
Appendix

A Proofs of Results for Tabular Setting

We prove here the results of Section 4. For ease of exposition, we restate the results before proving
them. For convenience, we introduce the confidence set for every state x ∈ S, action a ∈ A and
stage h ∈ [H],

Ph(x, a) =
{
P̃h(·|x, a) ∈ ∆ : D

(
P̃h(·|x, a), P̂h(·|x, a)

)
≤ ε(x, a)

}
(16)

and note that P̃ ∈ P if P̃h(·|x, a) ∈ Ph(x, a) for all x, a, h

The following lemma will be useful in several of the proofs.

Lemma 10. The primal and dual optimization problems in (5) and (6) exhibit strong duality. Conse-
quently the Karush-Kuhn-Tucker (KKT) conditions hold, and in particular, complementary slackness
holds.

Proof. We first show that the optimization problem in (5) exhibits strong duality. For this, it
is helpful to consider a reparameterization where we introduce the variables Jh(x, a, x′) =

P̃h(x′|x, a)qh(x, a), so that the constraint D
(
P̃h(·|x, a), P̂h(·|x, a)

)
≤ ε(x, a) can be rewritten

as D
(
Jh(x, a, ·), P̂h(·|x, a)qh(x, a)

)
≤ εh(x, a)qh(x, a), which is convex in J and q. The two

constraints are clearly equivalent due to positive homogeneity of D for qh(x, a) > 0. For
qh(x, a) = 0, recall that in the original formulation, P̃h(·|x, a) only appears multiplied by qh(x, a),
so when qh(x, a) = 0, the choice of P̃h(·|x, a) is arbitrary and we can replace the constraint
D
(
P̃h(·|x, a), P̂h(·|x, a)

)
≤ ε(x, a) with D

(
Jh(x, a, ·), P̂h(·|x, a)qh(x, a)

)
≤ εh(x, a)qh(x, a)

without affecting the optimal solution. This implies that the optimization problem in (5) can be
equivalently written as

maximize
q∈Q(x1),J

∑
x,a,h

qh(x, a)r(x, a) (17)

Subject to
∑
a

qh(x, a) =
∑
x′,a′

Jh−1(x′, a′, x) ∀x ∈ S, h ∈ [H]

D
(
Jh(x, a, ·), P̂h(·|x, a)qh(x, a)

)
≤ εh(x, a)qh(x, a) ∀(x, a) ∈ Z, h ∈ [H]∑

x′

Jh(x, a, x′) = qh(x, a) ∀(x, a) ∈ Z, h ∈ [H]

Jh(x, a, x′) ≥ 0 ∀x, x′ ∈ S, a ∈ A, h ∈ [H].

In this formulation, there is only one non-linear constraint, and by our assumption that D is con-
vex in both of its arguments, this constraint is convex in J and q. Moreover, Ĵh(x, a, x′) =

P̂h(x′|x, a)qh(x, a) satisfies this constraint for any qh(x, a), and in particular, if qh(x, a) is the
occupancy measure induced by any policy π in the MDP with transition function P̂ , then qh(x, a)
and Jh(x, a, a′) are feasible solutions to the primal. Hence, the Slater conditions are satisfied, and
thus the optimization problem exhibits strong duality (see e.g. [11]). We can then write the dual of
the optimization problem in (17) as

max
(q,M)∈C1

min
V,γ

{ ∑
x,a,h

qh(x, a)(Vh(x)− γh(x, a) + r(x, a) + V1(x1) (18)

+
∑

x,a,x′,h

Jh(x, a, x′)(Vh+1(x′) + γh(x, a))

}
,

where C1 =
{
q, J : D(Jh(x, a, ·), P̂h(·|x, a)qh(x, a)) ≤ εh(x, a)qh(x, a) (∀x, a)

}
. Then, we can

use the reverse reparameterization to rewrite this in terms of P̃h(x′|x, a) = Jh(x, a, x′)/qh(x, a),
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noting that P̃h(·|x, a) is a valid probability density by constraints on J, q. We get,

max
q,P̃∈P

min
V,γ

{ ∑
x,a,h

qh(x, a)(−Vh(x)− γh(x, a) + r(x, a)) + V1(x1)

+
∑

x,a,x′,h

P̃h(x′|x, a)qh(x, a)(Vh+1(x′) + γh(x, a))

}

= max
q,P̃∈P

min
V

{ ∑
x,a,h

qh(x, a)

(
− Vh(x) + r(x, a) +

∑
x′

P̃h(x′|x, a)Vh+1(x′)

)
+ V1(x1)

}
,

(19)

where P =
{
P̃ ∈ ∆ : D(P̃h(·|x, a), P̂h(·|x, a)) ≤ εh(x, a) (∀x, a, h)

}
, and the last equality

follows since
∑
y P̃h(y|x, a) = 1. This is the Lagrangian dual form of the original optimization

problem we considered. Let OBJ(a) denote the objective function of the optimization problem in
equation (a). It then follows that,

OBJ(5) = OBJ(17) = OBJ(18) = OBJ(19)

and so strong duality holds for the problem in (5). Thus, by standard results (e.g., [11, Section
5.5.3]), we conclude that the KKT conditions are satisfied by (q+, P̃+, V +), the optimal solutions
to the primal and dual. As a consequence, complementary slackness also holds. This concludes the
proof.

A.1 Duality Result

Proposition 1. Let CBh(x, a) = D∗(Vh+1|εh(x, a), P̂h(·|x, a)) and denote its vector representation
by CBh,a. The optimization problem in (5) can be equivalently written as

minimize
V

V1(x1)

∣∣∣∣ subject to
Vh ≥ ra + P̂h,aVh+1 + CBh,a ∀a ∈ A, h ∈ [H]

(6)

Proof. It will be helpful to write the primal optimization problem as

maximize
q∈Q(x1),P̃ ,κ

∑
x,a,h

qh(x, a)r(x, a)

Subject to∑
a

qh(x, a) =
∑
x′,a′

P̂h(x|x′, a′)qh(x′, a′) +
∑
x′,a′

κh(x′, a′, x)qh(x′, a′) ∀x ∈ S, h ∈ [H]

κh(x, a, x′) = P̃h(x′|x, a)− P̂h(x′|x, a) ∀x, x′ ∈ S, a ∈ A, h ∈ [H]

D
(
P̂h(·|x, a), P̂h(·|x, a)

)
≤ εh(x, a) ∀(x, a) ∈ Z, h ∈ [H]∑

x′

κh(x, a, x′) = 0 ∀(x, a) ∈ Z, h ∈ [H].

By Lemma 10, we know that this problem exhibits strong duality. We then consider the partial
Lagrangian of the above problem without the constraints on P̃ , which yields

L(q, κ;V ) =
∑
x,a,h

qh(x, a)

(∑
y

P̂h(y|x, a)Vh+1(y)+
∑
y

κh(x, a, y)Vh+1(y)+r(x, a)−Vh(x)

)
+V1(x1)

For P defined in (4), we know that the optimal value of the objective function of the primal optimiza-
tion problem is given by the Lagrangian relaxation,

min
V

max
q≥0,κ,P̃∈P

L(q, κ;V ).
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To proceed, we fix a V and consider the inner maximization problem. By definition of κh(x, a, x′) =

P̃h(x′|x, a)− P̂h(x′|x, a)), we can write

max
q≥0,κ,P̃∈P

L(q, κ;V )

= max
q≥0,κ,P̃∈P

∑
x,a,h

qh(x, a)

(∑
y

P̂h(y|x, a)Vh+1(y) +
∑
y

κh(x, a, y)Vh+1(y) + r(x, a)− Vh(x)

)
+ V1(x1)

= max
q≥0

∑
x,a,h

qh(x, a)

(∑
y

P̂h(y|x, a)Vh+1(y) + max
κh(x,a,·)

P̃h(·|x,a)∈Ph(x,a)

∑
y

κ(x, a, y)Vh+1(y) + r(x, a)

− Vh(x)

)
+ V1(x1)

= max
q≥0

∑
x,a,h

qh(x, a)

(∑
y

P̂h(y|x, a)Vh+1(y) +D∗(Vh+1|εh(x, a), P̂h(·|x, a)) + r(x, a)− Vh(x)

)
+ V1(x1), (20)

where Ph(x, a) is the set in (16). The second equality crucially uses that qh(x, a) ≥ 0 and the last
equality follows from the definition of the conjugate D∗:

max
κh(x,a,·),P̃h(·|x,a))∈Ph(x,a)

∑
y

κh(x, a, y)Vh+1(y)

= max
P̃h(·|x,a)∈∆

{〈
P̃h(·|x, a)− P̂h(·|x, a), Vh+1

〉
;D(P̃h(·|x, a), P̂h(·|x, a)) ≤ εh(x, a)}

= D∗(Vh+1|εh(x, a), P̂h(·|x, a)).

We then optimize the expression in (20) with respect to q and V using an adaptation of techniques
used for establishing LP duality between the original problems (1) and (2). Specifically, let g(V ) =

maxq L(q;V ) and note that by (20), the Lagrangian no longer depends on κ or P̃ . Then, define
ηh(x, a) =

∑
y P̂h(y|x, a)Vh+1(y)+D∗(Vh+1|εh(x, a), P̂h(·|x, a))+r(x, a)−Vh(x) for all x, a, h

and observe that

g(V ) = V1(x1) + max
q

∑
x,a,h

qh(x, a)ηh(x, a) =

{
V1(x1) if ηh(x, a) ≤ 0 ∀x, a, h
∞ otherwise.

Thus, we can then write the dual optimization problem of minimizing g(V ) with respect to V as

minimize
V

V1(x1)

Subject to Vh(x) ≥ r(x, a) +
∑
y

P̂h(y|x, a)Vh+1(y) +D∗(Vh+1|εh(x, a), P̂h(·|x, a)).

This proves the proposition.

A.2 Properties of the Optimal Solutions

In this section we prove Propositions 2 and 3. In order to prove Proposition 2, we first need the
following result which gives the form of the optimal solution to the dual in Equation (6).

Lemma 11. The solution to the dual in (6) is given by

V +
h (x) = max

a∈A

{
r(x, a) + CBh(x, a) +

∑
y∈S

P̂h(y|x, a)V ∗h+1(y)

}
(21)

where we use the notation CBh(x, a) = D∗(Vh+1|εh(x, a), P̂h(·|x, a))).
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Proof. The structure of the constraints on Vh(x) in (6) and the definition of CBh(x, a) mean that
V +
h (x) can be determined using only the values of V +

l for l ≥ h+ 1. Hence, we can prove the result
by backwards induction on h = H, . . . , 1. For the base case, when h = H , the constraint in the dual
is

VH(x) ≥ r(x, a) + CBH(x, a) ∀x ∈ S, a ∈ A.
In order to minimize VH(x), we set V +

H (x) = maxa∈A{r(x, a) + CBH(x, a)} for all x ∈ S. Now
assume that for stage h+ 1, the optimal value of V +

h+1(x) is given by (21). Then, when considering
stage h, we wish to set V +

h (x) as small as possible. By the inductive hypothesis, we know it is
optimal to set Vh+1(x) = V +

h+1(x), and we know that CBh(x, a) has been defined using only terms
from stage h+ 1 and is minimal. Consequently, the RHS of the constraint in (6) is minimized for any
(x, a, h) by setting Vh+1 = V +

h+1. This means that the minimal value of Vh is given by (21). Hence
the result holds for all h = 1, . . . ,H , and so considering h = 1 and initial state x1, we can conclude
that V + is the optimal solution to the LP in (6).

We now prove Proposition 2.

Proposition 2. Let V + be the optimal solution to (6) and CB+
h (x, a) = D∗(V

+
h+1|ε(x, a), P̂h). Then,

the optimal policy π+ extracted from any optimal solution q+ of the primal LP in (5) satisfies

V +
h (x) = r(x, π+

h (x)) + CB+
h (x, π+

h (x)) +
∑
y∈S

P̂h(y|x, π+
h (x))V +

h+1(y) ∀x ∈ S, h ∈ [H]. (8)

Proof. By Lemma 11, we know that the optimal solution to the dual in (6) is given by

V +
h (x) = max

a∈A

{
r(x, a) + CBh(x, a) +

∑
y∈S

P̂h(y|x, a)V +
h+1(y)

}
. (22)

We then proceed by considering the case where the right hand side of the expression in (22) has a
unique maximizer. In this case, let

a∗h(x) = arg max
a∈A

{
r(x, a) + CBh(x, a) +

∑
y∈S

P̂h(y|x, a)V +
h+1(y)

}
.

Since a∗h(x) is the unique maximizer of this expression, it follows that, for a fixed x, h, the constraint
in (6) is only binding for one a ∈ A, namely a∗h(x). By Lemma 10, we know that complementary
slackness holds for this problem. Then, using complementary slackness, it follows that only one of
the primal variables is non-zero. In particular, for a fixed state x and stage h, q+

h (x, a) = 0 for all
a 6= a∗h(x), x′ ∈ S. Consequently, π+(x) = a∗h(x) and so the policy induced by q+, π+, will only
have non-zero probability of playing the action which maximize the right hand side of (22).

We now consider the case where there are multiple maximizers of the right hand side of (22). Let
a1
h(x), . . . , amh (x) denote the m maximizers. By a similar argument to the previous case, we know

that for a fixed x ∈ S and h ∈ [H], the constraint in (6) is only binding for a = aih(x) for some
i ∈ [m]. Then, by complementary slackness, it follows that q+

h (x, a) = 0 for all a 6= a∗i (x) for
i ∈ [m], and so the only non-zero values of q+

h (x, a) can occur for a = aih(x) for some i ∈ [m].
The action chosen from state x by policy π+ must be one of the actions for which q+

h (x, a) > 0 by
properties of the relationship between occupancy measures and policies. Hence, π+(x) = aih(x) for
some i ∈ [m], and so equation (8) must hold.

Proposition 3. If the true transition function P satisfies the constraint in Equation (5), the optimal
solution V + of the dual LP satisfies V ∗h (x) ≤ V +

h (x) ≤ H − h+ 1 for all x ∈ S.

Proof. We begin by proving that if P ∈ P , then V ∗h (x) ≤ V +
h (x).

Let q∗ be the occupancy measure corresponding to the optimal policy π∗ under P . Then, if P ∈ P ,
then P must feasible for the primal in (5), and so it must be the case that∑

x,a

H∑
h=1

r(x, a)q∗h(x, a) ≤
∑
x,a

H∑
h=1

r(x, a)q+
h (x, a),
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where q+ is the optimal solution to the LP in (5). Considering the LHS of this expression, and the
fact that q∗ is the occupancy of the optimal policy π∗ under the true transition function, it follows that

∑
x,a

H∑
h=1

r(x, a)q∗h(x, a) = E
[ H∑
h=1

r(Xh, π
∗(Xh))

∣∣∣∣X1 = x1

]
= V ∗1 (x1)

Hence, when P ∈ P ,

V ∗1 (x1) ≤
∑
x,a

H∑
h=1

r(x, a)q+
h (x, a) = V +

1 (x1).

for the initial state x1, where we have used the fact that the value of the optimal objective functions
are equal due to strong duality (Lemma 10).

In order to prove the result for x 6= x1 and h 6= 1, we consider modified linear programs defined by
starting the problem at stage h with all prior mass in state x. In this case, define the initial state as
xh = x, the we write the modified primal optimization problem as

maximize
q∈Q(x),P̃∈∆

H∑
l=h

∑
x,a

qlx, a)r(x, a) (23)

Subject to
∑
a∈A

ql(x, a) =
∑

x′∈S,a′∈A
P̃l(x|x′a′)ql−1(x′, a′) ∀x ∈ S, l = h+ 1, . . . ,H

D
(
P̃l(·|x, a), P̂l(·|x, a)

)
≤ εl(x, a), ∀(x, a) ∈ S, l = h+ 1, . . . ,H

where Q(x) has been modified to account for the new initial state. Observe that this problem is
analogous to the primal optimization problem in (5), and hence we can apply the same techniques as
used to prove Proposition 1 to show that the dual can be written as

minimize
V

Vh(x) (24)

subject to Vl(x) ≥ r(x, a) + CBl(x, a) +
∑
y∈S

P̂l(y|x, a)Vl+1(y) ∀(x, a) ∈ S ×A, l ∈ [h : H].

where CBl(x, a) = D∗(Vl+1|εl(x, a), P̂l(·|x, a)). Analyzing this dual shows that for l = h, . . . ,H
and x ∈ S, the constraints on Vh(x) here are the same as those in the full dual in (6). This means
that the dual in (6) can be broken down per stage and the optimal solution can be found by a dynamic
programming style algorithm. In particular, the optimal solution V +

h (x) in the complete dual in (6)
is given by the optimal value of the objective function in the optimization problem in (24). Note
that strong duality also applies in this modified problem since the technique used to prove this in
Lemma 10 also applies here. We therefore know that V +

h (x) =
∑
x,a

∑H
l=h q̃

+
l (x, a)r(x, a) where

q̃+ is the optimal solution to the modified LP in (23). On the event that P is in the confidence set, the
occupancy measure q̃∗ defined by the optimal policy π∗ and P starting from state x in stage h must
be a feasible solution to the LP in (23). Consequently, by the same argument as before,

V ∗h (x) =
∑
x,a

H∑
l=h

r(x, a)q̃∗l (x, a) ≤
∑
x,a

H∑
l=h

r(x, a)q̃+
l (x, a) = V +

h (x),

thus proving the first inequality in the statement of the proposition for all (x, a) ∈ Z, h = 1, . . . ,H .

We now show that V +
h (x) ≤ H − h + 1 for all x ∈ S, h ∈ [H]. The proof is similar to the

previous case and again relies on building a new MDP from each state x in stage h and considering
the dual. In particular, for any x ∈ S, h ∈ [H], in the dual LP in (24), we see that that the
optimal solution to the objective function has value V +

h (x). By strong duality, this must have
the same value as

∑
x,a

∑H
l=h q̃

+
l (x, a)r(x, a), the optimal value of the objective function of the

primal optimization problem in (23) started at x in stage h. The optimal solution q̃+ must be a
valid occupancy measure since by the primal constraints ql(x, a) ≥ 0 and

∑
x,a qh(x, a) = 1 are

satisfied. It also follows that
∑
x,a ql(x, a) = 1 for all l = h + 1, . . . ,H by Lemma 12. From
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this it follows that q̃+
l (x, a) ≤ 1, ∀(x, a) ∈ Z, l = h, . . . ,H so combining this with the fact that

r(x, a) ∈ [0, 1]∀(x, a) ∈ Z , it must be the case that
∑
x,a

∑H
l=h q̃

+
l (a, x)r(x, a) ≤ H − h+ 1, and

so V +
h,t(x) ≤ H − h+ 1 and the result holds.

Lemma 12. For any feasible solution q to the primal problem in (5), it must hold that∑
x,a qh(x, a) = 1 for all h ∈ [H].

Proof. The proof follows by induction on h. For the base case, when h = 1,∑
x,a

q1(x, a) =
∑
a

q1(x1, a) = 1

by the constraint
∑
a q1(x, a) = I{x = x1} for all x ∈ S. Now assume the result holds for h, and

we prove it for h+ 1. By the flow constraint (first constraint in (5)), for any feasible P̃ ∈ P ,∑
x,a

qh+1(x, a) =
∑
x

(∑
x′,a′

P̃h(x|x′, a′)qh(x′, a′)

)
=
∑
x′,a′

qh(x′, a′) = 1

since
∑
x P̃h(x|x′, a′) = 1. Thus the result holds for all h = 1, . . . ,H .

A.3 Regret Bounds

In this section, we bound the regret of any algorithm that fits into our framework.

Theorem 4. On the event ∩Kt=1{P ∈ Pt}, the regret is bounded with probability at least 1− δ as

RT ≤
K∑
t=1

H∑
h=1

(
CBh,t(xh,t, πh,t(xh,t)) + CB−h,t(xh,t, πt(xh,t))

)
+H

√
2T log(1/δ)

where CB−h,t(x, a) = D∗(−V +
h+1,t|εh,t(x, a), P̂h,t) and CBh,t(x, a) = D∗(V

+
h+1,t|εh,t(x, a), P̂h,t).

Proof. The proof is similar to standard proofs of regret for episodic reinforcement learning algorithms
(e.g. [6, 24]) but uses Proposition 3 to simplify the probabilistic analysis and the definition of the
confidence sets to simplify the algebraic analysis. For the proof, for any h, t, define ∆h,t(xh,t) =
V +
h,t(xh,t)− V

πt

h (xh,t). Then using the optimistic result from Proposition 3, on the event ∩Kt=1{P ∈
Pt}, we can write the regret as

RT =
K∑
t=1

(V ∗1 (x1,t)− V πt
1 (x1,t)) ≤

K∑
t=1

(V +
1,t(x1,t)− V πt

1,t (x1,t)) =

K∑
t=1

∆1,t(x1,t).

Then, for a fixed h, t, we consider ∆h,t(xh,t) and show that this can be bounded in terms of
∆h+1,t(xh+1,t), some confidence terms and some martingales. In particular, using the Bellman
equations and the dynamic programming formulation, we can write

∆h,t(xh,t) = V +
h,t(xh,t)− V

πt

h (xh,t)

=
〈
P̂h,t(·|xh,t, ah,t), V +

h+1,t

〉
+ r(xh,t, ah,t) + CBh,t(xh,t, ah,t)−

〈
Ph(·|xh,t, ah,t), V πt

h+1

〉
− r(xh,t, ah,t)

=
〈
P̂h,t(·|xh,t, ah,t), V +

h+1,t

〉
−
〈
Ph(·|xh,t, ah,t), V πt

h+1

〉
+ CBh,t(xh,t, ah,t)

= ∆h+1,t(xh+1,t) +
〈
P̂h,t(·|xh,t, ah,t), V +

h+1,t

〉
− V +

h+1,t(xh+1,t)

+ V πt

h+1(xh+1,t)−
〈
Ph(·|xh,t, ah,t), V πt

h+1

〉
+ CBh,t(xh,t, ah,t)

= ∆h+1,t(xh+1,t) +
〈
P̂h,t(·|xh,t, ah,t)− Ph(·|xh,t, ah,t), V +

h+1,t

〉
+ ζπh+1,t + CBh,t(xh,t, ah,t)

where in the last equality, ζπh+1,t is a martingale difference sequence defined by

ζπh+1,t =
〈
Ph(·|xh,t, ah,t), V +

h+1,t − V
πt

h+1

〉
−
(
V +
h+1,t(xh+1,t)− V πt

h+1(xh+1,t)
)
.
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Then observe that on the event P ∈ Pt,〈
P̂h,t(·|xh,t, ah,t)− Ph(·|xh,t, ah,t), V +

h+1,t

〉
≤ max
P̃∈Ph(xh,t,ah,t)

〈
P̂h,t(·|xh,t, ah,t)− P̃h(·|xh,t, ah,t), V +

h+1,t

〉
≤ max

P̃∈∆

{〈
P̂h,t(·|xh,t, ah,t)− P̃h(·|xh,t, ah,t), V +

h+1,t

〉
:

D(P̃h(·|xh,t, ah,t), P̂h,t(·|xh,t, ah,t)) ≤ εh,t(xh,t, ah,t)
}

= max
P̃∈∆

{〈
P̃h(·|xh,t, ah,t)− P̂h,t(·|xh,t, ah,t),−V +

h+1,t

〉
:

D(P̃h(·|xh,t, ah,t), P̂h,t(·|xh,t, ah,t)) ≤ εh,t(xh,t, ah,t)
}

= D∗(−V +
h+1,t|εh,t(xh,t, aht), P̂t(·|xh,t, ah,t))

= CB−h,t(xh,t, ah,t)

This gives a recursive expression for ∆h,t(xh,t),

∆h,t(xh,t) ≤ ∆h+1,t(xh+1,t) + ζπh+1,t + CBh,t(xh,t, ah,t) + CB−h,t(xh,t, ah,t)

Recursing over h = 1, . . . ,H , we see that,

∆1,t(x1,t) ≤
H∑
h=1

CBh,t(xh,t, πt(xh,t)) +

H∑
h=1

CB−h,t(xh,t, πt(xh,t)) +

H∑
h=1

ζπh+1,t

since ∆H+1,t(x) = 0.

By Azuma-Hoeffdings inequality, it follows that
K∑
t=1

H∑
h=1

ζπh+1,t ≤ H
√

2T log(1/δ)

with probability greater than 1− δ, since the sequence has increments bounded in [−H,H].

Consequently, with probability greater than 1− δ, we can bound the regret by,

RT ≤
K∑
t=1

H∑
h=1

CBh,t(xh,t, πt(xh,t)) + +

K∑
t=1

H∑
h=1

CB−h,t(xh,t, πt(xh,t)) +H
√

2T log(1/δ)

thus giving the result.

A.4 Upper bounding the exploration bonus

We now prove the regret bound, when we use an upper bound D†∗ on the conjugate D∗. We first need
the below result that shows that the optimistic value function V † in equation 9 is indeed optimistic.

Lemma 13. On the event P ∈ P , it holds that V ∗1 (x1) ≤ V †1 (x1).

Proof. We consider the dual optimization problem,

minimize
V

V1(x1)

subject to Vh(x) ≥ r(x, a) +
∑
y

P̂h(y|x, a)Vh+1(y) +D∗

(
Vh+1

∣∣∣εh(x, a), P̂h(·|x, a)
)

(25)

Vh(x) ≤ H − h+ 1 (26)

which is the dual from Proposition 1, where we have added the additional constraint (26). Note that
adding this additional constraint will not effect the value of the optimal solution since by Proposition 3,
we know that V +(x) ≤ H − h+ 1 for all h = 1, . . . ,H, x ∈ S.
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By definition of D†∗, it follows that for any Vh+1,

r(x, a) +
∑
y

P̂h(y|x, a)Vh+1(y) +D∗

(
Vh+1

∣∣∣εh(x, a), P̂h(·|x, a)
)

≤ min

{
H − h+ 1, r(x, a) +

∑
y

P̂h(y|x, a)Vh+1(y) +D†∗

(
Vh+1

∣∣∣ε′h(x, a), P̂h(·|x, a)
)}

since all the original feasible solutions in stage h+ 1 must satisfy Vh+1(x) ≤ H − h. Therefore, we
can replace the constraint in (25) by

Vh(x) ≥ min

{
H − h+ 1, r(x, a) +

∑
y

P̂ (y|x, a)Vh+1(y) +D†∗

(
Vh+1

∣∣∣ε′h(x, a), P̂ (·|x, a)
)}

knowing that this will only increase the optimal value of the objective function. Since we know
that by Proposition 3, that the optimal solution to the original dual optimization problem satisfies
V ∗1 (x1) ≤ V +

1 (x1) on the event P ∈ P , it must also be the case that V ∗1 (x1,t) ≤ V †1 (x1,t) for
V †1 (x1,t) the optimal solution of the modified dual. Note also that the solution to the modified dual
problem will take the form given in (9) by an argument similar to Lemma 11.

Theorem 5. Let D†∗(f |ε′, P̂ ) be an upper bound on D∗(f |ε, P̂ ) and D∗(−f |ε, P̂ ) for every f : S →
[0, H], and, CB†h,t(x, a) = D†∗(V

†
h+1,t|ε′h,t(x, a), P̂h,t). Then, on the event ∩Kt=1{P ∈ Pt}, with

probability greater than 1− δ, the policy returned by the procedure in (9) incurs regret

RT ≤ 2

K∑
t=1

H∑
h=1

CB†h,t(xh,t, πh,t(xh,t)) + 4H
√

2T log(1/δ).

Proof. Given the result in Lemma 13, we know that V † is optimistic so the proof proceeds similarly to
the case where CBh,t(x, a) is computed exactly. In particular, let ∆†h,t(xh,t) = V †(xh,t)−V π(xh,t),
then,

RT =

K∑
t=1

(V ∗1 (x1,t)− V πt
1 (x1,t)) ≤

K∑
t=1

(V †1,t(x1,t)− V πt
1,t (x1,t)) =≤

K∑
t=1

∆†h,t(xh,t)

and, observe that by the same argument as Theorem 4,

∆†h,t(xh,t) = ∆†h+1,t(xh+1,t) +
〈
P̂ (·|xh,t, ah,t)− P (·|xh,t, ah,t), V †h+1,t

〉
+ ζ†h+1,t + CB†h,t(xh,t, ah,t)

where ζ†h+1,t is the martingale difference sequence ζ†h+1,t =
〈
P (·|xh,t, ah,t, V †h+1,t − V πt

h+1

〉
−

(V †h+1,t(xh+1,t)− V πt

h+1(xh+1,t)). Then, on the event P ∈ P ,〈
P̂t(·|xh,t, ah,t)− P (·|xh,t, ah,t), V †h+1,t

〉
≤ max

P̃∈∆

{〈
P̂t(·|xh,t, ah,t)− P̃ , V †h+1,t

〉
: D(P̃ , P̂t(·|xh,t, ah,t)) ≤ εh,t(xh,t, ah,t)

}
= max

P̃∈∆

{〈
P̃ − P̂t(·|xh,t, ah,t),−V †h+1,t

〉
: D(P̃ , P̂t(·|xh,t, ah,t)) ≤ ε(xh,t, ah,t)

}
= D∗(−V †h+1,t|P̂t(·|xh,t, ah,t), εh,t(xh,t, aht))

≤ D†∗(V
†
h+1,t|P̂t(·|xh,t, ah,t), ε

′
h,t(xh,t, aht)) ≤ CB†h,t(xh,t, ah,t)

by definition of the upper bound CB†h,t(x, a).

Using this, we can recurse over h = 1, . . . ,H to get,

∆†1,t(x1,t) ≤ 2

H∑
h=1

CB†h,t(xh,t, ah,t) +

H∑
h=1

ζ†h+1,t

so summing this over all episodes t = 1, . . . ,K and using Azuma’s inequality to bound the sum of
the martingales gives the result.
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A.5 Further Details of Examples

Here we present additional results and explanations to show that many algorithms fit into our
framework. The main purpose of this section is to demonstrate the use of our general results for
constructing confidence sets and calculating the corresponding exploration bonuses, as well as
bounding the regret. We do not aim to improve over state-of-the-art results or obtain tight constants,
but we do note that several of the exploration bonuses we derive are data-dependent in a way that
may possibly enable tight problem-dependent regret bounds. We refer to the works of Dann et al.
[17], Zanette and Brunskill [52], Simchowitz and Jamieson [43] that demonstrate the power of
data-dependent exploration bonuses for achieving such guarantees.

In several calculations below, we will use the following simple result to bound the sum of the
exploration bonuses:

K∑
t=1

H∑
h=1

√
1

Nh,t(xh,t, ah,t)
=

∑
x∈S,a∈A

K∑
t=1

H∑
h=1

I{xh,t = x, ah,t = a}

√
1

Nh,t(xh,t, ah,t)

=
∑

x∈S,a∈A

H∑
h=1

Nh,K(x,a)∑
n=1

√
1

n
≤

∑
x∈S,a∈A

H∑
h=1

2
√
Nh,K(x, a)

≤ 2
√
HSAT (27)

where the last inequality follows due to the Cauchy–Schwarz inequality and the fact that∑
x∈S,a∈A,h∈[H]Nh,K(x, a) = HK = T . We also use the modified empirical transition prob-

ability defined for any states x, x′ ∈ S, action a ∈ A, stage h ∈ [H] and episode t ∈ [K] as

P̂+
h,t(x

′|x, a) =
max{1, Nh,t(x, a, x′)}

Nh,t(x, a)
(28)

and note that this only differs from P̂h,t(x
′|x, a) if Nh,t(x, a, x′) = 0. Consequently,

|P̂+
h,t(x

′|x, a)− P̂h,t(x′|x, a)| =
∣∣∣∣max{1, Nh,t(x, a, x′)}

Nh,t(x, a)
− Nh,t(x, a, x

′)

Nh,t(x, a)

∣∣∣∣ ≤ 1

Nh,t(x, a)
(29)

In several cases, we define the primal confidence sets using P̂+ as the reference model rather than P̂
to avoid division by 0. Note that doing this results in dual formulations that involve P̂+ rather than
P̂ . However, since we are still optimizing over the space of probability distributions in the primal,
it holds that the optimal value of the dual objective will still be bounded by H . We can also use
Equation (29) to bound the empirical variance of any function z : S → [0, H] under P̂+,

V̂+(z) =
∑
y

P̂+(y)(z(y)− 〈P̂+, z〉)2 ≤
∑
y

P̂+(y)

(
2(z(y)− 〈P̂ , z〉)2 + 2(

HS

N
)2

)

≤ 2
∑
y

P̂ (y)(z(y)− 〈P̂ , z〉)2 +
2HS + 2(HSN )2

N
+
H2S2

N2
≤ 2V̂(z) +

2HS

N
+

3H2S2

N2
.

(30)

A.5.1 Total variation distance

We start with the classic choice of the `1 distance D(p, p′) = ‖p− p′‖1 which underlies the seminal
UCRL2 algorithm of Jaksch et al. [24]. Defining the confidence sets used in episode t as

Pt =

{
P̃ ∈ ∆ :

∥∥∥P̃h(·|x, a)− P̂t(·|x, a)
∥∥∥

1
≤ εh,t(x, a) ∀(x, a) ∈ Z, h ∈ [H]

}
for εh,t(x, a) =

√
2S log(2SAT/δ)

Nh,t(x, a)
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we know that P ∈ Pt for all t = 1, . . . ,K with probability greater than 1 − δ [24]. Then, the
conjugate distance is,

D∗(f |ε, P̂ ) = max
P∈∆

{〈
P − P̂ , f

〉∣∣∣∣ ∥∥∥P − P̂∥∥∥
1
≤ ε
}

= min
λ∈R

max
P≥0

{〈
P − P̂ , f − λ1

〉∣∣∣∣ ∥∥∥P − P̂∥∥∥
1
≤ ε
}

≤ min
λ∈R

max
P∈RS

{〈
P − P̂ , f − λ1

〉∣∣∣∣ ∥∥∥P − P̂∥∥∥
1
≤ ε
}
≤ εmin

λ∈R
‖f − λ1‖∞ ≤ ε sp(f)/2

where we have defined λ as the Lagrange multiplier of the constraint
∑
x P (x) = 1 =

∑
x P̂ (x),

used the fact that the dual norm of the `1 norm is the `∞ norm and, denoted by sp(f) =

maxx f(x) − minx f(x) the span of f . Noting that a similar result holds for D∗(−f |ε, P̂ ), we
can define D†∗(f |ε, P̂ ) = ε sp(f)/2, and use the exploration bonus

CB†h,t(x, a) = εh,t(x, a)sp(V †h+1,t)/2

Since we are clipping V +
h to be in the range [0, H − h+ 1], we can bound sp(V †h ) ≤ H . Applying

Theorem 5 and using the bound of Equation (27) to bound the sum of the exploration bonuses shows
that the regret of this algorithm is bounded by Õ(S

√
AH3T ). This recovers the classic UCRL2

guarantees that can be deduced from the work of [24].

A.5.2 Variance-weighted `∞ norm

We can get tighter bounds by using the empirical Bernstein inequality [35] to constrain the transition
function. Here, we use P̂+ =

max{1,Nh,t(x,a,y)}
Nh,t(x,a) as the reference model in the primal confidence sets.

The constraints considered here are related to those used in the UCRL2B algorithm of Fruit et al.
[21]. Specifically, we can apply the empirical Bernstein inequality to show that the following bound
holds for all x, a, x′, h, t with probability at least 1− δ:∣∣∣P̂+
h,t(x

′|x, a)− Ph(x′|x, a)
∣∣∣ ≤ ∣∣∣P̂h,t(x′|x, a)− Ph(x′|x, a)

∣∣∣+
∣∣∣P̂+
h,t(x

′|x, a)− P̂h,t(x′|x, a)
∣∣∣

≤

√√√√2P̂h,t(x′|x, a)
(

1− P̂h(x′|x, a)
)

log(HS2AT/δ)

Nh,t(x, a)
+

7 log(HS2AT/δ)

3Nh,t(x, a)
+

1

Nh,t(x, a)

≤

√
2P̂h,t(x′|x, a) log(HS2AT/δ)

Nh,t(x, a)
+

7 log(HS2AT/δ)

3Nh,t(x, a)
+

1

Nh,t(x, a)

≤

√
2P̂+

h,t(x
′|x, a) log(HS2AT/δ)

Nh,t(x, a)
+

7 log(HS2AT/δ)

3Nh,t(x, a)
+

1

Nh,t(x, a)

≤ 6 log(HS2AT/δ)

√
P̂+
h,t(x

′|x, a)

Nh,t(x, a)

The last inequality follows from the definition of the reference model that guarantees that
Nh,t(x, a)P̂+

h,t(y|x, a) = max{Nh,t(x, a, y), 1} ≥ 1.

In what follows, we will state a confidence set inspired by the above result using the divergence
measure D(P, P̂+) = maxx

(P (x)−P̂+(x))2

P̂+(x)
, which is easily seen to be positive homogeneous and

convex in both P and P̂+. Defining εh,t(x, a) = 36 log2(HS2AT/δ)
Nh,t(x,a) , we define the confidence sets

used in episode t as

Ph(·|x, a) =

{
Ph(·|x, a) ∈ ∆ : max

y

(P̃ (y|x, a)− P̂+
h,t(y|x, a))2

P̂+
h,t(y|x, a)

≤ εh,t(x, a)

}

and P = ∩x,a,h{Ph(·|x, a)}. By the above argument, we know that P ∈ P with probability greater
than 1− δ.
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The corresponding conjugate distance can be expressed by defining λ as the Lagrange multiplier of
the constraint

∑
x P (x) = 1 and writing

D∗(f |ε, P̂+) = max
P∈∆

{〈
P − P̂+, f

〉∣∣∣∣max
x∈S

(P (x)− P̂+(x))2

P̂+(x)
≤ ε
}

= min
λ∈R

max
P≥0

{〈
P − P̂+, f − λ1

〉
− λ(

∑
x

P̂+(x)− 1)

∣∣∣∣max
x∈S

|P (x)− P̂ (x)|√
P̂+(x)

≤
√
ε

}

≤ min
|λ|≤H+ SH

N

max
P∈RS

{〈
P − P̂+, f − λ1

〉
− λ

∑
x

(P̂+(x)− P̂ (x))

∣∣∣∣max
x∈S

|P (x)− P̂ (x)|√
P̂+(x)

≤
√
ε

}

≤ min
|λ|≤H+ SH

N

∑
x

∣∣∣∣(f(x)− λ)

√
P̂+(x)

∣∣∣∣√ε+

(
H +

SH

N

)
1

N

≤
√
ε
∑
x

√
P̂+(x)|f(x)− P̂+f |+ 2SH

N
.

The same technique can be used to bound D∗(−f |ε, P̂ ), so we can define D†∗(f |ε, P̂ ) =
√
ε
∑
x

√
P̂+(x)|f(x)− P̂+f |+ 2SH

N and write the inflated exploration bonus in the form

CB†h,t(x, a) =
√
εh,t(x, a)

∑
y

√
P̂+
h,t(y|x, a)|V †h+1(y)− P̂+

h,tV
†
h+1|+

2SH

Nh,t(x, a)
.

By Theorem 5, we know that in order to bound the regret of this algorithm, we need to be able to
bound the sum of these exploration bonuses. For this, note that by the Cauchy–Schwarz inequality,
and a similar argument to (30),

√
εh,t(x, a)

∑
y

√
P̂+
h,t(y|x, a)|V †h+1(y)− P̂+

h,tV
†
h+1|

≤
√
εh,t(x, a)

∑
y

√
P̂h,t(y|x, a)|V †h+1(y)− P̂h,tV †h+1|+ SH

√
εh,t(x, a)

Nh,t(x, a)

(
2 +

√
H

SNh,t(x, a)

)

=
√
εh,t(x, a)

∑
y:P (y)>0

√
P̂h,t(y|x, a)|V †h+1(y)− P̂h,tV †h+1|+ 3SH

√
εh,t(x, a)

Nh,t(x, a)

≤
√
εh,t(x, a)

√
Γh(x, a)

∑
y:P (y)>0

P̂+
h,t(y|x, a)(V †h+1(y)− P̂h,tV †h+1)2 + 3SH

√
εh,t(x, a)

Nh,t(x, a)

≤
√
εh,t(x, a)ΓV̂h,t(V †h+1) + 3SH

√
εh,t(x, a)

Nh,t(x, a)

where Γh(x, a) is the number of next states which can be reached from state x after playing action a
in stage h with positive probability, and Γ is a uniform upper bound on Γh(x, a) that holds for all
x, a, and V̂h,t is the empirical variance using all data from stage h up to episode t. In order to bound

CB†h,t(xh,t, ah,t) ≤
∑K
t=1

∑H
h=1(

√
εh,t(xh,t, ah,t)ΓV̂h,t(V †h+1,t) + 3SH

√
εh,t(x,a)
Nh,t(x,a) ), we use the

Cauchy–Schwarz inequality and techniques similar to Lemma 10 in [6] or Lemma 5 in [21] to show
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that

K∑
t=1

H∑
h=1

CB†h,t(xh,t, ah,t)

≤ C1

√
ΓL

√√√√ K∑
t=1

H∑
h=1

1

Nh,t(xh,t, ah,t)

K∑
t=1

H∑
h=1

V̂h,t(V †h+1,t) + C4SH
√
L

K∑
t=1

H∑
h=1

1

Nh,t(xh,t, ah,t)

≤ C1

√
ΓL

√√√√SA log(T )

( K∑
t=1

H∑
h=1

Vh(V πt

h+1) + C2H2
√
T log(T )

)
+ C4SH

√
LSA log(T )

≤ C1

√
ΓL

√
SA log(T )

(
HT + C3H2

√
TL+ C2H2

√
T log(T )

)
+ C4SH

√
LSA log(T )

= Õ(H
√

ΓSAT )

for some constants C1, C2, C3, C4 > 0, L = log(HS2AT/δ) and Vh the variance under Ph, where
the penultimate inequality follows from [6] and the last inequality holds for S3A ≤ TΓ. This recovers
the regret bounds of Fruit et al. [21].

A.5.3 Relative entropy

Inspired by the KL-UCRL algorithm of Filippi et al. [20], we also consider the relative entropy
(or Kullback–Leibler divergence, KL divergence) between P̂ and P̃ as a divergence measure. The
relative entropy between two discrete probability distributions p and q is defined as

D(p, q) =
∑
x

p(x) log
p(x)

q(x)
,

provided that p(x) = 0 holds whenever q(x) = 0. Being an f -divergence, the KL divergence satisfies
the conditions necessary for our analysis: positive homogeneous and jointly convex in its arguments
(p, q). However, it is not symmetric in its arguments, which suggests that it can be used for defining
confidence sets in two different ways, corresponding to the ordering of P and P̂ . We describe the
confidence sets and the resulting exploration bonuses below.

Forward KL-Divergence. We first consider constraining the divergence D(P, P̂ ) =∑
y P (y) log

(
P (y)

P̂ (y)

)
. To address the issue that the empirical transition probabilities P̂ (y) may

be zero for some y ∈ S, we define the divergence with respect to P̂+ (as defined in equation (28))
and use the so-called unnormalized relative entropy to account for the fact that P̂+ may not be a valid
probability distribution. Specifically, in what follows, we consider the following divergence measure:

D(P, P̂ ) =
∑
y

P (y) log

(
P (y)

P̂+(y)

)
+
∑
y

(P̂+(y)− P (y)).

The following concentration result will be helpful for the construction of the confidence sets.

Lemma 14. With probability greater than 1 − δ, it holds that for every episode t, stage h and
state-action pair (x, a),

D(Ph(x, a), P̂+
h,t(x, a)) ≤ 18S log(HSAT/δ)

Nh,t(x, a)
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Proof. We consider a fixed h, t, x, a, and for ease of notation remove the dependence of P, P̂ on
h, t, x, a. With probability greater than 1− δ

HTSA , it follows that

∑
y

P (y) log

(
P (y)

P̂+(y)

)
+
∑
y

(P̂+(y)− P (y)) ≤
∑
y

P (y)

(
P (y)

P̂+(y)
− 1

)
+
∑
y

(P̂+(y)− P (y))

(Since log(x) ≤ x− 1 for x > 0)

=
∑
y

P 2(y)− P (y)P̂+(y)

P̂+(y)
+
∑
y

(P̂+(y)− P (y))

=
∑
y

(P (y)− P̂+(y))2

P̂+(y)

≤ 2
∑
y

(P (y)− P̂ (y))2

P̂+(y)
+ 2

∑
y

(P̂ (y)− P̂+(y))2

P̂+(y)

≤ 2
∑
y

2P̂ (y) log(HS2AT/δ)/N + 6 log2(HS2AT/δ)/N2

P̂+(y)
+ 2

∑
y

1

N2P̂+(y)

(By Bernstein’s inequality and (29))

≤ 18S log(HS2AT/δ)

N

where the last inequality follows since by definition P̂+(y)N ≥ 1. Since this holds for each h, t, x, a
with probability greater than 1− δ

HTSA , by the union bound, it follows that it holds simultaneously
for all h, t, x, a with probability greater than 1− δ.

Given the above result, we define our confidence set as

Ph,t(·|x, a) =

{
P̃h(·|x, a) ∈ ∆

∣∣∣∣∑
x′

P̃h(x′|x, a) log
P̃h(x′|x, a)

P̂+
h,t(x

′|x, a)
≤ εh,t(x, a)

}

for εh,t(x, a) =
CS log(HSAT/δ)

Nh,t(x, a)

for some constant C > 0. Using the notation KL(p, q) =
∑
y p(y) log(p(y)/q(y)) to denote the

normalized KL divergence, the conjugate of the above divergence can be written as

D∗(z|ε, P̂+) = max
P̃∈∆

{〈
z, P̃ − P̂+

〉∣∣∣D(P̃ , P̂+) ≤ ε
}

= min
λ≥0

max
P̃∈∆

{〈
z, P̃ − P̂+

〉
− λ

(
D(P̃ , P̂+)− ε

)}
= min

λ≥0
max
P̃∈∆

{〈
z, P̃ − P̂+

〉
− λ

(
KL(P̃ , P̂+) +

〈
1, P̂+ − P̃

〉
− ε
)}

= min
λ≥0

max
P̃∈∆

{〈
z, P̃ − P̂+

〉
− λ

(
KL(P̃ , P̂+)− ε′

)}
= min

λ≥0

{
λ log

∑
x′

P̂+(x′)ez(x)/λ −
∑
x′

P̂+(x′)z(x′) + λε′
}

where we defined ε′ = ε + 1 − 〈1, P̂+〉 and used the well-known Donsker–Varadhan variatonal
formula (see, e.g., [10, Corollary 4.15]) in the last line. Thus, the exploration bonus can be efficiently
calculated by a line-search procedure to find the λ minimizing the expression above.
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A more tractable bound on the exploration bonus can be provided by noting that, for a vector z with
‖z‖∞ ≤ H , we have

D∗(z|ε, P̂+) = min
λ≥0

{
λ log

∑
y

P̂+(y)ez(y)/λ −
∑
y

P̂+(y)z(y) + λε′
}

= min
λ≥0

{
λ log

∑
y

P̂+(y)e(z(y)−〈P̂+,z〉)/λ + λε′
}

≤ min
λ∈[0,H]

{
λ log

∑
y

P̂+(y)e(z(y)−〈P̂+,z〉)/λ + λε′
}

≤ min
λ∈[0,H]

{
1

λ

∑
y

P̂+(y)
(
z(y)− 〈P̂+, z〉

)2

+ λε′
}

≤ 2

√
ε′
∑
y

P̂+(y)(z(y)− 〈P̂+, z〉)2 = 2

√
ε′V̂+(z)

where we used the inequality λ logE+[eX/λ] ≤ E+[X] + 1
λE

+[X2] for E+[X] =
∑
x P̂

+(x)x that
holds as long as |X| ≤ λ holds almost surely, and the result in Equation (29) several times. We also
use the notation V̂+(z) to denote the variance of z under P̂+. Thus, defining

ε′h,t(x, a) = εh,t(x, a) +
∑
y

P̂+(y|x, a)− 1 ≤ εh,t(x, a) +
S − Γ

Nt,h(x, a)
= Õ

(
S

Nh,t(x, a)

)
,

the exploration bonus can be bounded as CBh,t(x, a) ≤ 2
√
ε′h,t(x, a)V̂+

h,t(V
+
h+1,t), and using an

identical argument yields the same bound for CB−h,t(x, a).

By (29), V̂+(z) ≤ 2V̂(z) + 2HS
N + 3H2S2

N2 and so the exploration bonus can be bounded in the same
way as in the case of variance-weighted `∞ constraints, plus some lower order terms that scale with
1/N . The sum of these lower order terms can be straightforwardly bounded by a simple adaptation
of the calculations in Equation (27). Overall, the sum of the confidence bounds can be bounded as

K∑
t=1

H∑
h=1

(CBh,t(xh,t, ah,t) + CB−h,t(xh,t, ah,t)) ≤ C1HS
√
AT + C2H

2S2A log T

for some C1, C2 = O(log(HSAT/δ)). Hence the regret can be bounded by Õ(HS
√
AT ).

Reverse KL-Divergence. We now consider defining confidence sets in terms of the second argu-
ment of the KL divergence, corresponding the the original KL-UCRL algorithm proposed by Filippi
et al. [20], Talebi and Maillard [48]. Specifically, define,

Ph,t(·|x, a) =

{
P̃h(·|x, a) ∈ ∆

∣∣∣∣∑
x′

P̂h(x′|x, a) log
P̂h(x′|x, a)

P̃h,t(x′|x, a)
≤ εh,t(x, a)

}
for εh,t(x, a) =

CS log(HSAT/δ)

Nh,t(x, a)
.

for some constant C > 0. As shown by Filippi et al. [20], for an appropriate choice of C, this
confidence set is guaranteed to capture the true transition function in all episodes with probability
greater than 1− δ.

The conjugate of this distance for a fixed x, a can be bounded as

D∗(z|ε, P̂ ) = max
P̃∈∆

{〈
z, P̃ − P̂

〉∣∣∣D(P̃ , P̂ ) ≤ ε
}

= min
λ≥0

max
P̃∈∆

{〈
z, P̃ − P̂

〉
− λ(D(P̃ , P̂ )− ε)

}
≤ min

λ≥0
max
P̃∈∆

{〈
z, P̃ − P̂

〉
− λ(1/2‖P̃ − P̂‖21 − ε)

}
(By Pinsker’s inequality)

≤ sp(z)
√

2ε
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where the last inequality follows by an argument similar to the results for the total variation distance
in Section A.5.1 using the fact that the dual of the `1 norm is the `∞ norm.

Similarly, it can be shown that D∗(−z|ε, P̂ ) ≤ sp(z)
√

2ε. Therefore, we define the confidence
bounds,

CB†h,t(x, a) = sp(V †h+1,t)
√

2εh,t(x, a).

By Theorem 5, we know the regret can be bounded in terms of the sum of these confidence bounds.
Consequently, using equation 27, we see that,

K∑
t=1

H∑
h=1

CB†h,t(xh,t, ah,t) ≤ HS
√

2HAT log(HSAT/δ).

Hence the regret can be bounded by Õ(S
√
H3AT ). This matches the regret bound in Filippi et al. [20].

Using an alternative analysis essentially corresponding to a tighter bound on the conjugate distance,
Talebi and Maillard [48] were able to prove a regret bound of Õ(

√
S
∑
h,x,aVh−1(V ∗h (x, a))T ) for

KL-UCRL where Vh−1(V ∗h (x, a)) is the variance of V ∗h after playing action a from state s in stage
h− 1. We conjecture that it is possible to obtain a regret bound of Õ(H

√
ΓSAT ) by combining the

techniques of Talebi and Maillard [48] and Azar et al. [6].

A.5.4 χ2-divergence

We can also use the Pearson χ2-divergence to define the primal confidence sets in (5). Specifically,
we consider the distance

D(P, P̂+) =
∑
y

(P (y)− P̂+(y))2

P̂+(y)
,

for P̂+ defined as in equation (28) and note that similar results hold for the distance D(P, P̂ ) =∑
y
P 2(y)−P̂ 2(y)

P̂ (y)
. We will use P̂+ as the reference model for the primal confidence sets. Using the

empirical Bernstein inequality [35], we see that with probability greater than 1− δ, for all episodes t,
a ∈ A, x ∈ S, h ∈ [H],

D(Ph(·|x, a), P̂+
h,t(·|x, a)) =

∑
y

(Ph(y|x, a)− P̂+
h,t(y|x, a))2

P̂+
h,t(y|x, a)

≤ 2
∑
y

(Ph(y|x, a)− P̂h,t(y|x, a))2

P̂+
h,t(y|x, a)

+ 2
∑
y

(P̂h(y|x, a)− P̂+
h,t(y|x, a))2

P̂+
h,t(y|x, a)

≤
∑
y

(
2P̂h,t(y|x, a)(1− P̂h,t(y|x, a)) log(HS2AT/δ)

Nh,t(x, a)P̂+
h,t(y|x, a)

+
49 log2(HS2AT/δ)

9N2
h,t(x, a)P̂+

h,t(y|x, a)

)
+

2S

Nh,t(x, a)

≤
∑
y

(
2P̂+

h,t(y|x, a) log(HS2AT/δ)

Nh,t(x, a)P̂+
h,t(y|x, a)

+
49 log2(HS2AT/δ)

9Nh,t(x, a)

)
+

2S

Nh,t(x, a)

≤ 11S log2(HS2AT/δ)

Nh,t(x, a)

where the second to last inequality follows since Nh,t(x, a)P̂+
h,t(y|x, a) = max{1, Nh,t(x, a, y)} ≥

1, and P̂+
h,t(y|x, a) ≥ P̂h,t(y|x, a). We can then define the confidence sets as

Ph,t(·|x, a) =

{
P̃h ∈ ∆

∣∣∣∣D(P̃h(·|x, a), P̂+
h,t(·|x, a)) ≤ εh,t(x, a)

}
for εh,t(x, a) =

11S log2(HS2AT/δ)

Nh,t(x, a)
.

27



Furthermore, the conjugate D∗(V |ε, P̂+) can be written as follows:

D∗(V |ε, P̂+) = max
P∈∆

{〈
P − P̂+, V

〉
: D(P, P̂+) ≤ ε

}
= min

λ∈R
max
P≥0

{〈
P − P̂+, V − λ1

〉
− λ(

∑
y

P̂+(y)− 1) :

∥∥∥∥P − P̂+√
P̂+

∥∥∥∥2

2

≤ ε
}

= min
λ∈R

max
P

{〈
P − P̂+, V − λ1

〉
− λ

∑
y

(P̂+(y)− P̂ (y)) :

∥∥∥∥P − P̂+√
P̂+

∥∥∥∥
2

≤
√
ε

}
= min
λ≤H+ SH

N

√
ε
∑
y

P̂+(y)(V (y)− λ)2 +

(
H +

SH

N

)
1

N

≤
√
εV̂+(V ) +

2SH

N
where we have used properties of the dual of the weighted `2 norm. Therefore, both CBh,t(x, a) and

CB−h,t(x, a) can be upper-bounded by for CB†h,t(x, a) =
√
εh,t(x, a)V̂+

h,t(V
+
h+1,t) and we can apply

Theorem 5 to show that the regret is bounded by the sum of these exploration bonuses. Following the
same steps as in Section A.5.2 and using the bound on the variance under P̂+ in (30), this eventually
leads to a regret bound of Õ(HS

√
AT ).

It is interesting to note that Maillard et al. [33] considered similar confidence sets using a reverse
χ2-divergence defined as D(p, q) =

∑
y
q2(y)−p2(y)

p(y) . Using this distance with a feasible confidence
set would fit into our framework. However, for their regret analysis, Maillard et al. [33] impose the
additional constraint that for all x′ such that P̃h,t(x′|x, a) > 0, it must also hold that P̃h,t(x′|x, a) >
p0 for some positive p0. Unfortunately, this constraint makes the set P non-convex7 and thus their
eventual approach does not entirely fit into our framework. Finally, we note that the bounds of
Maillard et al. [33] replace a factor of S appearing in our bounds by 1/p0, which may in an inferior
bound when p0 is small. Overall, we believe that the Pearson χ2-divergence we propose in this
section can remove this limitation of the analysis of Maillard et al. [33] while also retaining the strong
problem-dependent character of their bounds.

B Results for Linear Function Approximation

In this section, we provide proofs of the results in the linear function approximation setting. Through-
out the analysis, we will use the notation

Ct(δ) = 2H
√
d log (1 + tR2/λ) + log(1/δ) + CPH

√
λd

where CP is such that ‖mh,a(x)‖1 ≤ CP for every row mh,a(x) of Mh,a and R is such that
‖ϕ(x)‖2 ≤ R for all x ∈ S. We also define the event

Eh,a,t(g, δ) =

{∥∥∥(Mh,a − M̂h,a,t

)
g
∥∥∥

Σh,a,t−1

≤ Ct(δ)
}
.

We start by proving our key concentration result that will be used for deriving our confidence sets.

Proposition 15. Consider the reference model P̂h,a,t = ΦM̂h,a,t with M̂h,a,t defined in Equa-
tion (10). Then, for any a ∈ A, h ∈ [H], episode t and any fixed function g : S → [−H,H], the
following holds with probability at least 1− δ:∥∥∥(Mh,a − M̂h,a,t

)
g
∥∥∥

Σh,a,t−1

≤ 2H
√
d log (1 + tR2/λ) + log(1/δ) + CPH

√
λd.

Proof. We start by rewriting∥∥∥(Mh,a − M̂h,a,t

)
g
∥∥∥

Σh,a,t−1

=
∥∥∥Σh,a,t−1

(
Mh,a − M̂h,a,t−1

)
g
∥∥∥

Σ−1
h,a,t−1

,

7To see this, consider p̃ and p̃′ satisfying the constraints, which differ only in x where p̃(x) = p0 and
p̃′(x) = 0. Then, nontrivial convex combinations of p̃, p̃′ no longer satisfy the constraints.
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and proceed by using the definitions of M̂h,a,t, Σh,a,t−1 and Wh,a,t−1 to see that

Σh,a,t−1

(
Mh,a − M̂h,a,t

)
g = ΦTWh,a,t−1ΦMh,ag + λMh,ag

− Σh,a,t−1Σ−1
h,a,t−1

t−1∑
k=1

I{ah,k=a}ϕ(xh,k)g (xh+1,k)

= ΦTWh,a,t−1Ph,ag −
t−1∑
k=1

I{ah,k=a}ϕ(xh,k)g (xh+1,k) + λMh,ag

=

t−1∑
k=1

I{ah,k=a}
(〈
Ph(·|xh,k, ah,k), g

〉
− g(xh+1,k)

)
ϕ(xh,k) + λMh,ag.

The first term on the right-hand side is a vector-valued martingale for an appropriately chosen
filtration, since

E
[〈
Ph(·|xh,k, ah,k), g

〉
− g(xh+1,k)

∣∣xh,k, ah,k] = 0,

so the sum of these terms can be bounded by appealing to Theorem 1 of Abbasi-Yadkori et al. [1] as∥∥∥∥∥
t−1∑
k=1

I{ah,k=a}
(〈
Ph(·|xh,k, ah,k), g

〉
− g(xh+1,k)

)
ϕT(xh,k)

∥∥∥∥∥
Σ−1

h,a,t−1

≤ 2H
√
d log (1 + tR2/λ) + log(1/δ).

The proof is concluded by applying the bound

‖λMh,ag‖Σ−1
h,a,t−1

≤
√
λ ‖Mh,ag‖ ≤ CPH

√
λd,

where in the last step we used the assumption that ‖mh,a(x)‖1 ≤ CP and ‖g‖∞ ≤ H .

The following simple result will also be useful in bounding the sum of exploration bonuses and thus
the regret of the two algorithms:

Lemma 16. For any h ∈ [H],

∑
a∈A

K∑
t=1

∥∥I{ah,t=a}ϕ(xh,t)
∥∥

Σ−1
h,a,t−1

≤ 2
√
dAK log (1 +KR2/λ).

Proof. The claim is directly proved by the following simple calculations:

∑
a∈A

K∑
t=1

∥∥I{ah,t=a}ϕ(xh,t)
∥∥

Σ−1
h,a,t−1

≤

√√√√∑
a

K∑
t=1

I{ah,t=a}

√√√√∑
a

K∑
t=1

∥∥I{ah,t=a}ϕ(xh,t)
∥∥2

Σ−1
h,a,t

≤ 2

√
K
∑
a

log

(
det (Σh,a,K)

det (λI)

)
≤ 2
√
KdA log (1 +KR2/λ),

where the first inequality is Cauchy–Schwarz and the second one follows from Lemma 11 of Abbasi-
Yadkori et al. [1].

Finally, the following result will be useful to bound the scale of the esimated model M̂h,a,t with
probability 1:

Lemma 17. Consider the reference model P̂h,a,t = ΦM̂h,a,t with M̂h,a,t defined in Equation (10).
Then, for any B > 0 and any fixed function g : S → [−B,B], the following statements hold with
probability 1:∥∥∥M̂h,a,tg

∥∥∥ ≤ tBR

λ
and

∥∥∥(Mh,a − M̂h,a,t

)
g
∥∥∥

Σh,a,t−1

≤ λ−1/2tBR+ λ1/2BCP .
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Proof. The first statement is proven by straightforward calculations, using the definition of M̂h,a,t:∥∥∥M̂h,a,tg
∥∥∥ =

∥∥∥∥∥Σ−1
h,a,t−1

t−1∑
k=1

I{ah,k=a}ϕ(xh,k)g (xh+1,k)

∥∥∥∥∥
≤
∥∥∥Σ−1

h,a,t−1

∥∥∥
op

∥∥∥∥∥
t−1∑
k=1

I{ah,k=a}ϕ(xh,k)g (xh+1,k)

∥∥∥∥∥ ≤ B

λ

t−1∑
k=1

‖ϕ(xh,k)‖ ≤ tBR

λ
,

where the second inequality uses that the operator norm of Σ−1
h,a,t−1 is at most λ−1, and the triangle

inequality. As for the second inequality, we proceed as in the proof of Proposition 15 and recall that

Σh,a,t−1

(
Mh,a − M̂h,a,t

)
g =

t−1∑
k=1

I{ah,k=a}
(〈
Ph(·|xh,k, ah,k), g

〉
− g(xh+1,k)

)
ϕ(xh,k) + λMh,ag.

The norm of the above is clearly bounded by tBR+ λBCP . Thus, we have∥∥∥(Mh,a − M̂h,a,t

)
g
∥∥∥

Σh,a,t−1

=
∥∥∥Σh,a,t−1

(
Mh,a − M̂h,a,tg

)∥∥∥
Σ−1

h,a,t−1

≤
∥∥∥Σ
−1/2
h,a,t−1

∥∥∥
op

∥∥∥Σh,a,t−1

(
Mh,a − M̂h,a,t

)
g
∥∥∥

≤ 1√
λ

(tBR+ λBCP ) = λ−1/2tBR+ λ1/2BCP .

This concludes the proof.

B.1 Optimism in state space through local confidence sets

This section presents our approach for factored linear MDPs with local confidence sets, which can
be seen to lead to confidence bonuses in the state space. We first state some structural results that
will justify our algorithmic approach, explain our algorithm in more detail, and then present the
performance guarantees.

We recall that our approach is based on solving the following optimization problem:

maximize
q∈Q(x1),ω,P̃

H∑
h=1

∑
a

〈Wh,a,t−1Φωh,a, ra〉

subject to
∑
a

qh+1,a =
∑
a

P̃h,aWh,a,t−1Φωh,a ∀a ∈ A, h = 1, . . . ,H

ΦTqh,a = ΦTWh,a,t−1Φωh,a ∀a ∈ A, h = 1, . . . ,H

D
(
P̃h(·|x, a), P̂h,t(·|x, a)

)
≤ εh,t(x, a) ∀(x, a),

where D is an arbitrary divergence that is positive homogeneous and convex in its arguments. The
following structural result shows that this optimization problem can be equivalently written in a dual
form that is essentially identical to the optimistic Bellman equations derived in Section 4 for the
tabular setting.
Proposition 18. The optimization problem above is equivalent to solving the optimistic Bellman
equations (11) with the exploration bonus defined as

CBh(x, a) = D∗
(
V +
h+1

∣∣∣εh(x, a), P̂h(·|x, a)
)
.

The proof follows from a similar reparametrization as used in the proof of Proposition 1 that makes
the optimization problem convex, thus enabling us to establish strong duality. To maintain readability,
we defer the proof to Appendix B.3.1. Consequently, the properties stated in Propositions 2 and 3 can
also be shown in a straightforward fashion.

Our results are based on using the divergence measure

D
(
P̃h,t(·|x, a), P̂h,t(·|x, a)

)
= sup
g∈Vh+1,t

〈
P̃h,t(·|x, a)− P̂h,t(·|x, a), g

〉
,
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whose conjugate can be directly upper-bounded by εh,t. Since the structural results established above
directly imply that Theorem 4 continues to hold, we can easily derive a practical and effective algo-
rithm by simply using εh,t as the exploration bonuses. Specifically, we will consider an algorithm that
calculates an optimistic value function and a corresponding policy by solving the OPB equations (11)
via dynamic programming, with the confidence bonuses chosen as

CB†h,t(x, a) = αh,t ‖ϕ(x)‖Σ−1
h,a,t−1

for some αh,t. The shape of this confidence set is directly motivated by the following simple corollary
of our general concentration result in Lemma 15:

Lemma 19. Fix h, a and consider the reference model P̂h,a,t = ΦM̂h,a,t with M̂h,a,t defined in
Equation (10). Then, for any fixed function g : S → [−H,H], the following holds simultaneously for
all x under event Eh,a,t(g, δ):〈

Ph(·|x, a)− P̂h,t(·|x, a), g
〉
≤ Ct(δ) ‖ϕ(x)‖Σ−1

h,a,t−1
.

Proof. The proof is immediate using the definition of the event Eh,a,t(g, δ) and the Cauchy–Schwarz
inequality:〈
Ph(·|x, a)− P̂h,t(·|x, a), g

〉
=
〈
ϕ(x),

(
Mh,a − M̂h,a,t

)
g
〉

≤ ‖ϕ(x)‖Σ−1
h,a,t−1

∥∥∥(Mh,a − M̂h,a,t

)
g
∥∥∥

Σh,a,t−1

≤ Ct(δ) ‖ϕ(x)‖Σ−1
h,a,t−1

.

The main challenge in the analysis will be to show that there exists an appropriate choice of αh,t
that guarantees that the above result holds uniformly over the value-function class Vh+1,t used in the
definition of the confidence sets. We note that the resulting algorithm is essentially identical to the
LSVI-UCB algorithm proposed and analyzed by Jin et al. [26], and we will accordingly refer to it by
this name (that stands for “least-squares value iteration with upper confidence bounds”).

B.1.1 Regret Bound

In this section we prove the regret bound of Theorem 8, whose precise statement is as follows:
Theorem 20. With probability greater than 1− δ, the regret of LSVI-UCB with the choice λ = 1 and

αh,t = α = 2H
√
d log (1 +KR2) + log(HA/δ) + dA

(
log(1 + 4HK2R2) + d log(1 + 4R3K3)

)
+ CP

(
H
√
d+ 1

)
+ 1

can be bounded as
RT = Õ(A

√
H3d3T ).

We note that the statement of the theorem is trivial when α > K so we will suppose that the contrary
holds throughout the analysis. The proof is a straightforward application of Theorem 4: given that
P ∈ P , the regret is bounded by the sum of exploration bonuses, which itself can be easily bounded
using Lemma 16. Thus, the main challenge is to show that the transition model lies in the confidence
set. To prove this, we observe that, thanks to the choice of exploration bonus, the class of value
functions Vh+1,t produced by the algorithm is composed of functions of the form

V +
t,h(x) = min

{
H − h, max

{
〈ϕ(x), θt,a,h〉+ α ‖ϕ(x)‖Σ−1

t,a,h

}}
,

and the covering number of this class is relatively small. We formalize this in the following proposi-
tion, which takes care of the probabilistic part of the analysis:

Proposition 21. Consider the reference model P̂h,a,t = ΦM̂h,a,t with M̂h,a,t defined in Equa-
tion (10). Then, for the choice of α in Theorem 20, the following holds simultaneously for all x, a, h, t,
with probability at least 1− δ:

sup
V ∈Vh+1,t

〈
Ph(·|x, a)− P̂h,t(·|x, a), V

〉
≤ α ‖ϕ(x)‖Σ−1

h,a,t−1
.
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The proof of this statement is rather technical and borrows some elements of the analysis of Jin et al.
[26]—we delegate the proof to Appendix B.3.2. Thus, we now have all the necessary ingredients
to conclude the proof of Theorem 20. Indeed, since Proposition 21 guarantees that the true model
P is always in the confidence set with probability 1 − δ, and using the optimistic property of our
algorithm that follows from Proposition 18, we can appeal to Theorem 5 to bound the regret in terms
of the sum of exploration bonuses. This in turn can be bounded by using Lemma 16 as follows:

H∑
h=1

K∑
t=1

CB†h,t(xh,t, ah,t) ≤
H∑
h=1

∑
a

K∑
t=1

∥∥I{ah,t=a}ϕ(xh,t)
∥∥

Σ−1
h,a,t−1

αh,a,t

≤ 2αH
√
dAK log (1 +KR2/λ) = 2α

√
HdAT log (1 +KR2/λ).

The proof is concluded by observing that α = Õ(Hd
√
A).

B.2 Optimism in feature space through global constraints

We now present our approach based on global confidence sets for the transition model M̃ that lead to
an algorithm using exploration bonuses that can be expressed in the feature space. The main idea
behind the algorithm is defining in each episode t, the confidence setMt of models M̃ satisfying

D(M̃h,a, M̂h,a,t) = sup
f∈Vh+1

∥∥(M̃h,a − M̂h,a,t

)
f
∥∥

Σh,a,t−1
≤ εh,a,t

for an appropriate choice of εh,a,t, and defining the function

Gt(M̃) = max
q∈Q(x1),ω

H∑
h=1

∑
a

〈Wh,a,t−1Φωh,a, ra〉 (31)

subject to
∑
a

qh−1,a =
∑
a

M̃ T

h,aΦTWh,a,t−1Φωh,a ∀a ∈ A, h = 1, . . . ,H

ΦTqh,a = ΦTWh,a,t−1Φωh,a ∀a ∈ A, h = 1, . . . ,H.

Clearly, if the true model M is in the confidence setMt, we have max
M̃∈Mt

Gt(M̃) ≥ Gt(M) =

V ∗1 (x1). As phrased above, this optimization problem is intractable due to the large number of
variables and constraints. Our algorithm addresses this challenge by converting the above problem
into a more tractable one that retains the optimistic property. In particular, our algorithm solves the
parametric OPB equations (11) with confidence bonuses defined as

CB†h,t(x, a) =
〈
ϕ(x), B†h,a,t

〉
for a vector B†h,a,t ∈ Rd chosen to maximize the following function over the convex set Bt =

{
B :

‖Bh,a‖Σh,a,t−1
≤ εh,a,t

}
:

G′t(B) = max
q∈Q(x1),ω

H∑
h=1

∑
a

〈Wh,a,t−1Φωh,a, ra + ΦBh,a〉 (32)

subject to
∑
a

qh−1,a =
∑
a

M̂ T

h,a,tΦ
TWh,a,t−1Φωh,a ∀a ∈ A, h = 1, . . . ,H

ΦTqh,a = ΦTWh,a,t−1Φωh,a ∀a ∈ A, h = 1, . . . ,H.

This definition is easily seen to be equivalent to the one given in the statement of Theorem 9 through
basic LP duality (cf. Section 2). Our analysis will take advantage of the fact that our exploration
bonuses are linear in the feature representation, which eventually yields value functions of the
following form:

V †h,t(x) = min
{
H − h+ 1, max

a

〈
ϕ(x), θ†h,a,t

〉}
, (33)

for some θ†h,a,t ∈ Rd, which implies that the class of functions Vh+1,t is simpler than in the case
LSVI-UCB. The algorithm is justified by the following property:
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Proposition 22. For any episode t, let the functions Gt and G′t be defined as above and let Bt ={
B : ‖Bh,a‖Σh,a,t−1

≤ εh,a,t
}

. Then, maxB∈Bt
G′t(B) ≥ max

M̃∈Mt
Gt(M̃).

Proof. Let us fix a model M̃ ∈ Mt, introduce the notation Zh,a,t =
(
M̃h,a − M̂h,a,t

)
Vh+1,t, and

notice that Zt ∈ Bt due to the definition ofMt. The proof relies on expressing the values of Gt(M̃)

andG′t(B) through the OPB equations (11) defining them. Indeed, for a fixed M̃ , the value ofGt(M̃)

can be expressed through standard LP duality as exposed in Section 2. To express Gt(M̃), let Ut
stand for the value function defined through the system of equations

θh,a,t = ρa + M̃h,aUh+1,t = ρa +
(
M̃h,a − M̂h,a,t

)
Uh+1,t + M̂h,a,tUh+1,t

= ρa + Zh,a,t + M̂h,a,tUh+1,t,

Uh+1,t(x) = max
a
〈ϕ(x), θh+1,a,t〉

that have to be satisfied for all x, a, h. Then, it is easy to see that Gt(M̃) = U1,t(x1). Notice
that this can be understood as the solution of the OPB equations (11) with exploration bonus
CBh,t(x, a) = 〈ϕ(x), Zh,a,t〉. On the other hand, G′t(B) can be expressed as U ′1,t(x1) with U ′t is
defined through the system of equations

θ′h,a,t = ρa + M̃h,a,tU
′
h+1,t

U ′h,t(x) = max
a

〈
ϕ(x), θ′h,a,t +Bh,a,t

〉
.

It is then easy to verify that Gt(M̃) = G′t(Z) and, using Z ∈ Bt, that G′t(Z) ≤ maxB∈Bt G
′
t(B).

This concludes the proof since the inequality must hold for any model M̃ ∈Mt.

Notably, the above proposition ensures that the value function V †t arising from the OPB equations (11)
with bonus CB†h,t(x, a) =

〈
ϕ(x), B†h,a,t

〉
is optimistic in the sense that V †1,t(x1,t) ≥ Gt(M̃) ≥

V ∗1 (x1,t). This enables us to apply the general regret bound of Theorem 5 to establish a performance
guarantee for the resulting algorithm. We provide this analysis in the next section.

From the above formulation, it is readily apparent that, sinceG′ is a maximum of linear functions, it is
a convex function of B, and thus maximizing it over a convex set is potentially still very challenging.
We note that this optimization problem is essentially identical to the one faced by the seminal
LinUCB algorithm for linear bandits [15, 1], which is known to be computationally intractable for
general decision sets. This is to be contrasted with the algorithms described in previous parts of
this paper, which are efficiently implementable through dynamic programming. Indeed, despite
being of a similar form, the simplicity of these previous methods stem from the local nature of their
confidence sets which was seen to lead to exploration bonuses that can be set independently for
each state and computed via dynamic programming. This is no longer possible for the exploration
bonuses used in this section, which are set through a global parameter vector B. Intuitively, this
prevents the application of dynamic-programming methodology which heavily relies on the ability of
breaking down an optimization problem into a set of local optimization problems (often referred to
as the “principle of optimality” in this context [9]). It remains an open problem to find an efficient
implementation of this method.

It is interesting to note that our algorithm essentially coincides with the ELEANOR method proposed
very recently by Zanette et al. [54], up to minor differences. Their analysis is more general than
ours as they considered the significantly harder case of learning with misspecified linear models
that our analysis doesn’t account for. Nevertheless, our analysis is substantially simplified by our
model-based perspective that sheds new light on the algorithm. In particular, while Zanette et al. [54]
do not provide a substantial discussion of the computational challenges associated with ELEANOR,
our formulation clearly highlights the convexity of the objective function optimized by the algorithm
and the relation with LinUCB. We believe that our model-based perspective can provide further
insights into this challenging problem in the future, and particularly that it will remain useful when
analyzing misspecified linear models.
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B.2.1 Regret bound

We now prove our main result regarding the algorithm: the regret bound claimed in Theorem 9. In
particular, the detailed statement of this result is as follows:
Theorem 23. With probability greater than 1− δ, the regret of our algorithm with λ = 1 for

εh,a,t = ε =2H
√
d log (1 +KR2) + dA log(1 + 4K2HR3) + log (HA/δ)

+ λ1/2
(
CP
√
d+ 1 + CP

)
satisfies

RT = Õ(dA
√
H3T ).

The key idea of the analysis is to use Proposition 22 to establish the optimistic property of the
algorithm and use Theorem 5 to bound the regret by the sum of exploration bonuses. The only
remaining challenge is to prove that, with high probability, the true model lies in the confidence sets
specified in Equation (14). The following proposition guarantees that this is indeed true:

Proposition 24. Consider the reference model P̂h,a,t = ΦM̂h,a,t with M̂h,a,t defined in Equa-
tion (10). Then, for the choice of ε in Theorem 23, the following holds simultaneously for all a, h, t,
with probability at least 1− δ:

sup
f∈Vh+1,t

∥∥(Mh,a − M̂h,a,t

)
f
∥∥

Σh,a,t−1
≤ εh,a,t.

The proof relies on a covering argument similar to the one we used for proving Proposition 21,
exploiting the fact that the value function class Vh+1,t is composed of slightly simpler functions. The
proof is deferred to Appendix B.3.4. Thus, we can conclude the proof of Theorem 23 as follows.
Taking advantage of the fact that the algorithm follows the optimal policy corresponding to the
solution of the OPB equations (11), we can use the general guarantee of Theorem 5 and bound the
regret of the algorithm as the sum of the exploration bonuses. Noticing that the bonuses can be
upper-bounded as

CB†h,t(x, a) =
〈
ϕ(x), B†h,a,t

〉
≤ ‖ϕ(xh,t)‖Σ−1

h,a,t−1

∥∥B†h,a,t∥∥Σh,a,t−1
≤ ‖ϕ(xh,t)‖Σ−1

h,a,t−1
εh,a,t,

where the last step follows from the fact that B†h,a,t ∈ Bt, the sum of confidence bonuses can be
bounded by appealing to Lemma 16:

H∑
h=1

K∑
t=1

CB†h,t(xh,t, ah,t) ≤
H∑
h=1

∑
a

K∑
t=1

∥∥I{ah,t=a}ϕ(xh,t)
∥∥

Σ−1
h,a,t−1

εh,a,t

≤ 2εH

√
dAK log

(
1 +KR2/λ

δ

)
= 2ε

√
HdAT log

(
1 +KR2/λ

δ

)
.

Setting λ = 1 and noticing that ε = Õ(H
√
dA) concludes the proof of Theorem 23.

B.3 Technical proofs

B.3.1 Proof of Proposition 18

We first note that, since P̂h,a = ΦM̂h,a and using the second constraint, the first constraint in the
optimization problem can be rewritten as∑

a

qh+1,a =
∑
a

M̂h,aΦWh,aΦωh,a +
∑
a

(
P̃h,a − P̂h,a

)
qh,a.

Using this, we use a similar argument to Lemma 10 to show that strong duality and the KKT
conditions hold. We reparameterize by defining Jh(x, a, x′) = qh(x, a)P̃h(x′|x, a) and observe
that the last constraint in (12) is can be written as D(Jh(x, a, ·), P̂h(·|x, a)

∑
x′ Jh(x, a, x′)) ≤

εh(x, a)
∑
x′ Jh(x, a, x′) which is convex in J . It can also be easily observed that the first two
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constraints, and the objective are linear in q, J, ω. Thus strong duality holds, and the optimal value
of the reparameterized optimization problem is equal to the optimal value of the corresponding
Lagrangian dual problem. As in the proof of Lemma 10, by using the reverse reparameterization,
we can see that the value of the Lagrangian of the modified problem is equal to that of the original
problem in (12). Hence, strong duality holds for (12). It then follows that the KKT conditions also
hold for this problem.

Given strong duality, we can find the dual of the problem in (12) by considering the Lagrangian. The
partial Lagrangian of the optimization problem without the last constraint of the primal can be written
as

L(q, κ, ω;V, θ) =
∑
h,a

〈
Wh,aΦωh,a, ra + P̂h,aVh+1 − Φθh,a

〉
+
∑
x,a,h

qh(x, a)

(
(Φθh,a) (x) +

∑
y

κh(x, a, y)Vh+1(y)− Vh(x)

)
+ V1(x1),

(34)

for κh(x, a, y) = P̃h(y|x, a)− P̂h(y|x, a). Then, by strong duality, the optimal value of the primal
is equal to

min
V,θ

max
q≥0,P̃∈P

ω,κ

L(q, κ, ω;V, θ).

Observing that qh(x, a) ≥ 0 and using the definition of κh(x, a, ·), we can consider the inner
maximization over P̃h(·|x, a) ∈ Ph(x, a). We get,

max
P̃h(·|x,a)∈Ph(x,a)

∑
y

(P̃h(y|x, a)− P̂h(y|x, a))Vh+1(y) = D∗(Vh+1|P̂ , ε)

by definition of the conjugate. Substituting this back into (34), we can find the dual
from this Lagrangian by a similar technique to Proposition 1. In particular, observe
that the objective function will be given by V1(x1). To define the constraints, note
that if maxω

∑
h,a

〈
Wh,aΦωh,a, ra + P̂h,aVh+1 − Φθh,a

〉
< ∞, it must be the case that〈

Wh,aΦ, ra + P̂h,aVh+1 − Φθh,a

〉
= 0, and likewise if maxq>0

∑
x,a,h qh(x, a)((Φθh,a) (x) +

D∗(Vh+1|εh,a, P̂h(·|x, a)) − Vh(x)) < ∞, it must be the case that (Φθh,a) (x) +

D∗(Vh+1|εh,a, P̂h(·|x, a))− Vh(x) ≤ 0.

Thus the dual optimization problem can be written,

minimize
V

V1(x1)

Subject to Vh(x) ≥ (Φθh,a) (x) +D∗

(
Vh+1

∣∣∣εh(x, a), P̂h(·|x, a)
)

∀(x, a) ∈ Z, h ∈ [H]

(ΦWh,aΦ) θh,a = ΦTWh,a

(
ra + P̂h,aVh+1

)
∀a ∈ A, h ∈ [H].

It is easily seen that the solution to this can be found by solving the optimistic parametric Bellman
equations in (11) with CBh,t(x, a) = D∗

(
Vh+1,t

∣∣∣εh,t(x, a), P̂h,t(·|x, a)
)

via backwards recursion.

B.3.2 The proof of Proposition 21

The proof follows from a construction proposed by Jin et al. [26]: it relies on taking a union bound
over an appropriately chosen covering of the class of value functions in stage h+ 1 that can be ever
produced by solving the optimistic Bellman equations (11). For this purpose, we need the following
technical result that bounds the covering number of this set:
Lemma 25. Let N (V, ε) be the ε-covering number of the set V with respect to the distance ‖V −
V ′‖∞ = supx∈S |V (x)− V ′(x)|. Then, for any stage h = 1, . . . ,H and episode t,

log(N (Vh+1,t, ε)) ≤ Ad log(1 + 4tHR/(λε)) + d2A log(1 + 4Rα/(λε2))
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where R is such that ‖ϕ(x)‖2 ≤ R ∀x ∈ S, λ is such that the minimum eigenvalue, λmin(Σh,a,t) ≥
λ ∀a ∈ A, h ∈ [H], t ∈ [K].

The proof of Lemma 25 is similar to that of Lemma D.6 of [26], and exploits that the class Vh+1,t

is parametrized smoothly by θ and Σ. We relegate the proof to Appendix B.3.3. As for the proof
of Proposition 21, let us fix any h, a, ε > 0 and any V ∈ Vh+1,t, and let Ṽ be in the ε-covering of
Vh+1,t defined in Lemma 25 such that ‖V − Ṽ ‖∞ ≤ ε. Then, we have〈

Ph(·|x, a)− P̂h,t(·|x, a), V
〉

=
〈
Ph(·|x, a)− P̂h,t(·|x, a), Ṽ

〉
+
〈
Ph(·|x, a)− P̂h,t(·|x, a), V − Ṽ

〉
.

The second term can be bounded by introducing the notation g̃ = V − Ṽ and writing〈
Ph(·|x, a)− P̂h,t(·|x, a), g̃

〉
=
〈
ϕ(x),

(
Mh − M̂h,a,t

)
g̃
〉
≤ ‖ϕ(x)‖Σ−1

h,a,t

∥∥∥(Mh − M̂h,a,t

)
g̃
∥∥∥

Σh,a,t

≤ ε
(
λ−1/2tR+ λ1/2CP

)
‖ϕ(x)‖Σ−1

h,a,t
,

where we used Lemma 17 with B = ε in the last step. As for the first term, we use a union bound
over all Ṽ in the ε-covering of Vh+1,t and Lemma 19. Denoting the covering number as Nε and
setting δ′ = δ/HA, we can see that for any Ṽ in the ε-covering, with probability greater than 1− δ′,
we have 〈

Ph(·|x, a)− P̂h,t(·|x, a), Ṽ
〉
≤ ‖ϕ(x)‖Σ−1

h,a,t
Ct(δ

′/Nε),

which can be further bounded as

Ct(δ
′/Nε)− CPH

√
λd = 2H

√
d log (1 + tR2/λ) + log (Nε/δ′)

≤ 2H
√
d log (1 + tR2/λ) + log(1/δ′) + dA log(1 + 4HtR/(λε)) + d2A log(1 + 4Rα/(λε2))

≤ 2H
√
d log (1 + tR2/λ) + log(1/δ′) + dA log(1 + 4Ht2R2/λ2) + d2A log(1 + 4R3Kt2/λ3),

where we set ε = λ/(tR) and used the condition α ≤ K in the last step. With the same choice of ε,
we also have

ε
(
λ−1/2tR+ λ1/2CP

)
≤ λ1/2 (1 + CP ) .

Noticing that the sum of the two latter terms is bounded by α and taking a union bound over all h, a
concludes the proof.

B.3.3 The proof of Lemma 25

We first note that, due to the definition of the parameter vectors θ+
h,a,t as the solution of the OPB equa-

tions (11) with
∥∥V +

h+1,t

∥∥
∞ ≤ H , we have∥∥θ+

h,a,t

∥∥ ≤ tHR

λ

def
= β,

where the inequality follows from Lemma 17. To preserve clarity of writing, we omit explicit
references to t below. By design of the algorithm, we can see that the value functions can be written
with the help of the function Uh,θ,Σ defined as

Uh,θ,Σ(x) = min

{
H − h+ 1,max

a∈A

{
〈ϕ(x), θh,a〉+ α‖ϕ(x)‖Σ−1

h,a

}}
for some α > 0. Indeed, the class of value functions can be written as

Vh =

{
Uh,θ,Σ : max

a
‖θh,a‖ ≤ β, max

a

∥∥∥Σ−1
h,a

∥∥∥
op
≤ 1/λ

}
.

We show below that Uh,θ,Σ is a smooth function of the parameters θh,a and Σ−1
h,a, which will allow

us to prove a tight bound on the covering number of the class Vh. Indeed, letting Vh = Uh,θ,Σ and
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Ṽh = Uh,θ̃,Σ̃ for an arbitrary set of parameters θ,Σ, θ̃, Σ̃, we have

‖Vh − Ṽh‖∞ = sup
x∈S

∣∣∣∣min{H − h+ 1,max
a∈A
{ϕ(x)Tθh,a + α‖ϕ(x)‖Σ−1

h,a
}}

−min{H − h+ 1,max
a∈A
{ϕ(x)Tθ̃h,a + α‖ϕ(x)‖Σ̃−1

h,a
}}
∣∣∣∣

≤ sup
x∈S

∣∣∣∣max
a∈A
{ϕ(x)Tθh,a + α‖ϕ(x)‖Σ−1

h,a
} −max

a∈A
{ϕ(x)Tθ̃h,a + α‖ϕ(x)‖Σ̃−1

h,a
}
∣∣∣∣

≤ sup
x∈S,a∈A

∣∣∣∣ϕ(x)Tθh,a + α‖ϕ(x)‖Σ−1
h,a
− ϕ(x)Tθ̃h,a + α‖ϕ(x)‖Σ̃−1

h,a

∣∣∣∣
≤ sup
x∈S,a∈A

∣∣∣∣ϕ(x)T(θh,a − θ̃h,a) +
√
ϕ(x)T(αΣ−1

h,a − αΣ̃−1
h,a)ϕ(x)

∣∣∣∣
≤ sup
a∈A

R‖θh,a − θ̃h,a‖2 + sup
a∈A

R‖αΣ−1
h,a − αΣ̃−1

h,a‖op

≤ sup
a∈A

R‖θh,a − θ̃h,a‖2 + sup
a∈A

Rα‖Σ−1
h,a − Σ̃−1

h,a‖F

since ‖ϕ(x)‖2 ≤ R and we have used ‖A‖op to denote the operator norm and ‖A‖F the Frobenius
norm of a matrix A.

We then note that the ε/2-covering number of the set Θ = {(θa)a∈A : θa ∈ Rd, supa∈A ‖θa‖2 ≤ β}
is bounded by (1 + 4β/ε)Ad, and that ε/2-covering number of the set Γ = {(Σa)a∈A : Σa ∈
Rd×d, supa∈A ‖Σa‖F ≤ 1/λ} is bounded by (1 + 4/(λε2))d

2A. These results follow due to the
standard fact that the ε-covering number of a ball in Rd with radiusR > 0 with `2 distance is bounded
by (1 + 2R/ε)d, and that Θ and Γ are (dA)-dimensional and (d2A)-dimensional, respectively.

From the above discussion, we can conclude that for any Vh ∈ Vh, there is a Ṽh parameterized by θ̃h
in the ε/2-covering of Θh, and Σ̃h in the ε/2-covering of Γh such that,

‖Vh − Ṽh‖∞ ≤ Rε/2 +Rαε/2.

By rescaling of the covering numbers, we can see that the logarithm of the ε-covering number of Vh
can be bounded by

log(N (Vh, ε)) ≤ log(N (Θh, ε/(2R))) + log(N (Γh, ε/(2αR))

≤ Ad log(1 + 4βR/ε) + d2A log(1 + 4Rα/(λε2)).

Substituting in β = tHR
λ gives the result.

B.3.4 The proof of Proposition 24

The proof is similar to that of Proposition 21, in that it also relies on a covering argument to prove
uniform convergence over the set of potential value functions. The following technical result bounds
the covering number of this set:
Lemma 26. Let N (V, ε) be the ε-covering number of some set V with respect to the distance
‖V − V ′‖∞ = supx∈S |V (x)− V ′(x)|. Then, for any stage h = 1, . . . ,H and episode t,

log(N (Vh+1,t, ε)) ≤ dA log(1 + 4tHR2/(ελ)).

To reduce clutter, we defer the proof to Appendix B.3.5. To proceed, we fix h, a, ε > 0 and an
arbitrary V ∈ Vh+1,t, and consider a Ṽ in the covering defined above such that

∥∥V − Ṽ ∥∥∞ ≤ ε.
Then, by the triangle inequality, we have∥∥(Mh,a − M̂h,a,t

)
V
∥∥

Σh,a,t−1
≤
∥∥(Mh,a − M̂h,a,t

)
Ṽ
∥∥

Σh,a,t−1
+
∥∥(Mh,a − M̂h,a,t

)(
V − Ṽ

)∥∥
Σh,a,t−1

≤
∥∥(Mh,a − M̂h,a,t

)
Ṽ
∥∥

Σh,a,t−1
+ ε

(
λ−1/2tR+ λ1/2CP

)
,
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where we used Lemma 17 with B = ε in the last step. Setting δ′ = δ/(HA), the first term can be
bounded with probability at least 1− δ′ by exploiting that Ṽ is in the covering, and using the union
bound to show that for every such Ṽ , we simultaneously have∥∥(Mh,a − M̂h,a,t

)
Ṽ
∥∥

Σh,a,t−1
≤ Ct(δ′/Nε) = 2H

√
d log (1 + tR2/λ) + log (Nε/δ′) + CPH

√
λd

≤ 2H
√
d log (1 + tR2/λ) + dA log(1 + 4tHR2/(ελ)) + log (1/δ′) + CPH

√
λd

Putting the two bounds together and setting ε = λ/(tR) gives∥∥(Mh,a − M̂h,a,t

)
V
∥∥

Σh,a,t−1
≤2H

√
d log (1 + tR2/λ) + dA log(1 + 4t2HR3/λ2) + log (HA/δ)

+ λ1/2
(
CPH

√
d+ 1 + CP

)
.

This is clearly upper-bounded by the chosen value of ε. Taking a union bound over all h, a concludes
the proof.

B.3.5 The proof of Lemma 26

The proof is similar to that of Lemma 25, although simpler due to the simpler form of the value
functions in this case. We stary by noting that, due to the definition of the parameter vectors θ+

h,a,t as
the solution of the OPB equations (11) with

∥∥V +
h+1,t

∥∥
∞ ≤ H , we have∥∥θ+

h,a,t

∥∥ ≤ tHR

λ

def
= β,

where the inequality follows from Lemma 17. Given the definition of the algorithm, it is easy to see
that the value functions can be with the help of the function Uh,θ defined as

Uh,θ(x) = min

{
H − h+ 1,max

a∈A
〈ϕ(x), θh,a〉

}
,

in the form Vh,t = Uh,θ for some θ with norm bounded by β. Thus, the set of value functions can be
written as

Vh = {Uh,θ : ‖θ‖ ≤ β} .

We show below that U is a smooth function of θ, which will allow us to prove a tight bound on the
covering number of the class Vh. Indeed, this can be seen by

‖Uh,θ − Uh,θ′‖∞ ≤ sup
x∈S

∣∣∣∣max
a∈A
〈ϕ(x), θh,a〉 −max

a∈A

〈
ϕ(x), θ′h,a

〉∣∣∣∣ ≤ sup
x∈S

max
a∈A

∣∣〈ϕ(x), θh,a − θ′h,a
〉∣∣

≤ Rmax
a

∥∥θh,a − θ′h,a∥∥ .
Thus, the ε/2-covering number of the set Θ = {(θa)a∈A : θa ∈ Rd, supa∈A ‖θa‖2 ≤ β} is bounded
by (1 + 4β/ε)Ad, which follows from the standard fact that the ε-covering number of a ball in Rd
with radius c > 0 in terms of the `2 distance is bounded by (1 + 2c/ε)d. Thus, we have that for any
Vh ∈ Vh, there exists a Ṽh parameterized by θ̃h in the ε/2-covering of Θh such that,

‖Vh − Ṽh‖∞ ≤ Rε/2.

By rescaling of the covering numbers, we can see that the logarithm of the ε-covering number of Vh
can be bounded by

log(N (Vh, ε)) ≤ log(N (Θh, ε/(2R))) ≤ dA log(1 + 4βR/ε),

giving the result.
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