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A Collapsed Gibbs Sampling for DP-GMM

We estimate posterior distributions over DP-GMM parameters using Collapsed Gibbs Sampling
(CGS) algorithm [Neal, 2000]. Here we describe CGS in more details. The derivation below closely
follows the one from [Murphy, 2012, chapters 24.2.4 & 25.2.4].

CGS steps consist of iterative sampling of component indicators ci for observations xi ∈ D, i =
1, . . . , N . During this sampling, CGS maintains a set of K components, where K itself is a random
variable (components can be added or removed). Each component k ∈ {1, . . . ,K} is described by
a set θk of parameters of the Normal-inverse-Wishart posterior distribution over its mean µk and
covariance Σk:

p(µk,Σk | D) = p(µk,Σk | θk) = NIW (µk,Σk | θk), θk = {mk, νk, κk,Sk}. (1)

Given a vector of current component assignments c = {c1, . . . , cN}, CGS samples a new assignment
for xi from the conditional p(ci | c−i,xi, α,θ):

p(ci = k | c−i,xi, α,θ) ∝ p(ci = k | c−i, α)p(xi | x−i, ci = k, c−i,θ). (2)

Here c−i, x−i stand for, respectively, component assignments and the dataset with the i-th element
removed; θ is the collection of all component parameters. The first term in the above product comes
from the Chinese-Restaurant Process (CRP), and has the form:

p(ci = k | c−i, α) =

{
Nk,−i

α+N−1 if k already exists,
α

α+N−1 if k is a new component.
(3)

The second term can be derived by noticing that given the component assignment (ci = k), observa-
tion xi becomes conditionally independent from observations assigned to other components:

p(xi | x−i, ci = k, c−i,θ) = p(xi | x−i,k,θk), (4)

where x−i,k are observations assigned to the k-th component, except xi. The above term has a
closed-form solution computed by integrating outµk, Σk parameters, namely a multivariate Student’s
t-distribution (more details are given in appendix B):

p(xi | x−i,k,θk) = p(xi | θk) =
∫
p(xi | µk,Σk)p(µk,Σk | θk)dµkdΣk. (5)

When k is a new (empty) component, the above density reduces to the Student’s t-distribution with
parameters derived from the NIW prior hyper-parameters, i.e. from θ0 = {m0, ν0, κ0,S0}:

p(xi | θ0) =
∫
p(xi | µk,Σk)p(µk,Σk | θ0). (6)

Note also that the density from which we are sampling component assignments p(ci | c−i,xi, α,θ)
is a categorical distribution over ci. After sampling from it, one has to update the parameters of the
NIW posterior of the newly sampled component (to account for the new member xi). Further, before
calculating any quantities necessary to compute p(ci | c−i,xi, α,θ) (e.g. predictive densities for xi),
observation xi must be removed from the old component, reflecting the conditioning on x−i,k.

The probability distribution for component assignments (Eqn. 2) depends on α, i.e. the concentration
parameter in the Dirichlet Process prior. We do not assume a fixed value for α, but explicitly account
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for its uncertainty by treating it as a model parameter. To this end, we put a Gamma(1, 1) prior
on α. Under this prior the conditional p(α | K,N) – which is required by CGS – admits a simple
sampling [Escobar and West, 1995].

We choose the values of hyper-parameters θ0 in a way that puts a weakly-informative, data-
dependent prior on component means and covariances. Specifically, we follow guidelines
in [Fraley and Raftery, 2007], and set the θ0 values to:

m0 =
1

N

N∑
i=1

xi, S0 =
diag(Sx)

K
2/D
0

,

ν0 = D + 2, κ0 = 0.01,

(7)

where D is the data dimensionality, and:

K0 = α log

(
1 +

N

α

)
, Sx =

1

N

N∑
i=1

(xi −m0) (xi −m0)
T
. (8)

Here, K0 is the prior expectation for the number of components and Sx is the empirical covariance.

B DP-GMM posterior predictive distribution

Here we derive the formula for the Posterior Predictive distribution given component assign-
ments: p(x∗ | D, c). The output from CGS is a Markov chain, where at each step we have
component assignments c = {ci}Ni=1 and posterior distributions p(µk,Σk | D) over component
parameters {µk,Σk}Kk=1. Because of the conjugate NIW prior choice for means and covariances,
the posterior is also a NIW distribution:

p(µk,Σk) = NIW (µk,Σk |mk, νk, κk,Sk). (9)
The posterior predictive over a new observation x∗ given the dataset D and component assignments c
can be written as:

p(x∗ | D, c) =
∫
p(x∗ | θ, c)p(θ | D, c)dθ

=

∫ [ K∑
k=1

p(x∗ | θk)p(c∗ = k | c)

]
p(θ | D, c)dθ.

(10)

Posterior over component parameters expands to:

p(θ | D, c) = p
(
{µk,Σk}Kk=1 | D, c

)
=

K∏
k=1

p(µk,Σk | Dk). (11)

Above, we leverage the fact that given component assignments the posterior over joint set of pa-
rameters factorizes over components; Dk denotes observations assigned to the k-th component, i.e
Dk = {xi : ci = k}. From the model definition it is clear that:

p(x∗ | c∗ = k) = p(x∗ | µk,Σk). (12)
Now, let αk = p(c∗ = k | c) be the predictive mixture weights. By plugging Eqns. 11 and 12 into
Eqn. 10 we obtain:∫ [ K∑

k=1

αkp(x
∗ | µk,Σk)

]
K∏
j=1

p(µj ,Σj | Dj)dµdΣ

=

K∑
k=1

∫
αkp(x

∗ | µk,Σk)

K∏
j=1

p(µj ,Σj | Dj)dµdΣ

=

K∑
k=1

∫ [∫
αkp(x

∗ | µk,Σk)p(µk,Σk | Dk)dµkdΣk

]∏
j 6=k

p(µj ,Σj | Dj)dµ−kdΣ−k

=

K∑
k=1

αk

∫
p(x∗ | µk,Σk)p(µk,Σk | Dk)dµkdΣk,

(13)
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where µ−k and Σ−k are jointly means and covariances of components other than the k-th one.
Expression under the last integral in Eqn. 13 is tractable, thanks to the conjugacy of the Normal-
inverse-Wishart prior to the Gaussian likelihood. Specifically, it is the probability density function of
a multivariate Student’s t-distribution Murphy [2012, 2007]:∫

N (x∗ | µk,Σk)NIW (µk,Σk |mk, νk, κk,Sk)dµkdΣk

= St

(
x∗ |mk,

κk + 1

κk(νk −D + 1)
Sk, νk −D + 1

)
.

(14)

Finally, posterior predictive density (10) can be written as a mixture of multivariate Student’s
t-distributions with weights {αKk=1}:

p(x∗ | D, c) =
K∑
k=1

αkSt (x
∗ |mk, βkSk, νk −D + 1) , βk =

κk + 1

κk(νk −D + 1)
. (15)

The only thing left is to derive the predictive mixture weights: {αKk=1}. Recall that αk is the probabil-
ity of choosing the k-th component for a new observation given the existing component assignments c.
The set of predictive weights {αKk=1} therefore forms a categorical distribution p(c∗ | c) over the
components. It can be calculated by marginalizing out the Dirichlet distributed component weights:

αk = p(c∗ = k | c) =
∫
p(c∗ = k | π)p(π | c)dπ

=

∫
Cat(c∗ = k | π)Dir(π | c)dπ =

Nk + α0

N(1 + α0)
,

(16)

where α0 is the concentration parameter in the Dirichlet Process prior and Nk is the number of
observations assigned to the k-th component. Note that predictive mixture weights depend only on
the concentration parameter and the number of observations assigned to each component.

C CNN experiment details and additional results

Datasets and image augmentation. CNN experiments (Section 4) were run on
CIFAR-10 [Krizhevsky, 2009] and Mini-ImageNet [Vinyals et al., 2016] datasets. To adapt
Mini-ImageNet to a typical image classification task, we concatenated the provided training,
validation and test subsets (without support and evaluation splits in training data) and then randomly
split the dataset into 50, 000 training and 10, 000 test examples. Finally, we resized the images
to 42× 42 pixels. CIFAR experiments used the standard train/test split. Image augmentation was
implemented as a random 32× 32 (CIFAR) or 42× 42 (Mini-ImageNet) pixel crop from an input
with 4 (CIFAR) or 5 (Mini-ImageNet) pixel padding, followed by a random horizontal flip.

Network architectures and training hyper-parameters. CNN architectures used in experiments
are summarized in Table C.1. All networks were trained for 60 epochs using stochastic gradient
descent with learning rate ε = 0.01, momentum µ = 0.9 (with Nesterov accelerated gradient), L2

penalty λ = 10−6 and a batch size equal to 512 examples. Networks with additional regularization
had 20% dropout after each nonlinearity.

Additional results. Results for architectures not included in Section 4 are summarized in Fig. C.1.
These results give further support to conclusions from main CNN experiments: a) memorizing
networks learn more complex representations than networks trained on true labels, b) unlike image
augmentation, dropout significantly increases representational complexity in CNNs; this effect
diminishes with network width, and c) absent image augmentation, deep but narrow nets exhibit
increased representational complexity in middle layers.

D VAE experiment details and additional results

Datasets. VAE experiments were carried out on CelebA [Liu et al., 2015] and Anime [Ani] datasets.
CelebA examples were prepared by taking a 150× 150 central crop and resizing it to 64× 64 pixels.
Anime images were resized to 96 × 96 pixels. Both datasets were randomly split into train/test
subsets: 150000/52599 split for CelebA and 50000/13632 split for Anime images.
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CNN 11x512 CNN 11x384 CNN 11x256 CNN 11x192 CNN 11x128

conv. 3× 3 conv. 3× 3 conv. 3× 3 conv. 3× 3 conv. 3× 3
c = 64 c = 48 c = 32 c = 24 c = 16

same

conv. 3× 3 conv. 3× 3 conv. 3× 3 conv. 3× 3 conv. 3× 3
c = 128, s = 2 c = 96, s = 2 c = 64, s = 2 c = 48, s = 2 c = 32, s = 2

conv. 3× 3 conv. 3× 3 conv. 3× 3 conv. 3× 3 conv. 3× 3
c = 128 c = 96 c = 64 c = 48 c = 32

same

conv. 3× 3 conv. 3× 3 conv. 3× 3 conv. 3× 3 conv. 3× 3
c = 256, s = 2 c = 192, s = 2 c = 128, s = 2 c = 96, s = 2 c = 64, s = 2

conv. 3× 3 conv. 3× 3 conv. 3× 3 conv. 3× 3 conv. 3× 3
c = 256 c = 192 c = 128 c = 96 c = 64

same

conv. 3× 3 conv. 3× 3 conv. 3× 3 conv. 3× 3 conv. 3× 3
c = 512, s = 2 c = 384, s = 2 c = 256, s = 2 c = 192, s = 2 c = 128, s = 2

conv. 3× 3 conv. 3× 3 conv. 3× 3 conv. 3× 3 conv. 3× 3
c = 512 c = 384 c = 256 c = 192 c = 128

CIFAR: same; Mini-ImageNet: same with s = 2

Fully Connected (logits)

CNN 8x256 CNN 8x192 CNN 8x128

conv. 3× 3 conv. 3× 3 conv. 3× 3
c = 64 c = 48 c = 32

same

conv. 3× 3 conv. 3× 3 conv. 3× 3
c = 128, s = 2 c = 96, s = 2 c = 64, s = 2

conv. 3× 3 conv. 3× 3 conv. 3× 3
c = 128 c = 96 c = 64

same

conv. 3× 3 conv. 3× 3 conv. 3× 3
c = 256, s = 2 c = 192, s = 2 c = 128, s = 2

conv. 3× 3 conv. 3× 3 conv. 3× 3
c = 256 c = 192 c = 128

CIFAR: same; Mini-ImageNet: same with s = 2

Fully Connected (logits)

Table C.1: CNN architectures used in experiments (Section 4). Each convolutional layer is followed
by batch normalization and ReLU nonlinearity. Dropout – when used – is applied after ReLU. All
conv layers use 1 pixel zero-padding. c - number of output channels; s - layer stride (default 1).

Model architectures and training details. Architectures for encoder and decoder networks follow
closely those used by Tolstikhin et al. [2018] and are summarized in the table D.2. All models
had a latent space with d = 64 dimensions. Training was carried out for 60 epochs using Adam
optimizer [Kingma and Ba, 2015] with a constant learning rate: ε = 0.001 and a batch size equal
to 64 images. We trained standard β-VAE models with β ∈ {0.01, 0.1, 1.0, 4.0, 10.0, 30.0, 50.0} and
MMD-VAE models with β ∈ {1.0, 4.0, 30.0, 50.0, 100.0, 200.0, 500.0, 1000.0}.
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Figure C.1: Relative entropies of posterior predictive distributions for CNN representations. Results
for CNN architectures not included in Section 4.

Encoder Decoder

conv. 5× 5, c = 128, s = 2 Fully Connected: 8 · 8 · 1024 (Celeb) or 12 · 12 · 1024 (Anime)
conv. 5× 5, c = 256, s = 2 FS conv. 5× 5, c = 512, s = 2

conv. 5× 5, c = 512, s = 2 FS conv. 5× 5, c = 256, s = 2

conv. 5× 5, c = 1024, s = 2 FS conv. 5× 5, c = 128, s = 2

Fully Connected: 64 · 2 FS conv. 5× 5, c = 3, s = 1

Table D.2: Convolutional encoder and decoder architectures used in VAE experiments.
FS conv. – fractionally strided convolution; c – number of output channels, s – stride. Each convolu-
tion and fractionally strided convolution is followed by a batch normalization and ReLU nonlinearity.

Component counts in CGS traces. Our primary tools for judging complexity of aggregated
posteriors in VAE models are relative entropy and total correlation between dimensions in posterior
predictive (Section 3). That said, findings from Section 5 are further supported by distributions of
component counts in CGS traces, pictured in Fig. D.2. In standard β-VAEs, increasing regularization
strength simplifies the set of inferred latent codes to the point where it can be explained (by DP-
GMM) using just one component. In MMD-VAEs regularization has no obvious influence on the
number of components in CGS traces. Note, however, that these results should be interpreted with
care – specifically, they do not speak to the number of components in the data generating distribution.
Indeed, Dirichlet Process is not consistent for the number of components [Miller and Harrison, 2013,
2014]. Rather, results in Fig. D.2 can be seen as the number of components (from an infinite mixture)
observed in a finite set of available data points.
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Figure D.2: Component counts in CGS traces for standard β-VAEs and MMD-VAEs. In each case
we report mean, minimum and maximum component count across sampled CGS steps.
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Additional samples. Figures D.3 and D.4 present additional image samples generated with latent
codes drawn from a posterior predictive density p(z∗ | c).

CelebA samples
Standard β-VAE MMD-VAE

β = 0.01 β = 1.

β = 0.1 β = 4.

β = 1. β = 30.

β = 4. β = 50.

β = 10. β = 100.

β = 30. β = 200.

Figure D.3: CelebA samples generated with latent codes drawn from a posterior predictive density.
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Anime samples
Standard β-VAE MMD-VAE

β = 0.01 β = 1.

β = 0.1 β = 4.

β = 1. β = 30.

β = 4. β = 50.

β = 10. β = 100.

β = 30. β = 200.

Figure D.4: Anime samples generated with latent codes drawn from a posterior predictive density.
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