Appendix

A Solution to the Raven’s Matrix puzzle

A C

Figure 5: The three basic glyphs are formed from half a circle, a triangle, and a rectangle respectively.

Prompt Prompt
L:Mirror(C) L:A L:Mirror(B)
| E f R:.C R:Mirror(A) R:B
L:Mirror(A) L:B L:C
>C & | RA R:Mirror(B) R:Mirror(C)
3 E LA LB
R:Rotate[R:Rotate[
Mirror(A)] Mirror(B)]
[J [J
Choices Choices
L:Rotate[L:Rotate(C) L:C
_I_l Mirror(C)] R:Mirror(C) R:Rotate[

R:.C Mirror(C)]

L:Rotate[L/R:Rotate[

|_| I—|— |_|_ Mirror(C)] Mirror(C)]

R:Rotate(C)

Figure 6: The solution to the Raven’s Matrix puzzle is the choice on the top right.

The source of this puzzle and its solution is user265554 [51] on Puzzling Stack Exchange.

Each panel is composed of a glyph on the left hand side (L) and a glyph on the right hand side (R).
There are three basic glyphs (see Figure 5): a crescent (A), a half triangle (B), and a half rectangle
(C). Each glyph can also be mirrored (Mirror), i.e. flipped horizontally, or rotated by 180 degrees
(Rotate). In Figure 6, we annotate every panel in both the prompt and the choices with the symbols
that represent it. It is clear that the blank in the prompt should be filled by a left glyph C and a right
glyph Rotate[Mirror(C)], which is the choice on the top right.

B Related Work on Non-Visual Sudoku

On a dataset with 216,000 puzzles split in a 10:1:1 train-val-test ratio, a deep (recurrent relational)
network that has access to positional information for each cell scores 100% test accuracy on puzzles
with 33 pre-filled cells and 96.6% on puzzles with 17 pre-filled cells [29]. Amos and Kolter [27]
use a differentiable quadratic programming layer called OptNet, which like SATNet has no a priori
knowledge of the rules, in a neural network to solve for Sudoku. OptNet does not scale well
computationally and can only solve 4-by-4 Sudokus.

13

C Experimental Settings

In the Supplementary materials, we provide source code and the shell commands to replicate all the
experimental results in the paper.

C.1 SATNet Fails at Symbol Grounding

The experimental settings for SATNet in Section 3 are identical to the original paper and based on
the authors’ open-sourced implementation available at https://github.com/locuslab/SATNet.
Specifically, the CNN used is the sequence of layers: ConvI-ReLU-MaxPool-Conv2-ReLU-MaxPool-
FC1-ReLU-FC2-Softmax, where Convl has a 5x5 kernel (stride 1) and 20 output channels, Conv2 has
a 5x5 kernel (stride 1) and 50 output channels, FCI has size 800x500, FC2 has size 500x10, and the
MaxPool layers have a 2x2 kernel (stride 2). This is roughly the LeNet5 architecture, but with one
less fully connected layer at the end and around 10x the number of parameters. The SATNet layer
contains 300 auxiliary variables, with n = 729 and m = 600. The full model is trained using Adam
for 100 epochs using batch size 40, with a learning rate of 2x107 for the SATNet layer and 1x107 for
the CNN.

C.2 MNIST Mapping Problem

We use batch size 64 for training throughout all the experiments. We use the Sudoku CNN described
above in Appendix Section C.1 as the backbone layer for all the experiments, except the one in
Finding 4 where we vary the architecture. We use m = 200, aux = 100 for the SATNet layer for all
the experiments, except the one in Finding 1 where we vary m and aux.

Non-SATNet baseline: The whole network was trained with Adam using a 2x10- learning rate.

Finding 1: The SATNet layer was trained with a 2x107 learning rate, and the backbone layer was
trained with a 1x107 learning rate, both using Adam as was done above in Appendix Section C.1.

Finding 2: Both the SATNet layer and the backbone layer were trained with Adam.

Findings 3 and 4: The SATNet layer was trained with a 1x10- learning rate using Adam, and the
backbone layer was trained with a 1x10°! learning rate with SGD.

14

D More Experimental Results for the MNIST Mapping Problem

D.1 Non-SATNet Baseline

The training accuracy for the non-SATNet baseline is 72.4+13.4% (3).

D.2 Experiment 1

Table 4: Effects of m and aux on Training and Test Accuracy

m

auxr

Training Accuracy

Test Accuracy

20
40
60
80
20
40
60
80
20
40
60

100
100
100
100
200
200
200
200
400
400
400
400

50

50

50

50

100
100
100
100
200
200
200
200
200
400
600
800
200
400
600
800
200
400
600
800

86.7-£8.4% (1)
95.64:0.3% (0)
95.740.3% (0)
96.240.2% (0)
82.248.4% (1)
85.948.3% (1)
95.340.5% (0)
95.14+0.2% (0)
43.9413.5% (6)
59.6+13.3% (4)
60.0+13.4% (4)
94.740.3% (0)
86.348.4% (1)
44.8412.5% (4)
25.6+7.7% (7)
35.1£10.3% (6)
96.240.1% (0)
45.6+12.9% (4)
62.4+11.5% (2)
32.7+£10.4% (5)
96.440.2% (0)
92.14+4.2% (0)
62.8413.5% (3)
69.312.8% (3)

86.848.4% (1)
95.520.3% (0)
95.64-0.4% (0)
96.040.3% (0)
82.448.4% (1)
85.948.3% (1)
95.340.5% (0)
94.94+0.2% (0)
44.0413.4% (6)
59.7413.3% (4)
60.2:13.3% (4)
94.64+0.3% (0)
86.248.4% (1)
45.04+12.6% (4)
26.24+7.9% (7)
35.8410.4% (6)
95.840.2% (0)
45.34+12.9% (4)
62.4+11.7% (2)
33.24£10.5% (5)
96.040.2% (0)
91.844.0% (0)
62.7413.4% (3)
69.44+12.7% (3)

D.3 Experiment 2

Table 5: Effects of Different Learning Rates on the SATNet and Backbone Layer on Training

Accuracy

SATNet Layer

Learning Rate

Backbone Layer Learning Rate

1x107?

1x10*

1x10

1x1073
1x10*
1x10°°

19.6+8.5% (9)
17.044.1% (8)
14.4+3.4% (9)

90.4+8.8% (1)
74.94+8.8% (0)
31.847.1% (5)

96.740.2% (0)
96.5+0.2% (0)
71.945.4% (0)

D.4 Experiment 3

The training accuracy rose from 96.7+0.2% (0) to 99.14+0.1% (0).

15

D.S Experiment 4

Table 6: Effects of Different Neural Architectures on Training Accuracy

Backbone Output Layer
Architectures ~ Parameters Softmax Sigmoid
LeNet [40] 68,626 63.2+14.2% (4) 99.1+0.0% (0)

Sudoku CNN 860,780 99.1+£0.1% (0) 99.5+0.0% (0)
ResNet18 [43] 11,723,722 67.6£6.2% (0) 97.4£0.4% (0)

D.6 Further Investigation into m and aux

One of the reviewers proposed setting m and auz according to the relationship m = out + auz,
where out is the number of output variables. In the case of the MNIST mapping problem, we observed
that while not necessarily optimal, it can be a good rule of thumb.

Another reviewer suggested that Experiment 1 be re-run with smaller values of aux. We show the
results of re-running Experiment 1 with 10x smaller auz in Figure 7. We can observe that in this
regime where m is significantly higher than aux, larger m and smaller auz show a more muted
benefit.

Effect of m Effect of aux

96

©
=

©
N

Test Accuracy

©
o
=)

90

®
I
[

— aux=5 m=100
— aux=10 — m=200
88 —— aux=20 —— m=400

©
o
=3

20 40 60 80 20 40 60 80
Number of Clauses (m) Number of Auxiliary Variables (aux)

Figure 7: Both graphs show test accuracy on the MNIST mapping problem with the shaded interval
representing the standard error.

16

