
A Appendix Section for Methodology

A.1 Proof of Proposition 4.1

Denote the Lagrangian function by
Gλp∆θq “ F pθt `∆θq ` λ pSpαθt`∆θ, αθtq ´ ε´ ε

c2q . (31)
We have the following inequality which characterize a lower bound of the solution to (9) (recall that
1 ă c2 ă 1.5, c1 ă 0.5 and 3c1 ´ 1 ě c2) ,

min
∆θPRd

F pθt `∆θq

s.t. }∆θ} ď εc1

Spαθt`∆θ, αθtq ď ε` εc2

“ min
}∆θ}ďεc1

max
λě0

Gλp∆θq ě max
λě0

min
}∆θ}ďεc1

Gλp∆θq. (32)

We now focus on the R.H.S. of the above inequality. Denote the second-order Taylor expansion of
the Lagrangian Gλ by Ḡλ:

Ḡλp∆θq “ F pθtq ` x∇θF pθtq,∆θy `
1

2
x∇2

θF pθ
tq∆θ,∆θy `

λ

2
xHpθtq∆θ,∆θy ´ λε´ λεc2 ,

where we used the optimality condition (10) of Spα, αtq so that the first-order term of Spα, αtq
vanishes. Besides, Hpθq is defined in (10). The error of such approximation can be bounded as

Gλp∆θq ´ Ḡλp∆θq “ Oppλ` 1q}∆θ}3q. (33)
Further, for any fixed λ, denote ∆θ˚λ “ argmin}∆θ}ďεc1 Gλp∆θq.

We can then derive the following lower bound on the minimization subproblem of the R.H.S. of (32):
max
λě0

min
}∆θ}ďεc1

Gλp∆θq “ max
λě0

Ḡλp∆θ
˚
λq ´Oppλ` 1q}∆θ˚λ}

3q

ě max
λě0

Ḡλp∆θ
˚
λq ´Oppλ` 1qε3c1q

ě max
λě0

min
}∆θ}ďεc1

Ḡλp∆θq ´Oppλ` 1qε3c1q,

Note that for sufficiently large λ, Hpθtq ` 1
λ∇

2
θF pθ

tq ą 0 by recalling the positive definiteness of
Hpθtq. In this case, as a convex program, min}∆θ}ďεc1 Ḡλp∆θq admits the closed form solution:
Denote Ě∆θ˚λ “ argmin Ḡλp∆θq. We have

Ě∆θ˚λ “ ´
1

λ

ˆ

Hpθtq `
1

λ
∇2
θF pθ

tq

˙´1

∇θF pθtq and ḠpĚ∆θ˚λq “ F pθtq ´
ā

2λ
´ λε´ λεc2 , (34)

where we denote ā:“x
“

Hpθtq ` 1
λ∇

2
θF pθ

tq
‰´1∇θF pθtq,∇θF pθtqy ą 0.

For sufficiently small ε, by taking λ “
a

a
2ε with a:“xrHpθtqs

´1∇θF pθtq,∇θF pθtqy ą 0 (note
that }Ě∆θ˚λ} “ Op

?
εq ă εc1 and is hence feasible for c1 ă 0.5), the R.H.S. of (32) has the following

lower bound (recall that we have 3c1 ´ 1 ě c2)

max
λě0

min
}∆θ}ďεc1

Gλp∆θq ě F pθtq ´ p
ā
?

2a
`

c

a

2
q
?
ε´Opεc2´0.5q. (35)

This result leads to the following lower bound on (9):

lim
εÑ0

F pθt `∆θtεq ´ F pθ
tq

?
ε

ě ´

b

2xrHpθtqs
´1∇θF pθtq,∇θF pθtqy, (36)

where ∆θtε is the solution to (9). Finally, observe that the equality is achieved by taking ∆θtε “

´

?
2εpHpθtqq

´1∇θF pθtq?
xrHpθtqs´1∇θF pθtq,∇θF pθtqy

:

lim
εÑ0

F pθt `∆θtεq ´ F pθ
tq

?
ε

“ lim
εÑ0

1
?
ε
x∇F pθtq,∆θtεy “ ´

b

2xrHpθtqs
´1∇θF pθtq,∇θF pθtqy,

(37)
and ∆θtε is feasible for sufficiently small ε (note that we have 1

2xHpθ
tq∆θtε,∆θ

t
εy “ ε):

Spαθt`∆θtε
, αθtq ď

1

2
xHpθtq∆θtε,∆θ

t
εy `Opε1.5q ă ε` εc2 , (38)

and }∆θtε} “ Op
?
εq ă εc1 for c1 ă 0.5. This leads to our conclusion.
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A.2 Proof of Proposition 4.2

Our goal is to show that the continuous-time limit of Φpθsq satisfies the same differential equation as
φs provided that Φpθ0q “ φ0. To do so, first compute the differential equation of Φpθsq

BΦpθsq

Bs
“ ∇θΦpθsq 9θs “ ´∇θΦpθsqHpθsq´1∇F pθsq, (39)

where∇θΦpθsq is the Jacobian matrix of Φpθq w.r.t. θ at θ “ θs. We then compute the differential
equation of φs (note that∇φΦ´1pφsq is the Jacobian matrix of Φ´1pφq w.r.t. φ at φ “ φs)

9φs “ ´
“

∇2
φSpαΦ´1pφq, αΦ´1pφsqq|φ“φs

‰´1∇φF pΦ´1pφqq|φ“φs

“ ´
“

∇φΦ´1pφsq
J∇2

θSpαθ, αθsq|θ“θs∇φΦ´1pφsq
‰´1∇φΦ´1pφsq

J∇F pθq|θ“θs (40)

“ ´
“

∇φΦ´1pφsq
‰´1∇2

θSpαθ, αθsq|θ“θs∇F pθq|θ“θs
“ ´∇θΦpθsqHpθsq´1∇F pθsq (41)

“
BΦpθsq

Bs
.

Here we use the following lemma in (40). We use Φ´1pφsq “ θs and the inverse function theorem
∇θΦpθsq “

“

∇φΦ´1pφsq
‰´1

in (41).
Lemma A.1.

∇2
φSpαΦ´1pφq, αΦ´1pφsqq|φ“φs “ ∇φΦ´1pφsq

J∇2
θSpαθ, αθsq|θ“θs∇φΦ´1pφsq (42)

Proof. This lemma can be proved with simple computations. We compute only for the terms in
∇2
θOTγpαθ, αθsq as example. The terms in ∇2

θOTγpαθ, αθq can be computed similarly. Recall the
expression

∇2
θOTγpαθ, βq “ D2

11H1pfθ, θq ˝ pDfθ, Dfθq` D2
12H1pfθ, θq ˝ pDfθ, Idq

`D2
21H1pfθ, θq ˝ pId, Dfθq` D2

22H1pfθ, θq ˝ pId, Idq.
(43)

We compute

∇2
φOTγpαΦ´1pφq, βq “ D2

11H1pfΦ´1pφq,Φ
´1pφqq ˝ pDfΦ´1pφq ˝ JΦ´1pφq, DfΦ´1pφq ˝ JΦ´1pφqq

`D2
12H1pfΦ´1pφq,Φ

´1pφqq ˝ pDfΦ´1pφq ˝ JΦ´1pφq, JΦ´1pφqq

`D2
21H1pfΦ´1pφq,Φ

´1pφqq ˝ pJΦ´1pφq, DfΦ´1pφq ˝ JΦ´1pφqq

`D2
22H1pfΦ´1pφq,Φ

´1pφqq ˝ pJΦ´1pφq, JΦ´1pφqq.
(44)

Plugging Φ´1pφsq “ θs to the above equality, we have

∇2
φOTγpαΦ´1pφq, βq|φ“φs “ ∇φΦ´1pφsq

J∇2
θOTγpαθ, βq|θ“θs∇φΦ´1pφsq. (45)
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B Appendix on SIM

B.1 Proof of Proposition 5.1

We will derive the explicit expression of ∇2
θOTγpαθ, αθtq|θ“θt based on the dual representation

(16). Recall the definition of the Fréchet derivative in Definition 2 and its chain rule Dpf ˝ gqpxq “
Dfpgpxqq ˝Dgpxq. We compute the first-order gradient by

∇θOTγpαθ, βq “ ∇θH1pfθ, θq “ D1H1pfθ, θq ˝Dfθ
loooooooooomoooooooooon

G1pfθ,θq

`D2H1pfθ, θq
loooooomoooooon

G2pfθ,θq

, (46)

where DiH1 denote the Fréchet derivative of H1 with respect to its ith variable. Importantly, the
optimality condition of (16) implies that D1H1pfθ, θqrgs “ 0,@g P CpX q.
Further, in order to compute the second order gradient of OTγpαθ, βq with respect to θ, we first
compute the gradient of Gi, i “ 1, 2:

∇θG1pfθ, θq “ D1H1pfθ, θq ˝D
2fθ `D

2
11H1pfθ, θq ˝ pDfθ, Dfθq `D

2
12H2pfθ, θq ˝ pDfθ, Idq,

(47)

∇θG2pfθ, θq “ D2
21H1pfθ, θq ˝ pId, Dfθq `D2

22H1pfθ, θq ˝ pId, Idq. (48)

Using the fact that D1H1pfθ, θqrgs “ 0,@g P CpX q, we can drop the first term in the R.H.S. of (47).
Combining the above results, we have

∇2
θOTγpαθ, βq “ D2

11H1pfθ, θq ˝ pDfθ, Dfθq` D2
12H1pfθ, θq ˝ pDfθ, Idq

`D2
21H1pfθ, θq ˝ pId, Dfθq` D2

22H1pfθ, θq ˝ pId, Idq.
(49)

Moreover, we can further simplify the above expression by noting that for any g P T pRd, CpX qq, i.e.
any bounded linear operators from Rd to CpX q,

∇θ pD1H1pfθ, θq ˝ gq “ D2
11H1pfθ, θq ˝ pg,Dfθq `D

2
12H1pfθ, θq ˝ pg, Idq “ 0. (50)

Plugging in g “ Dfθ in the above equality we have

D2
11H1pfθ, θq ˝ pDfθ, Dfθq “ ´D

2
12H1pfθ, θq ˝ pDfθ, Idq. (51)

Consequently we derive (we omit the identity operator pId, Idq for the second term)

∇2
θOTγpαθ, βq “ ´D

2
11H1pfθ, θq ˝ pDfθ, Dfθq `D

2
22H1pfθ, θq, (52)

where we note that D2
12H1pfθ, θq ˝ pDfθ, Idq is symmetric from (51) and

D2
21H1pfθ, θq ˝ pId, Dfθq “

“

D2
12H1pfθ, θq ˝ pDfθ, Idq

‰J
“ D2

12H1pfθ, θq ˝ pDfθ, Idq. (53)

These two terms can be computed explicitly and involve only simple function operations like exp
and log and integration with respect to αθ and β, as discussed in the following.

B.1.1 Explicit Expression of∇2
θOTγpαθ, βq

Denote A1 “ D2
11H1pfθ, θq ˝ pDfθ, Dfθq as the first term of (52). We note that A1 P Rdˆd

is a matrix and hence is a bilinear operator. If we can compute hJ1 A1h2 for any two directions
h1, h2 P Rd, we are able to compute entries of A1 by taking h1 and h2 to be the canonical bases. We
compute this quantity hJ1 A1h2 as follows.

For a fixed y P X , denote Ty : X ˆ CpX q Ñ R by

Typx, fq:“ expp´cpx, yq{γq exppfpxq{γq.

Denote g1 “ Dfθrh1s P CpX q for some direction h1 P Rd (recall that Dfθ P T pRd, CpX qq, where
T pV,W q is the family of bounded linear operators from set V to set W ). Use the chain rule of
Fréchet derivative to compute

`

D1Apf, αθqrg1s
˘

pyq “ ´

ş

X Typx, fqg1pxqdαθpxq
ş

X Typx, fqdαθpxq
. (54)
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Let h2 P Rd be another direction and denote g2 “ Dfθrh2s P CpX q. We compute
`

D2
11Apf, αθqrg1, g2s

˘

pyq

“

ş

X Typx, fqg1pxqg2pxqdαθpxq

γ
ş

X Typx, fqdαθpxq
´

ş

X 2 Typx, fqTypx1, fqg1pxqg2px
1qdαθpxqdαθpx

1q

γ
“ş

X Typx, fqdαθpxq
‰2 . (55)

Moreover, for any two directions h1, h2 P Rd, we compute D2
11H1pf, θq

“

Dfθrh1s, Dfθrh2s
‰

by

D2
11H1pf, θq

“

Dfθrh1s, Dfθrh2s
‰

“

ż

X

`

D2
11Apfθ, αθq

“

Dfθrh1s, Dfθrh2s
‰˘

pyqdβpyq, (56)

which by plugging in (55) yields closed a form expression with only simple function operations like
exp and log and integration with respect to αθ and β.

We then compute the second term of (52). Using the change-of-variable formula, we have

Apf, Tθ7µqpyq “ ´γ log

ż

Z
exp

ˆ

´
1

γ
cpTθpzq, yq `

1

γ
fpTθpzqq

˙

dµpzq. (57)

For any f P CpX q, the first-order Fréchet derivative ofH1pf, θq w.r.t. its second variable is given by

D2H1pf, θq “

ż

Z
x∇θTθpzq,∇f

`

Tθpzq
˘

ydµpzq

`

ż

X

ş

Z Ty
`

Tθpzq, f
˘@

∇θTθpzq,∇1c
`

Tθpzq, y
˘

´∇f
`

Tθpzq
˘D

dµpzq
ş

Z Ty
`

Tθpzq, f
˘

dµpzq
dβpyq.

Denote uzpθ, fq “ ∇1c
`

Tθpzq, y
˘

´∇f
`

Tθpzq
˘

. The second-order Fréchet derivative is given by

D2
22H1pf, θq (58)

“

ż

Z
∇2
θTθpzq ˆ1 ∇f

`

Tθpzq
˘

`∇θTθpzqJ∇2f
`

Tθpzq
˘

∇θTθpzqdµpzq

`
1

γ

ż

X

ş

Z Ty
`

Tθpzq, f
˘

∇θTθpzqJuzpθ, fquzpθ, fqJ∇θTθpzqdµpzq
ş

Z Ty
`

Tθpzq, f
˘

dµpzq
dβpyq

`

ż

X

ş

Z Ty
`

Tθpzq, f
˘

∇2
θTθpzq ˆ1 uzpθ, fqdµpzq

ş

Z Ty
`

Tθpzq, f
˘

dµpzq
dβpyq

`

ż

X

ş

Z Ty
`

Tθpzq, f
˘

∇θTθpzqJr∇11cpTθpzq, yq ´∇2f
`

Tθpzq
˘

s∇θTθpzqdµpzq
ş

Z Ty
`

Tθpzq, f
˘

dµpzq
dβpyq

`
1

γ

ż

X

ş

Z Ty
`

Tθpzq, f
˘

∇θTθpzqJuzpθ, fqdµpzq
“ş

Z Ty
`

Tθpzq, f
˘

∇θTθpzqJuzpθ, fqdµpzq
‰J

“ş

Z Ty
`

Tθpzq, f
˘

dµpzq
‰2 dβpyq.

Here∇θTθpzq P Rqˆd and∇2
θTθpzq P Rqˆdˆd denote the first and second order Jacobian of Tθpzq

w.r.t. to θ; ˆ1 denotes the tensor product along the first dimension; ∇f P Rq and ∇2f P Rqˆq
denote the first and second order gradient of f w.r.t. its input;∇1c P Rq and∇11c P Rqˆq denote the
first and second order gradient of c w.r.t. its first input. By plugging in f “ fθ, we have the explicit
expression of the second term of (52).

B.2 More details in Proposition 5.2

First, we recall some existing results about the Sinkhorn potential fθ.
Assumption B.1. The ground cost function c is bounded and we denote Mc:“maxx,yPX cpx, yq.

It is known that, under the above boundedness assumption on the ground cost function c, fθ is a
solution to the generalized DAD problem (eq. (7.4) in [Lemmens and Nussbaum, 2012]), which is
the fixed point to the operator B : CpX q ˆΘ Ñ CpX q defined as

Bpf, θq:“A
`

Apf, αθq, β
˘

. (59)
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Further, the Birkhoff-Hopf Theorem (Sections A.4 and A.7 in [Lemmens and Nussbaum, 2012])
states that exppB{γq is a contraction operator under the Hilbert metric with a contraction factor λ2

where λ:“ exppMc{γq´1
exppMc{γq`1 ă 1 (see also Theorem B.5 in [Luise et al., 2019]): For strictly positive

functions u, u1 P CpX q, define the Hilbert metric as

dHpu, u
1q:“ log max

x,yPX

upxqu1pyq

u1pxqupyq
. (60)

For any measure α PM`
1 pX q, we have

dHpexppApf, αθq{γq, exppApf 1, αθq{γqq ď λdHpexppf{γq, exppf 1{γqq. (61)

Consequently, by applying the fixed point iteration

f t`1 “ Bpf t, θq, (62)

also known as the Sinkhorn-Knopp algorithm, one can compute fθ in logarithmic time: }f t`1 ´

fθ}8 “ Opλtq (Theorem. 7.1.4 in [Lemmens and Nussbaum, 2012] and Theorem B.10 in [Luise
et al., 2019]).

While the above discussion shows that the output of the Sinkhorn-Knopp algorithm well approximates
the Sinkhorn potential fθ, it would be useful to discuss more about the boundedness property of the
sequence tf tu produced by the above Sinkhorn-Knopp algorithm. We first show that under bounded
initialization f0, the entire sequence tf tu is bounded.
Lemma B.1. Suppose that we initialize the Sinkhorn-Knopp algorithm with f0 P CpX q such that
}f0}8 ďMc. One has }f t}8 ďMc, for t “ 1, 2, 3, ¨ ¨ ¨ .

Proof. For }f}8 ďMc and any measure α PM`
1 pX q, we have

}Apf, αq}8 “ γ} log

ż

X
expt´cpx, ¨q{γu exptfpxq{γudαpxq}8 ď γ log exppMc{γq ďMc.

One can then check the lemma via induction.

We then show that the sequence tf tu has bounded first, second and third-order gradients under the
following assumptions on the ground cost function c.
Assumption B.2. The cost function c is Gc-Lipschitz continuous with respect to one of its inputs:
For all x, x1 P X ,

|cpx, yq ´ cpx1, yq| ď Gc}x´ x
1}.

Assumption B.3. The gradient of the cost function c is Lc-Lipschitz continuous: for all x, x1 P X ,

}∇1cpx, yq ´∇1cpx
1, yq} ď Lc}x´ x

1}.

Assumption B.4. The Hessian matrix of the cost function c is L2,c-Lipschitz continuous: for all
x, x1 P X ,

}∇2
11cpx, yq ´∇2

11cpx
1, yq} ď L2,c}x´ x

1}.

Lemma B.2. Assume that the initialization f0 P CpX q satisfies }f0}8 ďMc.
(i.) Under Assumptions B.1 and B.2, DGf such that }∇f t}2,8 ď Gf ,@t ą 0.
(ii.) Under Assumptions B.1 - B.3, DLf such that }∇2f tpxq} ď Lf ,@t ą 0.
(iii.) Under Assumptions B.1 - B.4, DL2,f such that }∇2f tpxq´∇2f tpyq}op ď L2,f }x´ y},@t ą 0.
(iv). For }f}8 ďMc, the function Bpf, θqpxq is Gf -Lipschitz continuous.

Proof. We denote kpx, yq:“ expt´cpx, yq{γu in this proof.

(i) Under Assumptions B.1 and B.2, k is rGc{γs-Lipschitz continuous w.r.t. its first variable. For
f P CpX q such that }f}8 ďMc, we bound

|Apf, αqpxq ´Apf, αqpyq| “ γ| log

ż

X
rkpz, yq ´ kpz, xqs exptfpzq{γudαpzq|

ď γ exppMc{γqGc{γ}x´ y}2 “ exppMc{γqGc}x´ y}2.
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Using Lemma B.1, we know that tf tu is Mc-bounded and hence

}∇f t`1}2,8 ď Gf “ expp2Mc{γqG
2
c .

(ii) Under Assumption B.1, kpx, yq ě expp´Mc{γq. We compute

∇
`

Apf, αq
˘

pxq “

ş

X kpz, xq exptfpzq{γu∇1cpx, zqdαpzq
ş

X kpz, xq exptfpzq{γudαpzq
. #

g1pxq

g2pxq

Let g1 : Rq Ñ Rq and g2 : Rq Ñ R be the numerator and denominator of the above expression. If we
have (a) }g1}2,8 ď G1, (b) }g1pxq´g1pyq} ď L1}x´y} and (c) }g2}8 ď G2, (d) |g2pxq´g2pyq| ď
L2}x´ y}, (e) g2 ě Ḡ2 ą 0, we can bound

}
g1pxq

g2pxq
´
g1pyq

g2pyq
} “ }

g1pxqg2pyq ´ g1pyqg2pxq

g2pxqg2pyq
} ď

G2L1 `G1L2

Ḡ2
2

}x´ y}, (63)

which means that ∇
`

Apf, αq
˘

is L-Lipschitz continuous with L “ G2L1`G1L2

Ḡ2
2

. We now prove
(a)-(e).

(a) }
ş

X kpz, xq exptfpzq{γu∇1cpx, zqdαpzq}2,8 ď exppMc{γq ¨Gc (Assumption B.2).

(b) Note that for any two bounded and Lipschitz continuous functions h1 : X Ñ R and
h2 : X Ñ Rq , their product is also Lipschitz continuous:

}h1pxq ¨ h2pxq ´ h1pyq ¨ h2pyq} ď r|h1|8 ¨Gh2
` }h2}2,8 ¨Gh1

s}x´ y}, (64)

where Ghi denotes the Lipschitz constant of hi, i “ 1, 2. Hence for g1, we have

}g1pxq ´ g1pyq} ď exppMc{γq ¨ pLc `G
2
c{γq ¨ }x´ y},

since kpx, yq ď 1, }∇1kpx, yq} ď Gc{γ, }∇1cpx, yq} ď Gc, }∇2
11cpx, yq}op ď Lc.

(c) }
ş

X kpz, ¨q exptfpzq{γudαpzq}8 ď exppMc{γq.

(d) |
ş

X rkpz, xq ´ kpz, yqs exptfpzq{γudαpzq| ď exppMc{γq ¨Gc{γ ¨ }x´ y}.

(e)
ş

X kpz, xq exptfpzq{γudαpzq ě expp´2Mc{γq ą 0.

Combining the above points, we prove the existence of Lf .

For (iii), compute that

∇2
`

Apf, αq
˘

pxq

“

ş

X kpz, xq exptfpzq{γu∇1cpx, zq∇1cpx, zq
Jdαpzq

ş

X kpz, xq exptfpzq{γudαpzq
#1

`

ş

X kpz, xq exptfpzq{γu∇2
11cpx, zqdαpzq

ş

X kpz, xq exptfpzq{γudαpzq
#2

´

ş

X kpz, xq exptfpzq{γu∇1cpx, zqdαpzq
“ş

X kpz, xq exptfpzq{γu∇1cpx, zqdαpzq
‰J

“ş

X kpz, xq exptfpzq{γudαpzq
‰2 . #3

We now analyze #1-#3 individually.

#1 Note that for any two bounded and Lipschitz continuous functions h1 : X Ñ R and
h2 : X Ñ Rqˆq , their product is also Lipschitz continuous:

}h1pxq ¨ h2pxq ´ h1pyq ¨ h2pyq}op ď r|h1|8 ¨Gh2
` }h2}op,8 ¨Gh1

s}x´ y}, (65)

where Ghi denotes the Lipschitz constant of hi, i “ 1, 2.

Take h1pxq “ kpz1, xq exptfpz1q{γu{
ş

X kpz, xq exptfpzq{γudαpzq. h1 is bounded since
kpz1, xq ď 1 and

ş

X kpz, xq exptfpzq{γudαpzq ě expp´2Mc{γq ą 0. h1 is Lipschitz
continuous since we additionally have kpz1, xq being Lipschitz continuous (see (63)).

Take h2pxq “ ∇1cpx, zq∇1cpx, zq
J. h2 is bounded since }∇1cpx, zq} ď Gc (Assumption

B.2). h2 is Lipschitz continuous due to Assumption B.3.
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#2 Following the similar argument as #1, we have the result. Note that h2pxq “ ∇2
11cpx, zq is

Lipschitz continuous due to Assumption B.4.

#3 We follow the similar argument as #1 by taking

h1pxq “
kpz1, xq exptfpz1q{γukpz1, xq exptfpz1q{γu

“ş

X kpz, xq exptfpzq{γudαpzq
‰2 ,

and taking

h2pxq “ ∇1cpx, zqr∇1cpx, zqs
J.

Combining the above points, we prove the existence of L2,f .

(iv) As a composition ofA, we also have that Bpf, θq is Gf -Lipschitz continuous (see Gf in (i)).

Moreover, based on the above continuity results, we can show that the first-order gradient ∇f εθ (and
second-order gradient∇2f εθ ) also converges to∇fθ (and∇2fθ) in time logarithmically depending
on 1{ε.

Lemma B.3. Under Assumptions B.1-B.3, the Sinkhorn-Knopp algorithm, i.e. the fixed point iteration

f t`1 “ Bpf t, θq, (66)

computes∇fθ in logarithm time: }∇f t`1 ´∇fθ}2,8 “ ε with t “ Oplog 1
ε q.

Proof. For a fix point x P X and any direction h P Rq , we have

f tpx` η ¨ hq ´ f tpxq “ ηr∇f tpxqsJh` η2

2
hJ∇2f tpx` η̃1 ¨ hqh,

where η ą 0 is some constant to be determined later and 0 ď η̃1 ď η is obtained from the mean value
theorem. Similarly, we have for 0 ď η̃2 ď η

fθpx` η ¨ hq ´ fθpxq “ ηr∇fθpxqsJh`
η2

2
hJ∇2fθpx` η̃2 ¨ hqh.

We can then compute

|r∇f tpxq ´∇fθpxqsJh| ď
2

η
}f t ´ fθ}8 ` ηLf }h}

2.

Take h “ ∇f tpxq ´∇fθpxq and η “ 2
Lf

. We derive from the above inequality

}∇f tpxq ´∇fθpxq}2 ď 2Lf }f
t ´ fθ}8.

Consequently, if we have 2Lf }f
t ´ fθ}8 ď ε2, we can prove that }∇f t ´∇fθ}2,8 ď ε since x is

arbitrary. This can be achieve in logarithmic time using the Sinkhorn-Knopp algorithm.

Lemma B.4. Under Assumptions B.1-B.4, the Sinkhorn-Knopp algorithm, i.e. the fixed point iteration

f t`1 “ Bpf t, θq, (67)

computes∇2fθ in logarithm time: }∇2f t`1 ´∇2fθ}op,8 “ ε with t “ Oplog 1
ε q.

Proof. This follows a similar argument as Lemma B.3 by noticing that the third order gradient of f t
(and fθ) is bounded due to Assumption B.4.
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B.3 Proof of Proposition 5.3

We now construct a sequence tgtu to approximate the Fréchet derivative of the Sinkhorn potential
Dfθ such that for all t ě T pεq with some integer function T pεq of the target accuracy ε, we have
}gtθ ´Dfθ}op ď ε. In particular, we show that such ε-accurate approximation can be achieved using
a logarithmic amount of simple function operations and integrations with respect to αθ.

For a given target accuracy ε ą 0, denote ε̄ “ ε{Ll, where Ll is a constant defined in Lemma
B.5. First, Use the Sinkhorn-Knopp algorithm to compute f ε̄θ , an approximation of fθ such that
}f ε̄θ ´ fθ}8 ď ε̄. This computation can be done in Oplog 1

ε q from Proposition 5.2.

Denote Epf, θq “ Blpf, θq “ B
`

¨ ¨ ¨Bpf, θq, ¨ ¨ ¨ , θ
˘

, the l times composition of B in its first variable.
Pick l “ rlogλ

1
3 s{2. From the contraction of A under the Hilbert metric (61), we have

}Epf, θq ´ Epf 1, θq}8 ď γdHpexppEpf, θq{γq, exppEpf 1, θq{γqq

ď γλ2ldHpexppf{γq, exppf 1{γqq ď 2λ2l}f ´ f 1}8 ď
2

3
}f ´ f 1}8,

where we use }f ´ f 1}8 ď dHpexppfq, exppf 1qq ď 2}f ´ f 1}8 in the first and third inequalities.
Consequently, Erf, θs is a contraction operator w.r.t. f under the l8 norm, which is equivalent to

}D1Epf, θq}op ď
2

3
. (68)

Now, given arbitrary initialization g0
θ : Θ Ñ T pRd, CpX qq1, construct iteratively

gt`1
θ “ D1Epf ε̄θ , θq ˝ gtθ `D2Epf ε̄θ , θq, (69)

where ˝ denotes the composition of (linear) mappings. In the following, we show that

}gt`1
θ ´Dfθ}op ď 3ε` p

2

3
qt}g0

θ ´Dfθ}op.

First, note that fθ is a fixed point of Ep¨, θq

fθ “ Epfθ, θq.

Take the Fréchet derivative w.r.t. θ on both sides of the above equation. Using the chain rule, we
compute

Dfθ “ D1Epfθ, θq ˝Dfθ `D2Epfθ, θq. (70)

For any direction h P Rd, we bound the difference of the directional derivatives by

}gt`1
θ rhs ´Dfθrhs}8

ď }D1Epfθ, θq
“

Dfθrhs
‰

´D1Epf ε̄θ , θq
“

gtθrhs
‰

}8 ` }D2Epf ε̄θ , θqrhs ´D2Epfθ, θqrhs}8

ď
2

3
}Dfθrhs ´ g

t
θrhs}8 ` Ll

`

}f ε̄θ ´ fθ}8 ` }∇f ε̄θ ´∇fθ}8
˘

}h}8

ď
2

3
}Dfθ ´ g

t
θ}op}h}8 ` ε}h}8,

where in the second inequality we use the bound on D1E in (68) and the Ll-Lipschitz continuity of
D2E with respect to its first argument (recall that f ε̄θ is obtained from the Sinkhorn-Knopp algorithm
and hence }f ε̄θ}8 ďMc from Lemma B.1 and }∇f ε̄θ}2,8 ď Gf from (i) of Lemma B.2). The above
inequality is equivalent to

}gt`1
θ ´Dfθ}op ´ 3ε ď

2

3

`

}Dfθ ´ g
t
θ}op ´ 3ε

˘

ñ }gt`1
θ ´Dfθ}op ď 3ε` p

2

3
qt}g0

θ ´Dfθ}op.

Therefore, after T pεq “ Oplog 1
ε q iterations, we find gT pεqθ such that }gT pεqθ ´Dfθ}op ď 4ε.

Assumption B.5 (Boundedness of ∇θTθpxq). There exists some GT ą 0 such that for any x P X
and θ P Θ, }∇θTθpxq}op ď GT .

1Recall that T pRd, CpX qq is the family of bounded linear operators from Rd to CpX q
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Lemma B.5 (Lipschitz continuity of D2E). Under Assumptions B.1 - B.3 and B.5, D2E is Lipschitz
continuous with respect to its first variable: For f, f 1 P CpX q such that }f}8 ďMc (}f 1}8 ďMc)
and }∇f}8 ď Gf (}∇f 1}8 ď Gf ), and θ P Θ there exists some Ll such that

}D2Epf, θq ´D2Epf 1, θq}op ď Ll
`

}f ´ f 1}8 ` }∇f ´∇f 1}2,8
˘

. (71)

Proof. Recall that Ep¨, θq “ Blp¨, θq. Using the chain rule of Fréchet derivative, we compute

D2Blpf, θq “ D1B
`

Bl´1pf, θq, θ
˘

˝D2Bl´1pf, θq `D2B
`

Bl´1pf, θq, θ
˘

. (72)

We bound the two terms on the R.H.S. individually.

Analyze the first term of (72). For a given f , use Af and Bf to denote two linear operators
depending on f . We have }Af ˝ Bf ´ Af 1 ˝ Bf 1}op “ Op}f ´ f 1}8 ` }∇f ´∇f 1}2,8q if both
Af and Bf are bounded, }Af ´Af 1}op “ Op}f ´ f 1}8 ` }∇f ´∇f 1}2,8q, and }Bf ´Bf 1}op “
Op}f ´ f 1}8 ` }∇f ´∇f 1}2,8q:

}Af ˝Bf ´Af 1 ˝Bf 1}op ď }Af ˝Bf ´Af ˝Bf 1}op ` }Af ˝Bf 1 ´Af 1 ˝Bf 1}op

ď rmax
f
}Bf }op ¨ LA `max

f
}Af }op ¨ LBs

“

}f ´ f 1}8 ` }∇f ´∇f 1}2,8
‰

, (73)

where LA and LB denote the constants of operators Af and Bf such that

}Af ´Af 1} ď LA
“

}f ´ f 1}8 ` }∇f ´∇f 1}2,8
‰

}Bf ´Bf 1} ď LB
“

}f ´ f 1}8 ` }∇f ´∇f 1}2,8
‰

.

We now take
Af “ D1B

`

Bl´1pf, θq, θ
˘

and Bf “ D2Bl´1pf, θq.

}Af }op is bounded from the following lemma.

Lemma B.6. Bpf, θq is 1-Lipschitz continuous with respect to its first variable.

Proof. We compute that for any measure κ and any function g P CpX q,

D1Apf, κqrgs “
ş

X expt´ 1
γ

`

cpx, yq ´ fpxq
˘

ugpxqdκpxq
ş

X expt´ 1
γ

`

cpx, yq ´ fpxq
˘

udκpxq
. (74)

Note that

}D1Apf, κqrgs}8 ď }
ş

X expt´ 1
γ

`

cpx, yq ´ fpxq
˘

udκpxq
ş

X expt´ 1
γ

`

cpx, yq ´ fpxq
˘

udκpxq
}8 ¨ }g}8 “ }g}8, (75)

and consequently we have }D1Apf, κq}op ď 1. Further, since B is the composition of A in its first
variable, we have that }D1Bpf, θq}op ď 1.

}Bf }op is bounded from the following lemma.

Lemma B.7. Assume that f P CpX q satisfies }f}8 ďMc and }∇f}2,8 ď Gf . Under Assumptions
B.2 and B.5, @l ě 1, }D2Blpf, θq}op is Ml-bounded, with Ml “ l ¨ expp3Mc{γq ¨GT ¨ pGc `Gf q.

Proof. In this proof, we denote Ãpf, θq:“Apf, αθq to make the dependence ofA on θ explicit. Using
the chain rule of Fréchet derivative, we compute

D2Blpf, θq “ D1B
`

Bl´1pf, θq, θ
˘

˝D2Bl´1pf, θq `D2B
`

Bl´1pf, θq, θ
˘

. (76)

We will use Ml to denote the upper bound of }D2Blpf, θq}op. Consequently we have

Ml ď }D1B
`

Bl´1pf, θq, θ
˘

}op}D2Bl´1pf, θq}op ` }D2B
`

Bl´1pf, θq, θ
˘

}op

ďMl´1 ` }D2B
`

Bl´1pf, θq, θ
˘

}op,

20



where we use Lemma B.6 in the second inequality. Recall that Bpf, θq “ ApÃpf, θq, βq. Again
using the chain rule of the Fréchet derivative, we compute

D2Bpf, θq “ D1A
`

Ãpf, θq, β
˘

˝D2Ãpf, θq, (77)

and hence

}D2Bpf, θq}op ď }D1A
`

Ãpf, θq, β
˘

}op ¨ }D2Ãpf, θq}op ď }D2Ãpf, θq}op, (78)

where we use (75) in the second inequality. We now bound }D2Ãpf, θq}op. Denote

ωypxq:“ expp´cpx, yq{γq exppfpxq{γq.

We have expp´2Mc{γq ď ωypxq ď exppMc{γq from }f}8 ď Mc and Assumption B.1. For any
direction h P Rq (note that D2Ãpf, θqrhs : X Ñ R) and any y P X , we compute

`

D2Ãpf, θqrhs
˘

pyq “

ş

X ωypTθpxqqxr∇θTθpxqs
J r´∇1cpTθpxq, yq `∇fpTθpxqqs , hydµpxq
ş

X ωypTθpxqqdµpxq
,

where ∇θTθpxq denotes the Jacobian matrix of Tθpxq w.r.t. θ. Consequently we bound

}D2Ãpf, θqrhs}8 ď expp3Mc{γq}∇θTθpxq}op ¨ r}∇1c
`

Tθpxq, y
˘

} ` }∇f
`

Tθpxq
˘

}s ¨ }h}

ď expp3Mc{γq ¨GT ¨ pGc `Gf q}h},

which implies
}D2Ãpf, θq}op ď expp3Mc{γq ¨GT ¨ pGc `Gf q. (79)

To show the Lipschitz continuity of Af , i.e. }Af ´ Af 1} ď LA}f ´ f 1}8, we first establish the
following continuity lemmas of D1Bp¨, θq and Bl´1p¨, θq.

Lemma B.8. For f P CpX q such }f}8 ďMc, D1Bpf, θq is L-Lipschitz continuous with respect to
its first variable with L “ 2LA.

Proof. Use the chain rule of Fréchet derivative to compute

D1Bpf, θq “ D1A
`

Apf, αθq, β
˘

loooooooooomoooooooooon

Uf

˝D1Apf, αθq
looooomooooon

Vf

. (80)

We analyze the Lipschitz continuity of }D1Bpf, θq}op following the same logic as (73):

• The 1-boundedness of Uf and Vf is from Lemma B.6.

• The LA-Lipschitz continuity of Vf is from Lemma B.11.

• The LA-Lipschitz continuity of Uf is from Lemmas B.6 and B.11.

Consequently, we have that D1Bpf, θq is 2LA-Lipschitz continuous w.r.t. its first variable.

Lemma B.9. @l,Blpf, θq is 1-Lipschitz continuous with respect to its first variable.

Proof. Use the chain rule of Fréchet derivative to compute

D1Blpf, θq “ D1B
`

Bl´1pf, θq, θ
˘

˝D1Bl´1pf, θq. (81)

Consequently }D1Blpf, θq}op ď }D1Bpf, θq}lop. Further, we have }D1Bpf, θq}op ď 1 from Lemma
B.6 which leads to the result.

We have that Af is Lipschitz continuous since (i) Af is the composition of Lipschitz continuous
operators D1Bp¨, θq and Bl´1pf ¨, θq and (ii) for }f}8 ď Mc, @l ě 0, }Blpf, θq}8 ď Mc (the
argument is similar to Lemma B.1).

We prove }Bf ´ Bf 1} ď Ll
“

}f ´ f 1}8 ` }∇f ´∇f 1}2,8
‰

via induction. The following lemma
establishes the base case for D2Bpf, θq (when l “ 2). Note that the boundedness of }f}8 (}f 1}8)
and }∇f}8 (}∇f 1}8) remains valid after the operator B (Lemma B.1 and (i) of Lemma (B.2)).
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Lemma B.10. There exists constant L1 such that for }f}8 ďMc (}f 1}8 ďMc) and }∇f}8 ď Gf
(}∇f 1}8 ď Gf )

}D2Bpf, θq ´D2Bpf 1, θq}op ď L1

“

}f ´ f 1}8 ` }∇f ´∇f 1}2,8
‰

. (82)

Proof. In this proof, we denote Ãpf, θq:“Apf, αθq to make the dependence of A on θ explicit.
Recall that Bpf, θq “ ApÃpf, θq, βq. Use the chain rule of Fréchet derivative to compute

D2Bpf, θq “ D1A
`

Apf, αθq, β
˘

loooooooooomoooooooooon

Uf

˝D2Ãpf, θq
loooomoooon

Vf

. (83)

We analyze the Lipschitz continuity of }D2Bpf, θq}op following the same logic as (73):

• The 1-boundedness of Uf is from Lemma B.6.

• The expp3Mc{γq ¨GT ¨ pGc `Gf q-boundedness of Vf is from (79).

• The LA-Lipschitz continuity of Uf is from Lemmas B.6 and B.11 and the fact that for
}f}8 ďMc, }Apf, θq}8 ďMc (the argument is similar to Lemma B.1).

• Denote
Typx, fq:“ expp´cpx, yq{γq exppfpxq{γq.

We compute

Vf “

ş

Z Ty
`

Tθpzq, f
˘

r∇θTθpzqsJ
“

´∇1cpTθpzq, yq `∇f
`

Tθpzq
˘‰

dµpzq
ş

Z Ty
`

Tθpzq, f
˘

dµpzq
, #

Pf
Qf

Denote the numerator by Pf and the denominator by Qf . Following the similar idea as (63),
we show that both }Pf }op and }Qf }8 are bounded, Qf is Lipschitz continuous w.r.t. f , Qf
is positive and bounded from below, and }Pf ´Pf 1}op ď Lvr}f ´ f

1}8`}∇f ´∇f 1}2,8s
for some constant Lv .

– The boundedness of }Pf }op is from the boundedness of f , Assumptions B.5, B.2, and
the boundedness of∇f .

– The boundedness of }Qf }8 is from the boundedness of f .
– Use DQf to denote the Fréchet derivative of Qf w.r.t. f . For any function g P CpX q,

DQf rgs “

ż

X
Typx, fqgpxq{γdαθpxq, (84)

where we recall that αθ “ Tθ7µ. Further, we have }DQf rgs}8 ď exppMc{γq{γ}g}8,
which implies the Lipschitz continuity of Qf (for }f}8 ďMc).

– We prove that for }f}8 ďMc (}f 1}8 ďMc) and }∇f}8 ď Gf (}∇f 1}8 ď Gf ),

}Pf ´ Pf 1}op ď Lvr}f ´ f
1}8 ` }∇f ´∇f 1}2,8s.

For a fixed z P Z , denote

pzf :“Ty
`

Tθpzq, f
˘

r∇θTθpzqsJ
“

´∇1cpTθpzq, yq `∇f
`

Tθpzq
˘‰

.

Note that Pf “
ş

Z p
z
fdµpzq. For any direction h P Rd, we bound

}pzf rhs ´ p
z
f 1rhs}op

ď}D2Ty
`

Tθpzq, f
˘

}op}f ´ f
1}8 ¨max

y
|r∇θTθpzqhsJ

“

´∇1cpTθpzq, yq `∇f
`

Tθpzq
˘‰

|

` rmax
y
Ty
`

Tθpzq, f
˘

s ¨ }∇θTθpzqh}}∇f
`

Tθpzq
˘

´∇f 1
`

Tθpzq
˘

}

ď exppMc{γq{γ ¨GT ¨ pGc `Gf q ¨ }f ´ f
1}8 ¨ }h} ` exppMc{γq ¨GT ¨ }h} ¨ }∇f ´∇f 1}2,8.

Consequently, we have that there exists a constant Lv such that

}pzf rhs ´ p
z
f 1rhs}8 ď Lvr}f ´ f

1}8 ` }∇f ´∇f 1}2,8s ¨ }h}.
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The above lemma shows the base case for the induction. Now suppose that the inequality
}D2Bkpf, θq ´D2Bkpf 1, θq}op ď Lk

“

}f ´ f 1}8 ` }∇f ´∇f 1}2,8
‰

holds.
For the case of k ` 1, we compute the Fréchet derivative

D2Bk`1pf, θq “ D1B
`

Bkpf, θq, θ
˘

˝D2Bkpf, θq `D2B
`

Bkpf, θq, θ
˘

,

and hence we can bound

}D2Bk`1pf, θq ´D2Bk`1pf 1, θq}op

ď }D1B
`

Bkpf, θq, θ
˘

˝
`

D2Bkpf, θq ´D2Bkpf 1, θq
˘

}op

` }

ˆ

D1B
`

Bkpf, θq, θ
˘

´D1B
`

Bkpf 1, θq, θ
˘

˙

˝D2Bkpf 1, θq}op

` }D2B
`

Bkpf, θq, θ
˘

´D2B
`

Bkpf 1, θq, θ
˘

}op

ď }D2Bkpf, θq ´D2Bkpf 1, θq}op (85)

` LA}Bkpf, θq ´ Bkpf 1, θq}8}D2Bkpf 1, θq}op
` L1

“

}Bkpf, θq ´ Bkpf 1, θq}8 ` }∇Bkpf, θq ´∇Bkpf 1, θq}2,8
‰

ď Lkr}f ´ f
1}8 ` }∇f ´∇f 1}2,8s ` LA ¨Mk ¨ }f ´ f

1}8

` L1}f ´ f
1}8 ` L1}∇Bkpf, θq ´∇Bkpf 1, θq}2,8

ď pLk ` L1 ` LAMkqr}f ´ f
1}8 ` }∇f ´∇f 1}2,8s ` L1}∇Bkpf, θq ´∇Bkpf 1, θq}2,8. (86)

Here in the third inequality, we use the induction for the first term, Lemma B.7 for the second term.
Notice that ∇Apf, θq is Lipschitz continuous w.r.t. f : Denote kpx, yq:“ expt´cpx, yq{γu. For any
fixed x P X ,

∇
`

Apf, αq
˘

pxq “

ş

X kpz, xq exptfpzq{γu∇1cpx, zqdαpzq
ş

X kpz, xq exptfpzq{γudαpzq
, #

g1pfq

g2pfq

where we denote the numerator and denominator of the above expression by g1 : CpX q Ñ Rq and
g2 : CpX q Ñ R. From the boundedness of g1 and g2, the Lipschitz continuity of g1 and g2 w.r.t. to
f , and the fact that g2 is positive and bounded away from zero, we conclude that there exists some
constant LA,f such that for any x P X (this follows similarly as (63))

}∇
`

Apf, αq
˘

pxq ´∇
`

Apf 1, αq
˘

pxq} ď LA,f }f ´ f
1}8. (87)

Recall that Bk is the compositions of operators in the form of A. Consequently, we have that

}∇Bkpf, θq ´∇Bkpf 1, θq}2,8 ď LA,f }f ´ f
1}8.

Plugging this result into (86), we prove that the induction holds for k ` 1:

}D2Bk`1pf, θq´D2Bk`1pf 1, θq}op ď pLk`L1`LAMk`L1LA,f qr}f´f
1}8`}∇f´∇f 1}2,8s.

Consequently, for any finite l, we have }Bf ´ Bf 1} ď Ll
“

}f ´ f 1}8 ` }∇f ´ ∇f 1}2,8
‰

, where
Ll “ l ¨ pL1 ` LAMk ` L1LA,f q.

Lemma B.11. Under Assumption B.1, for f P CpX q such }f}8 ď Mc, there exists constant LA
such that D1Apf, αθq is LA-Lipschitz continuous with respect to its first variable.

Proof. Let g P CpX q any function. Denote Typx, fq:“ expp´cpx, yq{γq exppfpxq{γq. For a fixed
point y P X and any function g P CpX q, we compute that

`

D1Apf, θqrgs
˘

pyq “

ş

X Typx, fqgpxqdαθpxq
ş

X Typx, fqdαθpxq
, #

g1pfq

g2pfq

where we denote the numerator and denominator of the above expression by g1 : CpX q Ñ Rq and
g2 : CpX q Ñ R. From the boundedness of g1 and g2, the Lipschitz continuity of g1 and g2 w.r.t. to
f , and the fact that g2 is positive and bounded away from zero, we conclude that there exists some
constant LA such that for any x P X (this follows similarly as (63)).
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Analyze the second term of (72). We bound the second term of (72) using Lemma B.10:

}D2BpBl´1pf, θq, θq ´D2BpBl´1pf 1, θq, θq}op

ď L1r}Bl´1pf, θq ´ Bl´1pf 1, θq}8 ` }∇Bl´1pf, θq ´∇Bl´1pf 1, θq}2,8s

ď L1r}f ´ f
1}8 ` LA,f }f ´ f

1}8s “ L1 ¨ p1` LA,f q}f ´ f
1}8,

where we use (87) in the second inequality.

Combing the analysis for the two terms of (72), we conclude the result.

B.4 Proof of Theorem 5.1

We prove that the approximation error of ∇2
θOTγpαθ, βq using the estimated Sinkhorn potential f εθ

and the estimated Fréchet derivative gεθ is of the order

Op}f εθ ´ fθ}8 ` }∇f εθ ´∇fθ}2,8 ` }∇2f εθ ´∇2fθ}op,8 ` }g
ε
θ ´Dfθ}opq.

The other term∇2
θOTγpαθ, αθq is handled in a similar manner.

Recall the simplified expression of ∇2
θOTγpαθ, βq in (52). Given the estimator f εθ (gεθ) of fθ (Dfθ),

we need to prove the following bounds of differences in terms of the estimation accuracy: For any
h1, h2 P Rd,

|D2
11H1pfθ, θq

“

Dfθrh1s, Dfθrh2s
‰

´D2
11H1pf

ε
θ , θq

“

gεθrh1s, g
ε
θrh2s

‰

|

“ O p}h1} ¨ }h2} ¨ p}f
ε
θ ´ fθ}8 ` }g

ε
θ ´Dfθ}opqq , (88)

}D2
22H1pfθ, θq ´D

2
22H1pf

ε
θ , θq}op

“ O
`

}f εθ ´ fθ}8 ` }∇f εθ ´∇fθ}2,8 ` }∇2f εθ ´∇2fθ}op,8
˘

. (89)

Note that from the definition of the operator norm the first results is equivalent to the bound in the
operator norm. Using Propositions 5.2 and 5.3 and Lemmas B.3, B.4, we know that we can compute
the estimators f εθ and gεθ such that }f εθ´fθ}8 ď ε, }∇f εθ´∇fθ}2,8 ď ε, and }∇2f εθ´∇2fθ}op,8 ď ε,
and }gεθ ´Dfθ}op ď ε in logarithm time Oplog 1

ε q. Together with (88) and (89) proved above, we
can compute an ε-accurate estimation of ∇2

θOTγpαθ, βq (in the operator norm) in logarithm time
Oplog 1

ε q.

Bounding (88). Recall the definition of D2
11H1pfθ, θq

“

Dfθrh1s, Dfθrh2s
‰

in (56). Denote

A1 “ D2
11Apfθ, αθq, v1 “ Dfθrh1s, v2 “ Dfθrh2s,

A2 “ D2
11Apf εθ , αθq, u1 “ gεθrh1s, u2 “ gεθrh2s.

Based on these definitions, we have

D2
11H1pfθ, θq

“

Dfθrh1s, Dfθrh2s
‰

“

ż

X
A1rv1, v2spyqdβpyq

D2
11H1pf

ε
θ , θq

“

gεθrh1s, g
ε
θrh2s

‰

“

ż

X
A2ru1, u2spyqdβpyq.

Using the triangle inequality, we have

}A1rv1, v2s´A2ru1, u2s}8 (90)
ď }A1rv1 ´ u1, v2s}8 ` }A1ru1, v2 ´ u2s}8 ` }pA1 ´A2qru1, u2s}8.

We bound the three terms on the R.H.S. individually.

For the first term on the R.H.S. of (90), we recall the explicit expression of A1rv1, v2spyq in (55) as

A1rv1, v2spyq “

ş

X Typx, fθqv1pxqv2pxqdαθpxq

γ
ş

X Typx, fθqdαθpxq
´

ş

X 2 Typx, fθqTypx1, fθqv1pxqv2px
1qdαθpxqdαθpx

1q

γ
“ş

X Typx, fθqdαθpxq
‰2 .
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Here we recall Typx, fq:“ expp´cpx, yq{γq exppfpxq{γq. We bound using the facts that Typx, fθq
is bounded from above and bounded away from zero

|A1rv1 ´ u1, v2spyq| ď |

ş

X Typx, fθq
`

v1pxq ´ u1pxq
˘

v2pxqdαθpxq

γ
ş

X Typx, fθqdαθpxq
|

` |

ş

X 2 Typx, fθqTypx1, fθq
`

v1pxq ´ u1pxq
˘

v2px
1qdαθpxqdαθpx

1q

γ
“ş

X Typx, fθqdαθpxq
‰2 |

“ Op}v1 ´ u1}8 ¨ }v2}8q.

Further, we have }u1 ´ v1}8 “ Op}Dfθ ´ gεθ}op ¨ }h1}q and }v1}8 “ Op}h2}q. Consequently, the
first term on the R.H.S. of (90) is of order Op}Dfθ ´ gεθ}op ¨ }h1} ¨ }h2}q.

Following the same argument, we have the second term on the R.H.S. of (90) is of order Op}Dfθ ´
gεθ}op ¨ }h1} ¨ }h2}q.

To bound the third term on the R.H.S. of (90), denote

A11ru1, u2s:“

ş

X Typx, fθqu1pxqu2pxqdαθpxq

γ
ş

X Typx, fθqdαθpxq
andA21ru1, u2s:“

ş

X Typx, f
ε
θqu1pxqu2pxqdαθpxq

γ
ş

X Typx, f
ε
θqdαθpxq

,

and denote

A12ru1, u2s:“

ş

X Typx, fθqu1pxqdαθpxq
ş

X Typx
1, fθqu2px

1qdαθpx
1q

γ
“ş

X Typx, fθqdαθpxq
‰2 ,

and A22ru1, u2s:“

ş

X Typx, f
ε
θqu1pxqdαθpxq

ş

X Typx
1, f εθqu2px

1qdαθpx
1q

γ
“ş

X Typx, f
ε
θqdαθpxq

‰2 .

We show that both |
`

A11 ´A21

˘

ru1, u2s| and |
`

A12 ´A22

˘

ru1, u2s| are of order Op}Dfθ ´ gεθ}op ¨
}h1} ¨ }h2}q. This then implies |

`

A1 ´A2

˘

ru1, u2s| “ Op}Dfθ ´ gεθ}op ¨ }h1} ¨ }h2}q.
With the argument similar to (63), we obtain that |

`

A11 ´ A21

˘

ru1, u2s| “ Op}Dfθ ´ gεθ}op ¨
}u1} ¨ }u2}q using the boundedness and Lipschitz continuity of the numerator and denominator of
A11ru1, u2s w.r.t. to fθ and the fact that the denominator is positive and bounded away from zero
(see the discussion following (63)). Further, since both Dfθ and gεθ are bounded linear operators,
we have that u1 “ Oph1q and u2 “ Oph2q. Consequently, we prove that |

`

A11 ´A21

˘

ru1, u2s| “

Op}fθ ´ f εθ}op ¨ }h1} ¨ }h2}q.
Similarly, we can prove that |

`

A12 ´A22

˘

ru1, u2s| “ Op}fθ ´ f εθ}op ¨ }h1} ¨ }h2}q.

Altogether, we have proved (88).

Bounding (89). Recall that the expression of D2
22H1pf, θq in (58). For a fixed y P X and a fixed

z1 P Z , denote (recall that uzpθ, fq “ ∇1c
`

Tθpzq, y
˘

´∇f
`

Tθpzq
˘

)

B1pfq “∇2
θTθpz

1q ˆ1 ∇f
`

Tθpz
1q
˘

B2pfq “∇θTθpz1qJ∇2f
`

Tθpz
1q
˘

∇θTθpz1q

B3pfq “

ş

Z Ty
`

Tθpzq, f
˘

∇θTθpzqJuzpθ, fquzpθ, fqJ∇θTθpzqdµpzq
ş

Z Ty
`

Tθpzq, f
˘

dµpzq

B4pfq “

ş

Z Ty
`

Tθpzq, f
˘

∇2
θTθpzq ˆ1 uzpθ, fqdµpzq

ş

Z Ty
`

Tθpzq, f
˘

dµpzq

B5pfq “

ş

Z Ty
`

Tθpzq, f
˘

∇θTθpzqJ∇11cpTθpzq, yq∇θTθpzqdµpzq
ş

Z Ty
`

Tθpzq, f
˘

dµpzq

B6pfq “ ´

ş

Z Ty
`

Tθpzq, f
˘

∇θTθpzqJ∇2f
`

Tθpzq
˘

∇θTθpzqdµpzq
ş

Z Ty
`

Tθpzq, f
˘

dµpzq

B7pfq “

ş

Z Ty
`

Tθpzq, f
˘

∇θTθpzqJuzpθ, fqdµpzq
“ş

Z Ty
`

Tθpzq, f
˘

∇θTθpzqJuzpθ, fqdµpzq
‰J

“ş

Z Ty
`

Tθpzq, f
˘

dµpzq
‰2
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Based on these definitions, we have

D2
22H1pf, θq “

ż

Z

2
ÿ

i“1

Bipfqdµpz
1q `

ż

X

7
ÿ

i“3

Bipfqdβpyq.

We bound the above seven terms individually.
Assumption B.6. For a fixed z P Z and θ P Θ, use ∇2

θTθpzq P T pRd ˆ Rd Ñ Rqq2 to denote
the second-order Jacobian of Tθpzq w.r.t. θ. Use ˆ1 to denote the tensor product along the first
dimension. For any two vectors g, g1 P Rd, we assume that

}∇2
θTθpzq ˆ1 g ´∇2

θTθpzq ˆ1 g
1}op “ Op}g ´ g1}q. (91)

For the first term, using the boundedness of∇2
θTθpz

1q (Assumption B.6), we have that

}B1pfθq ´B1pf
ε
θq}op “ Op}∇fθ ´∇f εθ}2,8q.

For the second term, using the boundedness of∇θTθpz1q, we have that

}B2pfθq ´B2pf
ε
θq}op “ Op}∇2fθ ´∇2f εθ}op,8q.

For the third term, note that }uzpθ, fθq ´ uzpθ, f
ε
θq} “ Op}∇fθ ´ ∇f εθ}2,8q. With the argument

similar to (63), we obtain that

}B3pfθq ´B3pf
ε
θq}op “ Op}fθ ´ f εθ}8 ` }∇fθ ´∇f εθ}2,8q. (92)

This is from the boundedness and Lipschitz continuity of Ty
`

Tθpzq, f
˘

w.r.t. to f , the boundedness
and Lipschitz continuity of uzpθ, fq w.r.t. ∇f , and the fact that Ty

`

Tθpzq, f
˘

is positive and bounded
away from zero.

For the forth term, following the similar argument as the third term and using the boundedness of
∇2
θTθpzq, we have that

}B4pfθq ´B4pf
ε
θq}op “ Op}fθ ´ f εθ}8 ` }∇fθ ´∇f εθ}2,8q. (93)

For the fifth term, following the similar argument as the third term and using the boundedness of
∇θTθpzq and∇11cpTθpzq, yq, we have that

}B5pfθq ´B5pf
ε
θq}op “ Op}fθ ´ f εθ}8q. (94)

For the sixth term, following the similar argument as the third term and using the boundedness of
∇θTθpzq, we have that

}B6pfθq ´B6pf
ε
θq}op “ Op}fθ ´ f εθ}8 ` }∇2fθ ´∇2f εθ}op,8q. (95)

For the last term, following the similar argument as the third term and using the boundedness of
∇θTθpzq, we have that

}B7pfθq ´B7pf
ε
θq}op “ Op}fθ ´ f εθ}8 ` }∇fθ ´∇f εθ}2,8q. (96)

Combing the above results, we obtain (89).

2Recall that T pU,W q is the family of bounded linear operators from U to W .
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C eSIM appendix

C.1 Proof of Theorem 6.1

In this section, we use fµθ to denote the Sinkhorn potential to OTγpTθ7µ, βq. This allows us to
emphasize the continuity of its Fréchet derivative w.r.t. the underlying measure µ. Similarly, we write
Bµpf, θq and Eµpf, θq instead of Bpf, θq and Epf, θq, which are used to characterize the fixed point
property of the Sinkhorn potential.

To prove Theorem 6.1, we need the following lemmas.
Lemma C.1. The Sinkhorn potential fµθ is Lipschitz continuous with respect to µ:

}fµθ ´ f
µ̄
θ }8 “ Opdblpµ, µ̄qq. (97)

Lemma C.2. The gradient of the Sinkhorn potential fµθ is Lipschitz continuous with respect to µ:

}∇fµθ ´∇f
µ̄
θ }2,8 “ Opdblpµ, µ̄qq. (98)

Lemma C.3. The Hessian of the Sinkhorn potential fµθ is Lipschitz continuous with respect to µ:

}∇2fµθ ´∇
2f µ̄θ }op,8 “ Opdblpµ, µ̄qq. (99)

Lemma C.4. The Fréchet derivative of the Sinkhorn potential fµθ w.r.t. the parameter θ, i.e. Dfµθ , is
Lipschitz continuous with respect to µ:

}Dfµθ ´Df
µ̄
θ }op “ Opdblpµ, µ̄qq. (100)

Once we have these lemmas, we can prove 6.1 in the same way as the proof of 5.1 in Appendix B.4.

C.2 Proof of Lemma C.1

Note that from the definition of the bounded Lipschitz distance, we have
dblpα, ᾱq “ sup

}ξ}blď1

|xξ, αy ´ xξ, ᾱy| “ sup
}ξ}blď1

|xξ ˝ Tθ, µy ´ xξ ˝ Tθ, µ̄y|

ď sup
}ξ}blď1

}ξ ˝ Tθ}bl ¨ dblpµ, µ̄q ď GT ¨ dblpµ, µ̄q, (101)

where we use }ξ ˝ Tθ}lip ď GT from Assumption B.5.

We have Lemma C.1 by combining the above results with the following lemma.
Lemma C.5. Under Assumption B.1 and Assumption B.2, the Sinkhorn potential is Lipschitz contin-
uous with respect to the bounded Lipschitz metric: Given measures α, α1 and β, we have

}fα,β ´ fα1,β}8 ď Gbldblpα
1, αq and }gα,β ´ gα1,β1}8 ď Gbldblpα

1, αq.

where Gbl “ 2γ expp2Mc{γqG
1
bl{p1´ λ

2q with G1bl “ maxtexpp3Mc{γq, 2Gc expp3Mc{γq{γu

and λ “ exppMc{γq´1
exppMc{γq`1 .

Proof. Let pf, gq and pf 1, g1q be the Sinkhorn potentials to OTγpα, βq and OTγpα
1, βq respectively.

Denote u:“ exppf{γq, v:“ exppg{γq and u1:“ exppf 1{γq, v1:“ exppg1{γq. From Lemma C.7, u is
bounded in terms of the L8 norm:

}u}8 “ max
xPX

|upxq| “ max
xPX

exppf{γq ď expp2Mc{γq,

which also holds for v, u1, v1. Additionally, from Lemma C.8,∇u exists and }∇u} is bounded:

max
x
}∇upxq} “ max

x

1

γ
|upxq|}∇fpxq} ď 1

γ
}upxq}8max

x
}∇fpxq} ď Gc expp2Mc{γq

γ
.

Define the mapping Aαµ:“1{pLαµq with

Lαµ “

ż

X
lp¨, yqµpyqdαpyq,

where lpx, yq:“ expp´cpx, yq{γq. From Assumption B.1, we have }l}8 ď exppMc{γq and from
Assumption B.2 we have }∇xlpx, yq} ď exppMc{γq

Gc
γ . From the optimality condition of f and g,

we have v “ Aαu and u “ Aβv. Similarly, v1 “ Aα1u
1 and u1 “ Aβv

1. Recall the definition of the
Hilbert metric in (60). Note that dHpµ, νq “ dHp1{µ, 1{νq if µpxq ą 0 and νpxq ą 0 for all x P X
and hence dHpLαµ,Lανq “ dHpAαµ,Aανq. We recall the result in (61) using the above notations.
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Lemma C.6 (Birkhoff-Hopf Theorem Lemmens and Nussbaum [2012], see Lemma B.4 in Luise
et al. [2019]). Let λ “ exppMc{γq´1

exppMc{γq`1 and α P M`
1 pX q. Then for every u, v P CpX q, such that

upxq ą 0, vpxq ą 0 for all x P X , we have

dHpLαu, Lαvq ď λdHpu, vq.

Note that

} logµ´ log ν}8 ď dHpµ, νq “ } logµ´ log ν}8 ` } log ν ´ logµ}8 ď 2} logµ´ log ν}8.

In the following, we derive upper bound for dHpµ, νq and use such bound to analyze the Lipschitz
continuity of the Sinkhorn potentials f and g.
Construct ṽ:“Aαu

1. Using the triangle inequality (which holds since vpxq, v1pxq, ṽpxq ą 0 for all
x P X ), we have

dHpv, v
1q ď dHpv, ṽq ` dHpṽ, v

1q ď λdHpu, u
1q ` dHpṽ, v

1q,

where the second inequality is due to Lemma C.6. Note that u1 “ Aβv
1. Apply Lemma C.6 again to

obtain
dHpu, u

1q ď λdHpv, v
1q.

Together, we obtain

dHpv, v
1q ď λ2dHpv, v

1q ` dHpṽ, v
1q ` λdHpũ, u

1q ď λ2dHpv, v
1q ` dHpṽ, v

1q,

which leads to
dHpv, v

1q ď
1

1´ λ2
rdHpṽ, v

1qs.

To bound dHpṽ, v1q, observe the following:

dHpv
1, ṽq “dHpLα1u

1, Lαu
1q ď 2} logLα1u

1 ´ logLαu
1}8

“2 max
xPX

|∇ logpaxqprLα1u
1spxq ´ rLαu

1spxqq| “ 2 max
xPX

1

ax
|rLα1u

1spxq ´ rLαu
1spxq|

ď2 maxt}1{Lα1u
1}8, }1{Lαu

1}8u}Lα1u
1 ´ Lαu

1}8, (102)

where ax P rrLα1u1spxq, rLαu1spxqss in the second line is from the mean value theorem. Further, in
the inequality we use maxt}1{Lαu

1}8, }1{Lαu
1}8u “ maxt}Aα1u

1}8, }Aαu
1}8u ď expp2Mc{γq.

Consequently, all we need to bound is the last term }Lα1u1 ´ Lαu1}8.

We first note that @x P X , }lpx, ¨qu1p¨q}bl ă 8: In terms of } ¨ }8

}lpx, ¨qu1p¨q}8 ď }lpx, ¨q}8}u
1}8 ď expp3Mc{γq ă 8.

In terms of } ¨ }lip, we bound

}lpx, ¨qu1p¨q}lip ď }lpx, ¨q}8}u
1}lip ` }lpx, ¨q}lip}u

1}8

ď exppMc{γq
Gc expp2Mc{γq

γ
` exppMc{γq

Gc
γ

expp2Mc{γq “
2Gc expp3Mc{γq

γ
ă 8.

Together we have }lpx, yqu1pyq}bl ď maxtexpp3Mc{γq,
2Gc expp3Mc{γq

γ u. From the definition of the
operator Lα, we have

}Lα1u
1 ´ Lαu

1}8 “ max
x
|

ż

X
lpx, yqu1pyqdα1pyq ´

ż

X
lpx, yqu1pyqdαpyq| ď }lpx, yqu1pyq}bldblpα

1, αq.

All together we derive

dHpv
1, vq ď

2 expp2Mc{γq}lpx, yqu
1pyq}bl

1´ λ2
¨ dblpα

1, αq pλ “
exppMc{γq ´ 1

exppMc{γq ` 1
q.

Further, since dHpv1, vq ě } log v1 ´ log v}8 “
1
γ }f

1 ´ f}8, we have the result:

}f 1 ´ f}8 ď
2γ expp2Mc{γq}lpx, yqu

1pyq}bl
1´ λ2

¨ dblpα
1, αq.

Similar argument can be made for }g1 ´ g}8.
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Lemma C.7 (Boundedness of the Sinkhorn Potentials). Let pf, gq be the Sinkhorn potentials of
problem (6) and assume that there exists xo P X such that fpxoq “ 0 (otherwise shift the pair by
fpxoq). Then, under Assumption B.1, }f}8 ď 2Mc and }g}8 ď 2Mc.

Next, we analyze the Lipschitz continuity of the Sinkhorn potential fα,βpxq with respect to the input
x.

Assumption B.2 implies that ∇xcpx, yq exists and for all x, y P X , }∇xcpx, yq} ď Gc. It further
ensures the Lipschitz-continuity of the Sinkhorn potential.
Lemma C.8 (Proposition 12 of Feydy et al. [2019]). Under Assumption B.2, for a fixed pair of
measures pα, βq, the corresponding Sinkhorn potential f : X Ñ R is Gc-Lipschitz continuous, i.e.
for x1, x2 P X

|fα,βpx1q ´ fα,βpx2q| ď Gc}x1 ´ x2}. (103)
Further, the gradient∇fα,β exists at every point x P X , and }∇fα,βpxq} ď Gc,@x P X .
Lemma C.9. Under Assumption B.3, for a fixed pair of measures pα, βq, the gradient of the corre-
sponding Sinkhorn potential f : X Ñ R is Lipschitz continuous,

}∇fpx1q ´∇fpx2q} ď Lf }x1 ´ x2}, (104)

where Lf :“
4G2

c

γ ` Lc.

C.3 Proof of Lemma C.2

We have Lemma C.2 by combining (101) with the following lemma.
Lemma C.10 (Lemma C.2 restated). Under Assumption B.1 and Assumption B.2, the gradient of
the Sinkhorn potential is Lipschitz continuous with respect to the bounded Lipschitz metric: Given
measures α, α1 and β, we have

}∇fα,β ´∇fα1,β}8 “ O
`

dblpα
1, αq

˘

Proof. From the optimality condition of the Sinkhorn potentials, one have that
ż

X
hα,βpx, yqdβpyq “ 1,with hα,βpx, yq:“ exp

ˆ

1

γ

`

fα,βpxq ` gα,βpyq ´ cpx, yq
˘

˙

. (105)

Taking gradient w.r.t. x on both sides of the above equation, the expression of∇fα,β writes

∇fα,βpxq “
ş

X hα,βpx, yq∇xcpx, yqdβpyq
ş

X hα,βpx, yqdβpyq
“

ż

X
hα,βpx, yq∇xcpx, yqdβpyq. (106)

We have that @x, y, hα,βpxq is Lipschitz continuous w.r.t. α, which is due to the boundedness of
fα,βpxq, gα,βpyq and the ground cost c, and Lemma C.1. Further, since }∇xcpx, yq} is bounded from
Assumption B.2 we have the Lipschitz continuity of∇fα,β w.r.t. α, i.e.

}∇fα,βpxq ´∇fα1,βpxq} “ O
`

dblpα
1, αq

˘

.

C.4 Proof of Lemma C.3

We have Lemma C.3 by combining (101) with the following lemma.
Lemma C.11 (Lemma C.3 restated). Under Assumptions B.1-B.3, the Hessian of the Sinkhorn
potential is Lipschitz continuous with respect to the bounded Lipschitz metric: Given measures α, α1
and β, we have

}∇2fα,β ´∇2fα1,β}op,8 “ O
`

dblpα
1, αq

˘

Proof. Taking gradient w.r.t. x on both sides of (106), the expression of∇2fα,β writes

∇2fα,βpxq “

ż

X

1

γ
hα,βpx, yqp∇fα,βpxq ´∇xcpx, yqqr∇xcpx, yqsJ ` hα,βpx, yq∇2

xxcpx, yqdβpyq.
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From the boundedness of hα,β ,∇fα,β and∇xc, and the Lipschitz continuity of hα,β and∇fα,β w.r.t.
α, we have that the first integrand of∇2fα,β is Lipschitz continuous w.r.t. α. Further, combining the
boundedness of }∇2

xxcpx, yq} from Assumption B.3 and the Lipschitz continuity of hα,β w.r.t. α, we
have the Lipschitz continuity of∇2fα,βpxq, i.e.

}∇2fα,βpxq ´∇2fα1,βpxq} “ O
`

dblpα
1, αq

˘

.

C.5 Proof of Lemma C.4

The optimality of the Sinkhorn potential fµθ can be restated as

fµθ “ Bµpf
µ
θ , θq, (107)

where we recall the definition of Bµ in (18)

Bµpf, θq “ A
`

Apf, Tθ7µq, βµ
˘

. (108)

Note that it is possible that βµ depends on µ, which is the case in OTγpαθ, αθtq as βµ “ αθt “ Tθt 7µ.

Under Assumption B.1, let λ “ eMc{γ´1
eMc{γ`1

. By repeating the above fixed point iteration (107) l “
rlogλ

1
3 s{2 times, we have that

fµθ “ Eµpf
µ
θ , θq, (109)

where Eµpf, θq “ Blµpf, θq “ Bµ
`

¨ ¨ ¨Bµpf, θq ¨ ¨ ¨ , θ
˘

is the l times composition of Bµ in its first
variable. We have from (68)

||D1Eµpf, θq}op ď
2

3
, (110)

where we recall for a (linear) operator C : CpX q Ñ CpX q, }C}op:“maxfPCpX q
}Cf}8
}f}8

.

Let h P Rd be any direction. Taking Fréchet derivative w.r.t. θ on both sides of (109), we derive

Dfµθ rhs “ D1Eµpfµθ , θq
“

Dfµθ rhs
‰

`D2Eµpfµθ , θqrhs. (111)

Using the triangle inequality, we bound

}Dfµθ rhs ´Df
µ̄
θ rhs}8

ď }D1Eµpfµθ , θq
“

Dfµθ rhs
‰

´D1Eµ̄pfθ,µ̄, θq
“

Df µ̄θ rhs
‰

}8

` }D2Eµpfµθ , θqrhs ´D2Eµ̄pf µ̄θ , θqrhs}8
ď }D1Eµpfµθ , θq

“

Dfµθ rhs
‰

´D1Eµpfµθ , θq
“

Df µ̄θ rhs
‰

}8 1©
` }D1Eµpfθ,µ, θq

“

Df µ̄θ rhs
‰

´D1Eµpfθ,µ̄, θq
“

Df µ̄θ rhs
‰

}8 2©
` }D1Eµpfθ,µ̄, θq

“

Df µ̄θ rhs
‰

´D1Eµ̄pfθ,µ̄, θq
“

Df µ̄θ rhs
‰

}8 3©
` }D2Eµpfµθ , θqrhs ´D2Eµ̄pf µ̄θ , θqrhs}8. 4©

(112)

The following subsections analyze 1© to 4© individually. In summary, we have

1© ď
2

3
}Dfµθ rhs ´Df

µ̄
θ rhs}8, (113)

and 2©, 3©, 4© are all of order Opdblpµ, µ̄q ¨ }h}q. Therefore we conclude

1

3
}Dfµθ rhs ´Df

µ̄
θ rhs}8 “ Opdblpµ, µ̄q ¨ }h}q ñ }Dfµθ ´Df

µ̄
θ }op “ Opdblpµ, µ̄qq. (114)

C.5.1 Bounding 1©

From the linearity of D1Eµpfµθ , θq and (110), we bound

1© “ }D1Eµpfµθ , θq
“

Dfµθ rhs ´Df
µ̄
θ rhs

‰

}8

ď }D1Eµpfµθ , θq}op}Df
µ
θ rhs ´Df

µ̄
θ rhs}8 ď

2

3
}Dfµθ rhs ´Df

µ̄
θ rhs}8.
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C.5.2 Bounding 2©

From Lemma B.8, we know that D1Bµpf, θq is Lipschitz continuous w.r.t. its first variable:

}D1Bµpf, θq ´D1Bµpf 1, θq}op “ Op}f ´ f 1}8q. (115)

Recall that Eµpf, θq “ Blµpf, θq. Using the chain rule of the Fréchet derivative, we have

D1Eµpf, θq “ D1Blµpf, θq “ D1Bµ
`

Bl´1
µ pf, θq, θ

˘

˝D1Bl´1
µ pf, θq. (116)

Consequently, we can bound 2© in a recursive way: for any two functions f, f 1 P CpX q

}D1Blµpf, θq ´D1Blµpf 1, θq}op
“ }D1Bµ

`

Bl´1
µ pf, θq, θ

˘

˝D1Bl´1
µ pf, θq ´D1Bµ

`

Bl´1
µ pf 1, θq, θ

˘

˝D1Bl´1
µ pf 1, θq}op

ď }D1Bµ
`

Bl´1
µ pf, θq, θ

˘

˝
`

D1Bl´1
µ pf, θq ´D1Bl´1

µ pf 1, θq
˘

}op

` }

ˆ

D1Bµ
`

Bl´1
µ pf, θq, θ

˘

´D1Bµ
`

Bl´1
µ pf 1, θq, θ

˘

˙

˝D1Bl´1
µ pf 1, θq}op

ď }D1Bµ
`

Bl´1
µ pf, θq, θ

˘

}op}D1Bl´1
µ pf, θq ´D1Bl´1

µ pf 1, θq}8

`Op}Bl´1
µ pf, θq ´ Bl´1

µ pf 1, θq}8 ¨ }D1Bl´1
µ pf 1, θq}opq

“ Op}f ´ f 1}8q ` }D1Bl´1
µ pf, θq ´D1Bl´1

µ pf 1, θq}8,

where in the first inequality we use the triangle inequality, in the second inequality, we use the
definition of } ¨ }op and (115), and in the last equality we use (115) and the fact that Bk is Lipschitz
continuous with respect its first argument for any finite k (see Lemma B.9). Besides, since fµθ is
continuous with respect to µ (see Lemma C.1), we have

}D1Blpfµθ , θq ´D1Blpf µ̄θ , θq}op “ Opdblpµ, µ̄qq. (117)

We then show that }Df µ̄θ rhs}8 “ Op}h}8q: Using (111), we have that

}Df µ̄θ rhs}8 ď
2

3
}Df µ̄θ rhs}8 ` }D2Eµpfµθ , θqrhs}8 ñ }Df µ̄θ rhs}8 ď 3}D2Eµpfµθ , θq}op}rhs}8.

Lemma B.7 shows that }D2Eµpfµθ , θq}op is bounded and therefore we have

}Df µ̄θ rhs}8 “ Op}h}8q. (118)

Combining the above results, we obtain

2© ď }D1Blpfµθ , θq ´D1Blpf µ̄θ , θq}op}Df
µ̄
θ rhs}8 “ Opdblpµ, µ̄q ¨ }h}8q.

C.5.3 Bounding 3©

Denote ωypxq “ expp´ cpx,yq
γ q exppf̄pxq{γq. Assume that }f̄}8 ď Mc and }∇f̄}2,8 ď Gf . Then

we have for any y P X ,

}ωy}8 ď exppMc{γq, }∇ωy}2,8 ď exppMc{γqpGc `Gf q{γ. (119)

Therefore, }ωy}bl “ maxtexppMc{γq, exppMc{γqpGc `Gf q{γu is bounded (recall the definition
of bounded Lipschitz norm in Theorem 6.1). Besides, for any y P X , ωypxq is positive and bounded
away from zero

ωypxq ě expp´2Mc{γq. (120)

For a fixed measure κ and g P CpX q, we compute that

D1Apf̄ , κqrgs “
ş

X ωypxqgpxqdκpxq
ş

X ωypxqdκpxq
. (121)
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This expression allows us to bound for two measures κ and κ1

}
`

D1Apf̄ , κq ´D1Apf̄ , κ1q
˘

rgs}8 “ }

ş

X ωypxqgpxqdκpxq
ş

X ωypxqdκpxq
´

ş

X ωypxqgpxqdκ
1pxq

ş

X ωypxqdκ
1pxq

}8

ď }

ş

X ωypxqgpxqdκpxq
ş

X ωypxqdκpxq
´

ş

X ωypxqgpxqdκpxq
ş

X ωypxqdκ
1pxq

}8 ` }

ş

X ωypxqgpxqdκpxq
ş

X ωypxqdκ
1pxq

´

ş

X ωypxqgpxqdκ
1pxq

ş

X ωypxqdκ
1pxq

}8.

We now bound these two terms individually. For the first term, we have

}

ş

X ωypxqgpxqdκpxq
ş

X ωypxqdκpxq
´

ş

X ωypxqgpxqdκpxq
ş

X ωypxqdκ
1pxq

}8

ď }

ż

X
ωypxqgpxqdκpxq}8}

ş

X ωypxq rdκpxq ´ dκ1pxqs
ş

X ωypxqdκpxq
ş

X ωypxqdκ
1pxq

}8

ď }ωy}8 ¨ }g}8 ¨ }ωypxq}bl ¨ dblpκ, κ
1q ¨ expp4Mc{γq “ Op}g}8 ¨ dblpκ, κ1qq,

where we use (119) and (120) in the last equality. For the second term, we bound

}

ş

X ωypxqgpxqdκpxq
ş

X ωypxqdκpxq
´

ş

X ωypxqgpxqdκ
1pxq

ş

X ωypxqdκpxq
}8 ď }

ş

X ωypxqgpxqrdκpxq ´ dκ1pxqs
ş

X ωypxqdκpxq
}8

ď exppMc{γq ¨ }ωypxq}bl ¨ }g}bl ¨ dblpκ, κ
1q “ Op}g}bl ¨ dblpκ, κ1qq.

Combining the above inequalities, we have

}
`

D1Apf̄ , κq ´D1Apf̄ , κ1q
˘

rgs}8 “ Op}g}bl ¨ dblpκ, κ1qq. (122)

Denote α “ Tθ7µ and ᾱ “ Tθ7µ̄. From the chain rule of the Fréchet derivative, we compute

}
`

D1Bµpf, θq ´D1Bµ̄pf, θq
˘

rgs}8

“
›

›

ˆ

D1A
`

Apf, αq, βµ
˘

˝D1Apf, αq ´D1A
`

Apf, ᾱq, βµ̄
˘

˝D1Apf, ᾱq
˙

rgs
›

›

8

ď
›

›D1A
`

Apf, αq, βµ
˘“`

D1Apf, αq ´D1Apf, ᾱq
˘

rgs
‰
›

›

8

`
›

›

ˆ

D1A
`

Apf, αq, βµ
˘

´D1A
`

Apf, αq, βµ̄
˘

˙

“

D1Apf, ᾱqrgs
‰
›

›

8

`
›

›

ˆ

D1A
`

Apf, αq, βµ̄
˘

´D1A
`

Apf, ᾱq, βµ̄
˘

˙

“

D1Apf, ᾱqrgs
‰
›

›

8
.

We now bound these three terms one by one.
For the first term, use (110) to derive

›

›D1A
`

Apf, αq, βµ
˘“`

D1Apf, αq ´D1Apf, ᾱq
˘

rgs
‰
›

›

8

ď }D1Apf, αqrgs ´D1Apf, ᾱqrgs}8 “ Op}g}bl ¨ dblpα, ᾱqq,

where we use }D1A
`

Apf, αq, βµ
˘

}op ď 1 (75) and (122) in the second equality.

Combining the above result with (101) gives
›

›D1A
`

Apf, αq, βµ
˘“`

D1Apf, αq ´D1Apf, ᾱq
˘

rgs
‰
›

›

8
“ Op}g}bl ¨ dblpµ, µ̄qq.

For the second term, use (122) to derive

›

›

ˆ

D1A
`

Apf, αq, βµ
˘

´D1A
`

Apf, αq, βµ̄
˘

˙

“

D1Apf, ᾱqrgs
‰
›

›

8

“ Op}D1Apf, ᾱqrgs}bl ¨ dblpβµ, βµ̄qq.

We now bound }D1Apf, ᾱqrgs}bl. From (75), we have that }D1Apf, ᾱqrgs}8 ď }g}8. Besides, note
that D1Apf, ᾱqrgs is a function mapping from X to R and recall the expression of D1Apf, ᾱqrgs in
(121). To show that D1Apf, ᾱqrgspyq is Lipschitz continuous w.r.t. y, we use the similar argument
as (63): Under Assumption B.1 and assume that }f}8 ďMc, the numerator and denominator of (63)
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are both Lipschitz continuous w.r.t. y and bounded; the denominator is positive and bounded away
from zero. Consequently, we can bound for any y P X

}∇yD1Apf, ᾱqrgspyq} ď 2 expp4Mc{γq}g}8 ¨Gc, (123)

and therefore
›

›

ˆ

D1A
`

Apf, αq, βµ
˘

´D1A
`

Apf, αq, βµ̄
˘

˙

“

D1Apf, ᾱqrgs
‰
›

›

8
“ Op}g}8 ¨ dblpβµ, βµ̄qq.

For the third term, first note that we can use (101) and the mean value theorem to bound

}Apf, αq ´Apf, ᾱq}8 “ Opmax
yPX

}ωy}bl ¨ dblpα, ᾱqq “ Opdblpµ, µ̄qq. (124)

Hence, we use Lemma B.11 to derive

›

›

ˆ

D1A
`

Apf, αq, βµ̄
˘

´D1A
`

Apf, ᾱq, βµ̄
˘

˙

“

D1Apf, ᾱqrgs
‰
›

›

8

“ Op}Apf, αq ´Apf, ᾱq}8 ¨ }D1Apf, ᾱqrgs}8q “ Op}g}8 ¨ dblpµ, µ̄qq,

where we use (124) and the fact that }D1Apf, ᾱq}op is bounded in the last equality.
Combing the above three results, we have

}
`

D1Bµpf, θq ´D1Bµ̄pf, θq
˘

rgs}8 “ Op}g}bl ¨ dblpµ, µ̄qq. (125)

Recall that Eµpf, θq “ Blµpf, θq. Using the chain rule of the Fréchet derivative, we have

D1Eµpf, θq “ D1Blµpf, θq “ D1Bµ
`

Bl´1
µ pf, θq, θ

˘

˝D1Bl´1
µ pf, θq. (126)

Denote g “ Df µ̄θ rhs. We can bound 3© in the following way:

3© “ }D1Bµ
`

Bl´1
µ pf, θq, θ

˘“

D1Bl´1
µ pf, θqrgs

‰

´D1Bµ̄
`

Bl´1
µ̄ pf, θq, θ

˘

rD1Bl´1
µ̄ pf, θqrgss}8

ď }D1Bµ
`

Bl´1
µ pf, θq, θ

˘“`

D1Bl´1
µ pf, θq ´D1Bl´1

µ̄ pf, θq
˘

rgs
‰

}8

` }

ˆ

D1Bµ
`

Bl´1
µ pf, θq, θ

˘

´D1Bµ
`

Bl´1
µ̄ pf, θq, θ

˘

˙

“

D1Bl´1
µ̄ pf, θqrgs

‰

}8

` }

ˆ

D1Bµ
`

Bl´1
µ̄ pf, θq, θ

˘

´D1Bµ̄
`

Bl´1
µ̄ pf, θq, θ

˘

˙

“

D1Bl´1
µ̄ pf, θqrgs

‰

}8

ď }D1Bµ
`

Bl´1
µ pf, θq, θ

˘

}op}
`

D1Bl´1
µ pf, θq ´D1Bl´1

µ̄ pf, θq
˘

rgs}8 #1

`Op}Bl´1
µ pf, θq ´ Bl´1

µ̄ pf, θq}8 ¨ }D1Bl´1
µ̄ pf, θqrgs}8q #2

`Op}D1Bl´1
µ̄ pf, θqrgs}bl ¨ dblpµ, µ̄qq, #3

where in the first inequality we use the triangle inequality, in the second inequality we use the
definition of } ¨ }op, (115) and (125). We now analyze the R.H.S. of the above inequality one by one.
For the first term, use }D1Bµ

`

Bl´1
µ pf, θq, θ

˘

}op ď 1 and then use (125). We have

#1 ď }
`

D1Bµpf, θq ´D1Bµ̄pf, θq
˘

rgs}8 “ Op}g}bl ¨ dblpµ, µ̄qq.

For the second term, note that Bkµ is the composition of the terms Apf, αq and Apf, βµq. Using a
similar argument like (124), for any finite k, we have

}Bl´1
µ pf, θq ´ Bl´1

µ̄ pf, θq}8 “ Opdblpµ, µ̄qq.

Together with the fact that }D1Bpf, θq}op ď 1, we have

#2 “ Op}g}8 ¨ dblpµ, µ̄qq.

Finally, for the third term, note that Bµ is the composition of the terms Apf, αq and Apf, βµq. Using
a similar argument like (123) to bound

#3 “ Op}g}8 ¨ dblpµ, µ̄qq.

33



Combining these three results, we have

3© “ }
`

D1Blµpf, θq ´D1Blµ̄pf, θq
˘

rgs}8 “ Op}g}bl ¨ dblpµ, µ̄qq. (127)

We now bound }Df µ̄θ rhs}bl (g “ Df µ̄θ rhs). From the fixed point definition of the Sinkhorn potential
in (107), we can compute the Fréchet derivative Dfµθ by

Dfµθ “ D1A
`

Apfµθ , αθq, βµ
˘

˝D1Apfµθ , αθq˝Df
µ
θ `D1A

`

Apfµθ , αθq, βµ
˘

˝D2Ãpfµθ , θq, (128)

where we recall Ãpf, θq:“Apf, αθq. For any direction h P Rd and any y P X , Dfµθ rhs is a function
with its gradient bounded by

}∇yDfµθ rhspyq} ď }∇y
ˆ

D1A
`

Apfµθ , αθq, βµ
˘

„

D1Apfµθ , αθq
“

Dfµθ rhs
‰

˙

pyq} #1

`}∇y
´

D1A
`

Apfµθ , αθq, βµ
˘“

D2Ãpfµθ , θqrhs
‰

¯

pyq}. #2

We now bound the R.H.S. individually:
For #1, take f̄ “ Arf, αθs, κ “ βµ and g “ D1Apfµθ , αθq

“

Dfµθ rhs
‰

in (121). Using (123) and
(118), we have

#1 “ Op}g}8q “ Op}Dfµθ rhs}8q “ Op}h}q. (129)

For #2, take f̄ “ Arf, αθs, κ “ βµ and g “ D2Ãpfµθ , θqrhs in (121). Using (123) and (79), we
have

#2 “ Op}g}8q “ Op}D2Ãpfµθ , θqrhs}8q “ Op}h}q. (130)

Combining these two bounds, we have

}Dfµθ rhs}bl “ Op}h}q. (131)

By plugging the above result to (127), we bound

3© “ }
`

D1Blµpf, θq ´D1Blµ̄pf, θq
˘

rgs}8 “ Opdblpµ, µ̄q ¨ }h}q. (132)

C.5.4 Bounding 4©

We have from the triangle inequality

4© ď }D2Eµpfµθ , θqrhs ´D2Eµ̄pfµθ , θqrhs}8 ` }D2Eµ̄pfµθ , θqrhs ´D2Eµ̄pf µ̄θ , θqrhs}8. (133)

We analyze these two terms on the R.H.S..

For the first term of (133), use the chain rule of Fréchet derivative to compute

D2Eµpf, θqrhs “ D1Bµ
`

Bl´1
µ pf, θq, θ

˘“

D2Bl´1
µ pf, θqrhs

‰

`D2Bµ
`

Bl´1
µ pf, θq, θ

˘

rhs. (134)

Consequently, we can bound

}
`

D2Eµpf, θq ´D2Eµ̄pf, θq
˘

rhs}8

ď}D1Bµ
`

Bl´1
µ pf, θq, θ

˘“

D2Bl´1
µ pf, θqrhs

‰

´D1Bµ̄
`

Bl´1
µ̄ pf, θq, θ

˘“

D2Bl´1
µ̄ pf, θqrhs

‰

}8 #1

` }D2Bµ
`

Bl´1
µ pf, θq, θ

˘

rhs ´D2Bµ̄
`

Bl´1
µ̄ pf, θq, θ

˘

rhs}8. #2

We analyze #1 and #2 individually.

Bounding #1. We first note that Apf, αq is Lipschitz continuous w.r.t. α (see also (124)):

}Apf, αq ´Apf, α1q}8 ď expp2Mc{γq ¨ }ωy}bl ¨ dblpα, α
1q “ Opdblpα, α1qq, (135)

where in the equality we use (119). As Bkµ is the composition of A, it is Lipschitz continuous with
respect to µ for finite k. Note that the boundedness of }f}8 and }∇f}8 remains valid after the
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operator B (Lemma B.1 and (i) of Lemma (B.2)). We then bound

#1 ď }D1Bµ
`

Bl´1
µ pf, θq, θ

˘“`

D2Bl´1
µ pf, θq ´D2Bl´1

µ̄ pf, θq
˘

rhs
‰

}8

` }

ˆ

D1Bµ
`

Bl´1
µ pf, θq, θ

˘

´D1Bµ
`

Bl´1
µ̄ pf, θq, θ

˘

˙

“

D2Bl´1
µ̄ pf, θqrhs

‰

}8

` }

ˆ

D1Bµ
`

Bl´1
µ̄ pf, θq, θ

˘

´D1Bµ̄
`

Bl´1
µ̄ pf, θq, θ

˘

˙

“

D2Bl´1
µ̄ pf, θqrhs

‰

}8

ď }D1Bµ
`

Bl´1
µ pf, θq, θ

˘

}op}D2Bl´1
µ pf, θqrhs ´D2Bl´1

µ̄ pf, θqrhs}8

`Op}Bl´1
µ pf, θq ´ Bl´1

µ̄ pf, θq}8 ¨ }D2Bl´1
µ̄ pf, θqrhs}8q

`Opdblpµ, µ̄q ¨ }D2Bl´1
µ̄ pf, θqrhs}8q

ď }D2Bl´1
µ pf, θqrhs ´D2Bl´1

µ̄ pf, θqrhs}8 `Opdblpµ, µ̄q ¨ }h}q,
where in the second inequality we use the definition of } ¨ }op, (115) and (125), and in the last
inequality we use the fact that }D1Bµpf, θq}op ď 1, Bkµ is Lipschitz continuous with respect to µ for
finite k (see the discussion above) and that }D2Bl´1

µ̄ pf, θq}op is bounded (see Lemma B.7.

Bounding #2. To make the dependences of A on θ and µ explicit, we denote

Âpf, θ, µq “ Apf, Tθ7µq.
To bound the second term, we first establish that for any k ě 0,∇Bk`1

µ pf, θq is Lipschitz continuous
w.r.t. µ, i.e.

}∇Bk`1
µ pf, θq ´∇Bk`1

µ̄ pf, θq}2,8 “ Opdblpµ, µ̄qq, (136)

as follows: First note that∇Âpf, θ, µq is Lipschitz continuous w.r.t. µ, i.e.

}∇Âpf, θ, µqpyq ´∇Âpf, θ, µ̄qpyq} “ Opdblpµ, µ̄qq. (137)

This is because for any y P X (note that Âpf, θ, µqp¨q : X Ñ R is a function of y),

}∇Âpf, θ, µqpyq ´∇Âpf, θ, µ̄qpyq}

“ }

ş

X ωypxq∇1cpy, xqdαθpxq
ş

X ωypxqdαθpxq
´

ş

X ωypxq∇1cpy, xqdᾱθpxq
ş

X ωypxqdᾱθpxq
}

ď }

ş

X ωypxq∇1cpy, xq
`

dαθpxq ´ dᾱθpxq
˘

ş

X ωypxqdαθpxq
}

` }

ż

X
ωypxq∇1cpy, xqdᾱθpxq} ¨ }

ş

X ωypxq
`

dαθpxq ´ dᾱθpxq
˘

ş

X ωypxqdαθpxq
ş

X ωypxqdᾱθpxq
}

“ Opdblpµ, µ̄qq.
Here in the last equality, we use the facts that }ωyp¨q∇1cpy, ¨q}bl and }ωy}bl are bounded, and
ş

X ωypxqdαθpxq is strictly positive and bounded away from zero. Recall that Bµpf, θq “
ApÂpf, θ, µq, βµq. We can then prove (136) by bounding

}∇Bk`1
µ pf, θq ´∇Bk`1

µ̄ pf, θq}

“ }∇ApÂpBkµpf, θq, θ, µq, βµq ´∇ApÂpBkµ̄pf, θq, θ, µ̄q, β̄µq}

ď }∇ApÂpBkµpf, θq, θ, µq, βµq ´∇ApÂpBkµpf, θq, θ, µq, β̄µq} &1

` }∇ApÂpBkµpf, θq, θ, µq, β̄µq ´∇ApÂpBkµpf, θq, θ, µ̄q, β̄µq} &2

` }∇ApÂpBkµpf, θq, θ, µ̄q, β̄µq ´∇ApÂpBkµ̄pf, θq, θ, µ̄q, β̄µq} &3

“ Opdblpµ, µ̄qq
Here we bound &1 using (137), the Lipschitz continuity of∇A w.r.t. its second variable; we bound
&2 using the Lipschitz continuity of∇Â w.r.t. its first variable and (124), the Lipschitz continuity of
Â w.r.t. µ; we bound &3 using (124), the Lipschitz continuity of Â w.r.t. µ, and the fact that Bkµ is
the composition of the terms Apf, αq and Apf, βµq.
We then establish that D2Bµpf, θq is Lipschitz continuous w.r.t. µ.
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Assumption C.1. }∇zr∇θTθpzqs}op is bounded

Lemma C.12. Assume that }f}8 ď Mc, }∇f}2,8 ď Gf , }∇2f}op,8 ď Lf Under Assumptions
B.5, C.1 and B.1, we have

}D2Bµpf, θq ´D2Bµ̄pf, θq}op “ Opdblpµ, µ̄qq. (138)

Proof. Denote ωypxq “ exp
´

´cpx,yq`fpxq
γ

¯

and

φypzq “ r∇θTθpzqsJ r´∇1cpTθpzq, yq `∇fpTθpzqqs
where ∇θTθpzq denotes the Jacobian matrix of Tθpzq with respect to θ.

The Fréchet derivative D2Âpf, θ, µqrhs can be computed by

D2Âpf, θ, µqrhs “
ş

X ωy
`

Tθpzq
˘

xφypzq, hydµpzq
ş

X ωy
`

Tθpzq
˘

dµpzq
. (139)

Recall that }f}8 ďMc, }∇f}2,8 ď Gf . Using the above expression we can bound

}
`

D2Âpf, θ, µq ´D2Âpf, θ, µ̄q
˘

rhs}8

“
›

›

ş

X ωy
`

Tθpzq
˘

xφypzq, hydµpzq
ş

X ωy
`

Tθpzq
˘

dµpzq
´

ş

X ωy
`

Tθpzq
˘

xφypzq, hydµ̄pxq
ş

X ωy
`

Tθpzq
˘

dµ̄pxq

›

›

8

ď
›

›

ş

X ωy
`

Tθpzq
˘

xφypzq, hydµpzq
ş

X ωy
`

Tθpzq
˘

dµpzq
´

ş

X ωy
`

Tθpzq
˘

xφypzq, hydµ̄pxq
ş

X ωy
`

Tθpzq
˘

dµpzq

›

›

8

`
›

›

ş

X ωy
`

Tθpzq
˘

xφypzq, hydµ̄pxq
ş

X ωy
`

Tθpzq
˘

dµpzq
´

ş

X ωy
`

Tθpzq
˘

xφypzq, hydµ̄pxq
ş

X ωy
`

Tθpzq
˘

dµ̄pxq

›

›

8

“
›

›

ş

X ωy
`

Tθpzq
˘

xφypzq, hy rdµpzq ´ dµ̄pxqs
ş

X ωy
`

Tθpzq
˘

dµpzq

›

›

8

`
›

›

ş

X ωy
`

Tθpzq
˘

xφypzq, hydµ̄pxq
ş

X ωy
`

Tθpzq
˘

rdµ̄pxq ´ dµpzqs
ş

X ωy
`

Tθpzq
˘

dµpzq
ş

X ωy
`

Tθpzq
˘

dµ̄pxq

›

›

8

ď expp2Mc{γq ¨ }ωy
`

Tθpzq
˘

xφypzq, hy}bl ¨ dblpµ, µ̄q

` expp5Mc{γq ¨ }φy}8 ¨ }h}8 ¨ }ωy}bl ¨ dblpµ, µ̄q.

For the first term, note that }ωy
`

Tθpzq
˘

xφypzq, hy}bl ď }ωy}bl ¨ }φy}bl ¨ }h}8 and }ωy}bl is bounded
(see (119)). We just need to bound }φy}bl. Under Assumption B.5 that }∇θTθpzq}op ď GT , we
clearly have that }φy}8 is bounded. For }φy}lip, compute that

∇zφypzq “ ∇zr∇θTθpzqs ˆ1 r´∇1cpTθpzq, yq `∇fpTθpzqqs
`∇θTθpzqJ

“

´∇2
11cpTθpzq, yq `∇2fpTθpzqq

‰

∇θTθpzq.

Recall that }∇2fpxq}op is bounded. Consequently, under Assumption C.1, we can see that }∇zφypzq}
is bounded. Together, }φy}bl is bounded. As a result, we have

}
`

D2Âpf, θ, µq ´D2Âpf, θ, µ̄q
˘

rhs}8 “ Opdblpµ, µ̄q ¨ }h}q. (140)

Based on the above result, we can further bound

}
`

D2Bµpf, θq ´D2Bµ̄pf, θq
˘

rhs}8

“ }

ˆ

D1A
`

Âpf, θ, µq, β
˘

˝D2Âpf, θ, µq ´D1A
`

Âpf, θ, µ̄q, β̄
˘

˝D2Âpf, θ, µ̄q
˙

rhs}8

ď }D1A
`

Âpf, θ, µq, β
˘“`

D2Âpf, θ, µq ´D2Âpf, θ, µ̄q
˘

rhs
‰

}8 ##1

` }

ˆ

D1A
`

Âpf, θ, µq, β
˘

´D1A
`

Âpf, θ, µq, β̄
˘

˙

“

D2Âpf, θ, µ̄qrhs
‰

}8 ##2

` }

ˆ

D1A
`

Âpf, θ, µq, β̄
˘

´D1A
`

Âpf, θ, µ̄q, β̄
˘

˙

“

D2Âpf, θ, µ̄qrhs
‰

}8. ##3
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For the first term, use }D1A
`

Âpf, θ, µq, β
˘

}op ď 1 (75) and (140) to bound

##1 ď }D2Âpf, θ, µqrhs ´D2Âpf, θ, µ̄qrhs}8 “ Opdblpµ, µ̄q ¨ }h}q.

For the second term, recall the expression of D2Âpf, θ, µ̄qrhs in (139). Under Assumption B.1 and
assume that }f}8 ď Mc, one can see that }D2Âpf, θ, µ̄qrhs}bl “ Op}h}q. Further, use (122) and
dblpβ, β̄q “ O

`

dblpµ, µ̄q
˘

from (101) to bound

##2 “ Op}D2Âpf, θ, µ̄qrhs}bl ¨ dblpβ, β̄qq “ Op}h} ¨ dblpµ, µ̄qq.

For the third term, use Lemma B.11 to bound

##3 “ Op}D2Âpf, θ, µ̄qrhs}8 ¨ }Âpf, θ, µq ´ Âpf, θ, µ̄q}8q “ Opdblpµ, µ̄q ¨ }h}q,

where we use }D2Âpf, θ, µ̄qrhs}8 “ Op}h}q and (124). Altogether, we have

}D2Bµpf, θqrhs ´D2Bµ̄pf, θqrhs}8 “ Opdblpµ, µ̄q ¨ }h}q. (141)

We are now ready to bound #2.

#2 ď }D2Bµ
`

Bl´1
µ pf, θq, θ

˘

rhs ´D2Bµ
`

Bl´1
µ̄ pf, θq, θ

˘

rhs}8

` }D2Bµ
`

Bl´1
µ̄ pf, θq, θ

˘

rhs ´D2Bµ̄
`

Bl´1
µ̄ pf, θq, θ

˘

rhs}8

“ Op}Bl´1
µ pf, θq ´ Bl´1

µ̄ pf, θq}8 ` }∇Bl´1
µ pf, θq ´∇Bl´1

µ̄ pf, θq}2,8q

`Opdblpµ, µ̄q ¨ }h}q
“ Opdblpµ, µ̄q ¨ }h}q,

where we use Lemma B.10 and (138) (124) in the first equality.

Combining #1 and #2. Combining the above results, we yield

}D2Blµpf, θqrhs´D2Blµ̄pf, θqrhs}8 ď }D2Bl´1
µ pf, θqrhs´D2Bl´1

µ̄ pf, θqrhs}8`Opdblpµ, µ̄q¨}h}8q,

which, via recursion, implies that (recall that D2Eµpf, θqrhs “ D2Blµpf, θqrhs)

}D2Eµpf, θqrhs ´D2Eµ̄pf, θqrhs}8 “ Opdblpµ, µ̄q ¨ }h}q. (142)

To bound the second term of (133), compute the expression of D2Eµ̄pf, θqrhs via the chain rule:

D2Eµ̄pf, θqrhs “ D1Bµ̄
`

Bl´1
µ̄ pf, θq, θ

˘“

D2Bl´1
µ̄ pf, θqrhs

‰

`D2Bµ̄
`

Bl´1
µ̄ pf, θq, θ

˘

rhs. (143)

Recall that Eµ̄pf, θq “ Blµ̄pf, θq. We then show in an inductive manner that the second term of (133)
is of order Opdblpµ, µ̄q ¨ }h}q: For any finite k ě 1,

}D2Bkµ̄pf
µ
θ , θqrhs ´D2Bkµ̄pf

µ̄
θ , θqrhs}8 “ Opdblpµ, µ̄q ¨ }h}q. (144)

For the base case when l “ 1, we only have the second term of (143) inD2Eµ̄pf, θqrhs. Consequently,
from Lemma B.10, we have

}D2Bµ̄
`

Bl´1
µ̄ pfµθ , θq, θ

˘

´D2Bµ̄
`

Bl´1
µ̄ pf µ̄θ , θq, θ

˘

}op

“ Op}Bl´1
µ̄ pfµθ , θq ´ B

l´1
µ̄ pf µ̄θ , θq}8 ` }∇B

l´1
µ̄ pfµθ , θq ´∇B

l´1
µ̄ pf µ̄θ , θq}2,8q “ Opdblpµ, µ̄qq,

(145)
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where we use (136) in the second equality.
Now assume that for l “ k the statement (144) holds. For any two function f, f 1 P CpX q, we bound

}D2Bkµ̄pf, θqrhs ´D2Bkµ̄pf 1, θqrhs}8
ď }D1Bµ̄

`

Bl´1
µ̄ pf, θq, θ

˘“

D2Bl´1
µ̄ pf, θqrhs ´D2Bl´1

µ̄ pf 1, θqrhs
‰

}8

` }

ˆ

D1Bµ̄
`

Bl´1
µ̄ pf, θq, θ

˘

´D1Bµ̄
`

Bl´1
µ̄ pf 1, θq, θ

˘

˙

“

D2Bl´1
µ̄ pf 1, θqrhs

‰

}8

` }

ˆ

D2Bµ̄
`

Bl´1
µ̄ pf, θq, θ

˘

´D2Bµ̄
`

Bl´1
µ̄ pf 1, θq, θ

˘

˙

rhs}8.

ď }
`

D2Bl´1
µ̄ pf, θq ´D2Bl´1

µ̄ pf 1, θq
˘

rhs}8 }D1Bµ̄pf, θq}op ď 1

`Op}Bl´1
µ̄ pf, θq ´ Bl´1

µ̄ pf 1, θq}8 ¨ }D2Bl´1
µ̄ pf 1, θqrhs}8q Lemma B.8

`Opdblpµ, µ̄q ¨ }h}q. (145)

“ Opp}f ´ f 1}8 ` }∇f ´∇f 1}2,8q ¨ }h}q Lemma B.5

Opp}f ´ f 1}8q ¨ }h}q
Opdblpµ, µ̄q ¨ }h}q.

Plug in f “ fµθ and f 1 “ f µ̄θ and use Lemmas C.1 and C.2. We prove the statement (144) holds for
l “ k ` 1. Consequently, we have that

}D2Eµ̄pfµθ , θqrhs ´D2Eµ̄pf µ̄θ , θqrhs}8 “ Opdblpµ, µ̄q ¨ }h}q. (146)

In conclusion, we have
4© “ Opdblpµ, µ̄q ¨ }h}q. (147)
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Table 1: Structure of the encoder

Layer (type) Output Shape Param #
Conv2d-1 [-1, 64, 32, 32] 4,800

LeakyReLU-2 [-1, 64, 32, 32] 0
Conv2d-3 [-1, 128, 16, 16] 204,800

BatchNorm2d-4 [-1, 128, 16, 16] 256
LeakyReLU-5 [-1, 128, 16, 16] 0

Conv2d-6 [-1, 256, 8, 8] 819,200
BatchNorm2d-7 [-1, 256, 8, 8] 512
LeakyReLU-8 [-1, 256, 8, 8] 0

Conv2d-9 [-1, 512, 4, 4] 3,276,800
BatchNorm2d-10 [-1, 512, 4, 4] 1,024
LeakyReLU-11 [-1, 512, 4, 4] 0

Table 2: Structure of the generator

Layer (type) Output Shape Param #
ConvTranspose2d-1 [-1, 256, 4, 4] 262,144

BatchNorm2d-2 [-1, 256, 4, 4] 512
ReLU-3 [-1, 256, 4, 4] 0

ConvTranspose2d-4 [-1, 128, 8, 8] 524,288
BatchNorm2d-5 [-1, 128, 8, 8] 256

ReLU-6 [-1, 128, 8, 8] 0
ConvTranspose2d-7 [-1, 64, 16, 16] 131,072

BatchNorm2d-8 [-1, 64, 16, 16] 128
ReLU-9 [-1, 64, 16, 16] 0

ConvTranspose2d-10 [-1, 3, 32, 32] 3,072
Tanh-11 [-1, 3, 32, 32] 0

D Experiment Details

We use the generator from DC-GAN Radford et al. [2015]. And the adversarial ground cost cξ in the
form of

cξpx, yq “ }φξpxq ´ φξpyq}
2
2, (148)

where φξ : Rq Ñ Rq̂ is an encoder that maps the original data point (and the generated image)
to a higher dimensional space (q̂ ą q). We pick φξ to be an CNN with a similar structure as the
discriminator of DC-GAN except that we discard the last layer which was used for classification.
Specifically, the networks used are given in Table 1 and 2.

We set the step size β of SiNG to be 30 and set the maximum allow Sinkhorn divergence in each
iteration to be 0.1. Note that the step size is set after the normalization in (11). For Adam, RMSprop,
and AMSgrad, we set all of their initial step sizes to be 1.0ˆ e´3, which is in general recommended
by the GAN literature. The minibatch sizes of both the real images and the generated images
for each iteration are set to 3000. We uniformly set the γ parameter in the objective (recall that
Fpαθq “ Scξpαθ, βq) and the constraint to 100.

The code is in https://github.com/shenzebang/Sinkhorn_Natural_Gradient.
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E PyTorch Implementation

In this section, we focus on the empirical version of SiNG, where we approximate the gradient of
the function F by a minibatch stochastic gradient and approximate SIM by eSIM. In this case, all
components involved in the optimization procedure can be represented by finite dimensional vectors.

It is known that the stochastic gradient admits an easy implementation in PyTorch. However, at the
first sight, the computation of eSIM is quite complicated as it requires to construct two sequences f t
and gt to estimate the Sinkhorn potential and the Fréchet derivative. As we discussed earlier, it is well
known that we can solve the inversion of a p.s.d. matrix via the Conjugate Gradient (CG) method
with only matrix-vector-product operations. In particular, in this case, we no longer need to explicitly
form eSIM in the computer memory. Consequently, to implement the empirical version of SiNG
using CG and eSIM, one can resort to the auto-differential mechanism provided by PyTorch: First,
we use existing PyTorch package like geomloss3 to compute the tensor f representing the Sinkhorn
potential f εθ . Note the the sequence f t is constructed implicitly by calling geomloss. We then use
the ".detach()" function in PyTorch to maintain only the value of the f while discarding all of its
"grad_fn" entries. We then enable the "autograd" mechanism is PyTorch and run several loops of
Sinkhorn mapping Apf, αθq (Apf, αθtq) so that the output tensor now records all the dependence on
the parameter θ via the implicitly constructed computational graph. We can then easily compute the
matrix-vector-product use the Pearlmutter’s algorithm (Pearlmutter, 1994).

3https://www.kernel-operations.io/geomloss/
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