
original rate for estimating the potentials in ‖ · ‖var.

16

Algorithm 2 Fully-corrective online Sinkhorn
Input: Distribution α and β, learning weights (ηt)t and batch-sizes (n(t))t. Set pi,1 = qi,1 = 0
for i ∈ (0, n1]
for t = 0, . . . , T − 1 do

Sample (xi)(nt,nt+1] ∼ α, (yj)(nt,nt+1] ∼ β.
Evaluate (f̂t(xi))i=(0,nt+1], (ĝt(yi))i=(0,nt+1] using (qi,t, pi,t, xi, yi)i=(0,nt] in (7).
q(0,nt+1],t+1← log 1

n + (ĝt(yi))(0,nt+1], p(nt,nt+1],t+1← log 1
n + (f̂t(xi))(nt,nt+1].

Returns: f̂T : (qi,T , yi)(0,nT] and ĝT : (pi,T , xi)(0,nT]

Algorithm 3 Online Sinkhorn potentials in the discrete setting
Input: Distribution α ∈ 4N and β ∈ 4N , x ∈ Rn×d, y ∈ Rn×d, learning weights (ηt)t
Set p = q = −∞ ∈ Rn.
for t = 1, . . . , T do

q ← q + log(1− ηt), p← p+ log(1− ηt).
Sample Jt ⊂ [1, N], It ⊂ [1, N] of size n(t).
for i ∈ Jt do

qi ← log
(

exp(qi) + exp
(

log(ηt)− log 1
N

∑N
j=1 exp(pj − C(xj , yi)

))
.

for i ∈ It do
pi ← log

(
exp(qi) + exp

(
log(ηt)− log 1

M

∑M
j=1 exp(qj − C(xi, yj)

))
.

Returns fT : (q, y) and gT : (p, x)

B Online Sinkhorn variants

B.1 Fully-corrective scheme

We report the fully-corrective online Sinkhorn algorithm in Algorithm 2. This algorithm also enjoys
almost sure convergence, provided that the following assumption is met.

Assumption 4. For all t > 0, the total batch-size nt = B
w2
t

is an integer. The step-size ηt and the
batch-size nt grows so that

∑
wtηt <∞ and

∑
ηt =∞.

With full correction, the total number of observed samples nt needs to grow at the same rate as the
single-iteration batch-size n(t) in Assumption 3. For ηt = 1

ta , a ∈ (1/2, 1], it is sufficient to use a
constant batch-size n(t) = B to meet Assumption 4. We then have the following property

Proposition 6. Under Assumption 1 and 4, the fully-corrective online Sinkhorn algorithm converges
almost surely:

‖f̂t − f?‖var + ‖ĝt − g?‖var → 0.

Proof. Using the fully-corrective scheme allows to replace n(t) by nt =
∑t
s=0 n(s) in (15). The

proposition is then obtained in the same way as Proposition 4.

B.2 Online Sinkhorn for discrete distributions

The online Sinkhorn algorithm takes a simpler form with discrete distributions. We derive it in
Algorithm 3. We set α and β to have size N and M , respectively. We evaluate the potentials as

gt(y) = − log

N∑
j=1

exp(pj − C(xj , y))

ft(x) = − log

M∑
j=1

exp(qj − C(x, yj)),

17

Table 2: Schedules of batch-sizes and learning rates that ensures online Sinkhorn convergence.
Param. schedule Online Sinkhorn Fully-corrective online Sinkhorn

Batch size n(t) = Btb 0 < b 0 6 b

Step size ηt =
1

ta
a > 1− b

2

a >
1

2
− b

2
and b < 1

a > 0 and b > 1

where (pj)J∈[1,N] and (qj)J∈[1,M] are fixed-size vectors. Note that the computations written in
Algorithm 3 are in log-space,as they should be implemented to prevent numerical overflows. The
sets |I| and |J | can have varying sizes along the algorithm, which allows for example to speed-up
the initial Sinkhorn iteration (§5.2). In this case, the cost matrix Ĉ = C(xi, yj))i,j should be
progressively recorded along the algorithm iterations.

B.3 Recapitulation on batch-sizes and learning rates

To provide practical guidance on choosing rates in batch-sizes n(t) and step-sizes ηt, we can
parametrize ηt = 1

ta and n(t) = Btb and study what is implied by Assumption 3 and Assumption 4.
We summarize the schedules for which convergence is guarantees in Table 2. Note that in practice, it
is useful to replace t by (1 + r t) in these schedules. We set r = 0.1 in all experiments.

18

ε = 0.1

107 1010 1013

100

‖f̂
−
f
? 0
‖ v

a
r

+
.
.
.

1D GMM

Computations 107 1010 1013

100

2D GMM

107 1010 1013

3 × 100

4 × 100

5 × 100
10D GMM

O-S n(t) = 100

O-S n(t) ∝ t0.5

O-S n(t) ∝ t1.0
Sinkhorn n = 104

Sinkhorn n = 100

Sinkhorn n = 1000

ε = 0.01

107 1010 1013

100

101

‖f̂
−
f
? 0
‖ v

a
r

+
.
.
.

1D GMM

Computations 107 1010 1013

100

101
2D GMM

107 1010 1013

3 × 100

4 × 100

5 × 100 10D GMM
O-S n(t) = 100

O-S n(t) ∝ t0.5

O-S n(t) ∝ t1.0
Sinkhorn n = 104

Sinkhorn n = 100

Sinkhorn n = 1000

ε = 0.001

107 1010 1013

100

101

‖f̂
−
f
? 0
‖ v

a
r

+
.
.
.

1D GMM

Computations 107 1010 1013

100

101
2D GMM

107 1010 1013

3 × 100

4 × 100

5 × 100 10D GMM
O-S n(t) = 100

O-S n(t) ∝ t0.5

O-S n(t) ∝ t1.0
Sinkhorn n = 104

Sinkhorn n = 100

Sinkhorn n = 1000

ε = 0.0001

107 1010 1013

100

‖f̂
−
f
? 0
‖ v

a
r

+
.
.
.

1D GMM

Computations 107 1010 1013

100

101

2D GMM

107 1010 1013

3 × 100

4 × 100

5 × 100 10D GMM
O-S n(t) = 100

O-S n(t) ∝ t0.5

O-S n(t) ∝ t1.0
Sinkhorn n = 104

Sinkhorn n = 100

Sinkhorn n = 1000

Figure 4: Performance of online Sinkhorn for various ε.

C Extra numerical experiments

We display and describe the supplementary figures mentionned in the main text, as well as experi-
mental details useful for reproduction.

C.1 Online Sinkhorn and variants

Grids and details for §5.1. We set (ηt, n(t)) =
(

1
(1+0.1t)a , 100(1 + 0.1t)b

)
, with (a, b) = (0, 2),

(a, b) = (1
2 , 1) and (a, b = 1, 0) (constant batch-sizes). Batch Sinkhorn algorithms uses

19

ε = 0.1

107 1010 1013

100

‖f̂
−
f
? 0
‖ v

a
r

+
.
.
.

1D GMM

Computations 107 1010 1013

100

2D GMM

107 1010 1013

3 × 100

4 × 100

10D GMM
O-S n(t) = 100

O-S n(t) ∝ t0.5

O-S n(t) ∝ t1.0
Sinkhorn n = 104

Sinkhorn n = 100

Sinkhorn n = 1000

ε = 0.01

107 1010 1013

100

101

‖f̂
−
f
? 0
‖ v

a
r

+
.
.
.

1D GMM

Computations 107 1010 1013

100

101
2D GMM

107 1010 1013

3 × 100

4 × 100

5 × 100
10D GMM

O-S n(t) = 100

O-S n(t) ∝ t0.5

O-S n(t) ∝ t1.0
Sinkhorn n = 104

Sinkhorn n = 100

Sinkhorn n = 1000

ε = 0.001

107 1010 1013

100

101

‖f̂
−
f
? 0
‖ v

a
r

+
.
.
.

1D GMM

Computations 107 1010 1013

100

101
2D GMM

107 1010 1013

3 × 100

4 × 100

5 × 100

10D GMM
O-S n(t) = 100

O-S n(t) ∝ t0.5

O-S n(t) ∝ t1.0
Sinkhorn n = 104

Sinkhorn n = 100

Sinkhorn n = 1000

ε = 0.0001

107 1010 1013

100

‖f̂
−
f
? 0
‖ v

a
r

+
.
.
.

1D GMM

Computations 107 1010 1013

100

101

2D GMM

107 1010 1013

3 × 100

4 × 100

10D GMM
O-S n(t) = 100

O-S n(t) ∝ t0.5

O-S n(t) ∝ t1.0
Sinkhorn n = 104

Sinkhorn n = 100

Sinkhorn n = 1000

Figure 5: Performance of fully-corrective online Sinkhorn (O-S) for various ε.

N = 100, 1000, 10000. We train Sinkhorn on t = 5000 iterations, and train online Sinkhorn
long enough to match the number of computations of the large Sinkhorn reference.

All OS convergence curves. To complete Fig. 1, Fig. 4 report the performance of online Sinkhorn
for ε ∈ {10−4, 10−3, 10−2, 10−1]}. The comparison of performance remains similar to the one
produced in the main text.

Fully-corrective online Sinkhorn. Fig. 5 reports the performance of fully-corrected online
Sinkhorn (FCOS). We observe that the fully-corrective scheme is less noisy than the non-corrected
one. It is less efficient than OS on low-dimensional problems, but faster on the 10 dimensional

20

106 109 1012

100

‖f̂
−
f
? 0
‖ v

a
r

1D GMM

Computations 107 1010 1013

100

2D GMM

107 1010 1013

3 × 100

4 × 100

5 × 100

6 × 100
10D GMM R-S n = 100

R-S n = 1000

Sinkhorn n = 104

Sinkhorn n = 100

Sinkhorn n = 1000

ε = 0.01

106 109 1012

100

101

‖f̂
−
f
? 0
‖ v

a
r

1D GMM

Computations 107 1010 1013

100

101
2D GMM

107 1010 1013

3 × 100

4 × 100

5 × 100

6 × 100 10D GMM R-S n = 100

R-S n = 1000

Sinkhorn n = 104

Sinkhorn n = 100

Sinkhorn n = 1000

ε = 0.001

106 109 1012

100

101

‖f̂
−
f
? 0
‖ v

a
r

1D GMM

Computations 107 1010 1013

100

101
2D GMM

107 1010 1013

3 × 100

4 × 100

5 × 100

6 × 100 10D GMM R-S n = 100

R-S n = 1000

Sinkhorn n = 104

Sinkhorn n = 100

Sinkhorn n = 1000

ε = 0.0001

106 109 1012

100

‖f̂
−
f
? 0
‖ v

a
r

1D GMM

Computations 107 1010 1013

100

101

2D GMM

107 1010 1013

3 × 100

4 × 100

5 × 100

6 × 100 10D GMM R-S n = 100

R-S n = 1000

Sinkhorn n = 104

Sinkhorn n = 100

Sinkhorn n = 1000

Figure 6: Performance of randomized Sinkhorn (R-S) for various ε.

problem. For GMM-10D, it outperforms the batch Sinkhorn algorithm with N = 100, 1000. Note
that we interrupt FCOS for nt > 20, 000, as our implementation of the C-transform has a quadratic
memory cost in nt—this cost can be reduced to a linear cost with more careful implementation 1.

Randomized Sinkhorn. Fig. 6 reports the performance of randomized Sinkhorn. In low dimension,
randomized Sinkhorn is a reasonable alternative to batch Sinkhorn, as it often outperforms it on
average, for the same memory complexity (compare purple to orange curve for instance). In high
dimension, batch Sinkhorn tend to perform slightly better.

1Using e.g. https://www.kernel-operations.io/keops/index.html

21

https://www.kernel-operations.io/keops/index.html

C.2 OT between Gaussians

We measure the performance of online Sinkhorn to transport one Gaussian distribution α to another
β. The potentials f?, g? are known exactly for this problem, which allows to have a strong golden
standard. More precisely, adapting the formulae from Janati et al., 2020, assuming α ∼ N (µ,A) and
β ∼ N (ν, β) and writing I the identity matrix in Rd, we have

C , (AB +
ε2

4
I)1/2, U , B(C +

ε

2
I)−1 − I, V , A(C +

ε

2
I)−1 − I

f? : x→ −1

2
(x− µ)>U(x− µ) + x>(µ− ν)

g? : y → −1

2
(y − ν)>V (y − ν) + y>(ν − µ)

We compare batch Sinkhorn (N = 100, 1000, 10000) to (non fully-corrected) online Sinkhorn, with
n(t) = B, and n(t) = B(1 + 0.1t)1/2, B = 100, and ε ∈ {10−4, 10−3, 10−2, 10−1}.

Results. As displayed in Fig. 7, online Sinkhorn outperforms batch Sinkhorn for all tested batch
sizes and all ε. It is faster and does not converge towards biased potentials. This suggests that the
performance of online Sinkhorn may be underestimated in the previous analyses due to poor potential
reference.

C.3 Illustration of online Sinkhorn potentials on a 2D GMM

The estimate f̂t is useful to compute the gradient of the Sinkhorn distanceW(α, β) with respect to
the distribution α. This is useful when α is a parametric distribution αθ, as it allows to compute
the gradient of the Sinkhorn distance with respect to θ using backpropagation. For simplicity, let us
assume that α = 1

n

∑n
i=1 δxi . Then, for all i ∈ [1, n],

∂W(α, β)

∂xi
= ∇x

(
x→ f?(α, β)

)
(xi),

so that∇xf?(α, β) provides a displacement field that can be descended to minimize α→W(α, β).
Such point of view can be extended to general distributions using the mean-field point of view, see e.g.
Chizat, 2019; Santambrogio, 2015. Estimating ∇xf?(α, β) is therefore crucial to train e.g. generator
networks. Both the online Sinkhorn and the batch Sinkhorn algorithm allow to estimate this vector
field, through the plug-in estimator x→ ∇xf̂t, easily computed using the form (7) of f̂t.

Experiment. With 2D GMMs, we estimate a reference vector field∇f?0 using Sinkhorn on N =
10, 000 samples and qualitatively compare the estimations provided by online Sinkhorn and batch
Sinkhorn (N = 1, 000), for the same number of computations.

Results. We represent the estimations∇xf̂t in Fig. 8, for 108 computations. We compare them to a
reference displacement field, estimated wityh 1010 computations. We observe that online Sinkhorn
estimates a smoother displacement field than batch Sinkhorn for the same computational budget,
that is closer to the reference displacement field. In particular, it is less noisy in low-mass areas.
This suggest that online Sinkhorn would be a interesting replacement for batch Sinkhorn in training
generative architectures (used by e.g. Genevay, Peyré, et al. (2018)). αθ is then defined as the
push-forward of some simple measure with a neural network gθ. We leave this direction for future
work.

C.4 Online Sinkhorn as a warmup process

Grids and details for §5.2. We set (ηt, n(t)) =
(

1
(1+0.1t)a , 100(1 + 0.1t)b

)
, with (a, b) = (0, 2),

(a, b) = (1
2 , 1) and (a, b = 1, 0) (constant batch-sizes). The batch Sinkhorn algorithm that is used for

reference and after warmup uses N = 10000. In the reference algorithm, we precompute the distance
matrix to save computation. In the warmup algorithm, this distance matrix is filled progressively and
then kept in memory to perform C-transforms.

22

ε = 0.1

106 108 1010 1012

100

101

‖f̂
−
f
? 0
‖ v

a
r

2D Gaussian

Computations 106 108 1010 1012

101

2 × 101

3 × 101

4 × 101 10D Gaussian O-S n(t) = 100

O-S n(t) ∝ t0.5
Sinkhorn n = 104

Sinkhorn n = 100

Sinkhorn n = 1000

ε = 0.01

106 108 1010 1012

100

101

‖f̂
−
f
? 0
‖ v

a
r

2D Gaussian

Computations 106 108 1010 1012

2 × 101

3 × 101

4 × 101 10D Gaussian O-S n(t) = 100

O-S n(t) ∝ t0.5
Sinkhorn n = 104

Sinkhorn n = 100

Sinkhorn n = 1000

ε = 0.001

106 108 1010 1012

100

101

‖f̂
−
f
? 0
‖ v

a
r

2D Gaussian

Computations 106 108 1010 1012

2 × 101

3 × 101

4 × 101 10D Gaussian O-S n(t) = 100

O-S n(t) ∝ t0.5
Sinkhorn n = 104

Sinkhorn n = 100

Sinkhorn n = 1000

ε = 0.0001

106 108 1010 1012

100

101

‖f̂
−
f
? 0
‖ v

a
r

2D Gaussian

Computations 106 108 1010 1012

2 × 101

3 × 101

4 × 101 10D Gaussian O-S n(t) = 100

O-S n(t) ∝ t0.5
Sinkhorn n = 104

Sinkhorn n = 100

Sinkhorn n = 1000

Figure 7: Performance of online-Sinkhorn to estimate OT between two Gaussians. Online Sinkhorn
systematically outperforms batch Sinkhorn, but in term of speed and correction.

We evaluated OS and fully-corrective OS, and found that fully-corrective was less efficient (due to
its higher cost in the early iterations). We evaluated sampling with and without replacement in the
warmup phase, and found sampling without replacement to be more efficient.

All warmup convergence curves. To complete Fig. 3, we report convergence curves for different
ε in Fig. 9. We find that speed-up increased with ε and both the 2D and 3D problems, but remains
limited for the 10D problem.

23

Online Sinkhorn n(t) ∝ 10t0.5, 108 computations

Sinkhorn N=1000, 108 computations

Reg. OT displacement field
on empirical samples

Reg. OT displacement field
on a regular grid

Sinkhorn N=10000, 1011 computations

Figure 8: Displacement field as defined by the potentials estimated by online-Sinkhorn and Sinkhorn
on a 2D GMM. With the same computational budget, online Sinkhorn finds smoother displacement
fields than Sinkhorn. Those are closer to the true reference displacement field (we use Sinkhorn on
N = 10000 to estimate this reference). α and β log-likelihood level-lines are displayed in red and
blue, while the arrows are proportional to∇xf̂t(x)dα(x).

24

ε = 0.1

1010 1012

10−4

100

‖T
(
f̂
)
−
ĝ
‖ v

a
r
+

2D GMM

Comput. 1010 1012

10−5

10−2

10D GMM

1010 1012

10−3

100 Stanford 3D Online
Sinkhorn
warmup

Standard
Sinkhorn

ε = 0.01

1010 1012

10−4

10−1

‖T
(
f̂
)
−
ĝ
‖ v

a
r
+

2D GMM

Comput. 1010 1012

10−3

100 10D GMM

1010 1012

10−3

10−1
Stanford 3D Online

Sinkhorn
warmup

Standard
Sinkhorn

ε = 0.001

1010 1012

10−4

10−2

‖T
(
f̂
)
−
ĝ
‖ v

a
r
+

2D GMM

Comput. 1010 1012

10−4

10−1
10D GMM

1010 1012

10−3

10−1
Stanford 3D Online

Sinkhorn
warmup

Standard
Sinkhorn

ε = 0.0001

1010 1012

10−2

101

‖T
(
f̂
)
−
ĝ
‖ v

a
r
+

2D GMM

Comput. 1010 1012

10−3

10−1
10D GMM

1010 1012

10−3

10−1
Stanford 3D Online

Sinkhorn
warmup

Standard
Sinkhorn

Figure 9: Performance of online-Sinkhorn as warmup for various ε.

D Stochastic mirror descent interpretation

The online Sinkhorn can be understood as a stochastic mirror descent algorithm for a non-convex
problem. This equivalence is obtained by applying a change of variable in (1), defining

µ , α exp(f) and ν , β exp(g). (20)

The dual problem (2) rewrites as a minimisation problem over positive measures on X and Y:

− min
(µ,ν)∈M+(X)2

KL(α|µ) + KL(β|ν) + 〈µ⊗ ν, e−C〉 − 1, (21)

where the function KL : P(X)×M+(X) , 〈α, log dα
dµ 〉 is the Kullback-Leibler divergence between

α and µ. This objective is block convex in µ, ν, but not jointly convex. As we now detail, this
problem can be solved using a stochastic mirror descent (Beck and Teboulle, 2003), applied here
over the Banach space of Radon measures on X , equipped with the total variation norm.

Mirror maps and gradient. For this, we define the (convex) distance generating function
M+(X)2 → R:

ω(µ, ν) , KL(α|µ) + KL(β|ν).

The gradient of this function and of its Fenchel conjugate ω? : C(X)2 → R yields two mirror maps.
For all (µ, ν) ∈M+(X)2, (%, ϕ) ∈ C(X)2, % < 0, ϕ < 0,

∇ω(µ, ν) = (−dα
dµ
,−dβ

dν
) ∇ω?(%, ϕ) = (−α

%
,−β

ϕ
).

25

The gradient ∇F (µ, ν) of the objective F appearing in (21) is a continuous function

∇µF (µ, ν) = − 1
dµ
dα

+

∫
y∈X

dν
dβ

(y) exp(−C(·, y))dβ(y)

and similarly for∇νF .

Stochastic mirror descent. To define stochastic mirror descent iterations, we may replace inte-
gration over β is by an integration over a sampled measure β̂. This in turn defines an unbiased
gradient estimate ∇̃F of ∇F , which has bounded second order moments. This absence of bias is
crucial to prove convergence of SMD with high probability. Using the mirror maps and the stochastic
estimation of the gradient, one has the following equivalence result, whose proofs stems from direct
computations.
Proposition 7. The stochastic mirror descent iterations

(µt, νt) = ∇ω?
(
∇ω(µt, νt)− ηt∇̃F (µt, νt)

)
are equal to the updates (6) under the change of variable (20).

Interpretation. It is important to realize that µt and νt do not need to be stored in memory. Instead,
their associated potentials ft and gt are parametrized as (7). In particular, µt and νt remain absolutely
continuous with respect to α and β respectively, so that the Kullbach-Leibler divergence terms are
always finite. Note that the mirror descent we consider operates in an infinite-dimensional space, as
in Hsieh et al. (2018).

Finally, we mention that when computing exact gradients (in the absence of noise) and when using
constant step-size of ηt = 1, the algorithm matches exactly Sinkhorn iterations with simultaneous
updates of the dual variables. This provides a novel interpretation on the Sinkhorn algorithm, that
differs from the usual Bregman projection (Benamou et al., 2015), and the related understanding of
Sinkhorn as a constant step-size mirror descent on the primal objective (Mishchenko, 2019) and on a
semi-dual formulation (Léger, 2019).

Note that one can not directly apply the proofs of convergence of mirror descent to our problem, as
the lack of convexity of problem (21) prevents their use.

26

