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Abstract

The principle of “optimism in the face of uncertainty” underpins many theoretically
successful reinforcement learning algorithms. In this paper we provide a general
framework for designing, analyzing and implementing such algorithms in the
episodic reinforcement learning problem. This framework is built upon Lagrangian
duality, and demonstrates that every model-optimistic algorithm that constructs an
optimistic MDP has an equivalent representation as a value-optimistic dynamic
programming algorithm. Typically, it was thought that these two classes of algo-
rithms were distinct, with model-optimistic algorithms benefiting from a cleaner
probabilistic analysis while value-optimistic algorithms are easier to implement
and thus more practical. With the framework developed in this paper, we show that
it is possible to get the best of both worlds by providing a class of algorithms which
have a computationally efficient dynamic-programming implementation and also a
simple probabilistic analysis. Besides being able to capture many existing algo-
rithms in the tabular setting, our framework can also address large-scale problems
under realizable function approximation, where it enables a simple model-based
analysis of some recently proposed methods.

1 Introduction

Reinforcement learning (RL) is a key framework for sequential decision-making under uncertainty
[45, 46]. In an RL problem, a learning agent interacts with a reactive environment by taking a series
of actions. Each action provides the agent with some reward, but also takes them to a new state
which determines their future rewards. The aim of the agent is to pick actions to maximize their total
reward in the long run. The learning problem is typically modeled by a Markov Decision Process
(MDP, [40]) where the agent does not know the rewards or transition probabilities. Dealing with this
lack of knowledge is a crucial challenge in reinforcement learning: the agent must maximize their
rewards while simultaneously learning about the environment. One class of algorithms that have been
successful at balancing this exploration versus exploitation trade-off are optimistic reinforcement
learning algorithms. In this paper, we provide a new framework for studying this class of algorithms.

Optimistic algorithms are built upon the principle of “optimism in the face of uncertainty” (OFU).
They operate by maintaining a set of statistically plausible models of the world, and selecting actions
to maximize the returns in the best plausible world. Such algorithms were first studied in the context
of multi-armed bandit problems [29, 2, 14, 5, 30], and went on to inspire numerous algorithms for
reinforcement learning. A closer look at the literature reveals two main approaches to incorporate
optimism into RL. In the first, optimism is introduced through estimates of the MDP: these approaches
build a set of plausible MDPs by constructing confidence bounds around the empirical transition and
∗This work was done while CPB was at Universitat Pompeu Fabra and Barcelona Graduate School of

Economics.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



reward functions, and select the policy that generates the highest total expected reward in the best
feasible MDP. We refer to this family of methods as model-optimistic. Examples of model-optimistic
methods include RMAX [13, 27, 47] and UCRL2 [4, 24, 44]. While conceptually appealing, model-
optimistic methods tend to be difficult to implement due to the complexity of jointly optimizing over
models and policies. Another approach to incorporating optimism into RL is to construct optimistic
upper bounds on the optimal value functions which are (informally) the total expected reward of
the optimal policy in the true MDP. The optimistic policy greedily picks actions to maximize the
optimistic values. We refer to this class of methods as value-optimistic. Examples of algorithms in this
class are MBIE-EB [44], UCB-VI [6] and UBEV [16]. These algorithms compute the optimistic value
functions via dynamic programming (cf. 9), making them computationally efficient and compatible
with empirically successful RL algorithms that are typically based on value functions. One downside
of these approaches is that their probabilistic analysis is often excessively complex, with complicated
recursive arguments necessary to guarantee optimism.

While these two approaches may look very different on the surface, we show in this paper that there is
in fact a very strong connection between them. Our first contribution is to show that the optimization
problems associated with these two approaches exhibit strong duality. This implies that that for every
model-optimistic approach, there exists an equivalent value-optimistic approach. This bridges the
gap between the conceptually simple model-optimistic approaches and the computationally efficient
value-optimistic approaches. This result enables us to develop a general framework for designing,
analyzing and implementing optimistic algorithms in the episodic reinforcement learning problem.
Our framework is broad enough to capture many existing algorithms for tabular MDPs, and for these
we provide a simple analysis and computationally efficient implementation. The framework can
also be extended to incorporate realizable linear function approximation, where it leads to a new
model-based analysis of two value-optimistic algorithms. Our analysis involves constructing a new
model-optimistic formulation for factored linear MDPs which may be of independent interest.

2 Background on Markov Decision Processes
Finite-horizon episodic MDPs. A finite episodic Markov decision process (MDP) is a tuple
(S,A, H, α, P, r) where S and A are the finite sets of states and actions with S = |S|, A = |A|,
H is the (fixed) episode length and α is the initial state distribution. The transition functions,
P = {Ph(·|x, a)}h,x,a, give the probability Ph(x′|x, a) of reaching state x′ ∈ S after playing action
a ∈ A from state x ∈ S at stage h of an episode, and the reward function, r : S ×A → [0, 1], assigns
a reward to each state-action pair. For simplicity, we assume r is known and deterministic2, and each
episode t begins from state x1,t ∼ α. If no further structure is assumed, we call the MDP tabular. We
define a stationary policy π : S → A as a mapping from states to actions, and a nonstationary policy
as a collection π = {πh}Hh=1 of stationary policies for each stage h of an episode, and note that these
are sufficient for maximizing reward in an episode. We denote by Pπ [·] and Eπ [·] a probability or
expectation with respect to the distribution of state-action sequences under policy π in the MDP, and
also use the notations [H] = {1, . . . ,H} and Z = S ×A.

Value functions and dynamic programming. For any policy π, we define the value function at
each state x ∈ S and stage h as the expected total reward from running policy π from that point on:

V πh (x) = Eπ

[ H∑
l=h

rl(xl, πl(xl))

∣∣∣∣xh = x

]
.

We denote by π∗ an optimal policy satisfying V π
∗

h (x) = maxπ V
π
h (x) for all x ∈ S, h ∈ [H], and

the optimal value function by V ∗h (x) = V π
∗

h (x). The total expected reward of π∗ in an episode
starting from state x1 is V ∗1 (x1). We define the (optimal) action-value function for each x, a, h as

Qπh(x, a) = Eπ

[ H∑
l=h

rl(xl, πl(xl))

∣∣∣∣xh = x, ah = a

]
and Q∗h(x, a) = max

π
Qπh(x, a).

It is easily shown that the value functions satisfy the Bellman equations for all x, a, h:

V πh (x) = Qπh(x, π(x)), V πH+1(x) = 0

Qπh(x, a) = rh(x, a) +
∑
y∈S

Ph(y|x, a)V πh+1(y) and

V ∗h (x) = max
a∈A

Q∗h(x, a), V ∗H+1(x) = 0

Q∗h(x, a) = rh(x, a) +
∑
y∈S

Ph(y|x, a)V ∗h+1(y).

2The extension to unknown rewards is fairly straightforward using upper confidence bounds on r
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In a fixed MDP, an optimal policy can be found by solving the above system of equations by backward
recursion through the stages H,H − 1, . . . , 1, a method known as dynamic programming [8, 22, 9].

Optimal control in MDPs by linear programming. A key technical tool underlying our results
is a classic linear-programming (LP) formulation for solving MDPs [34, 18, 19]. To state this formu-
lation, we will represent value functions by S-dimensional vectors and define the S × S transition
matrix Ph,a for each h, a, acting on a value function V as (Ph,aV ) (x) =

∑
x′ Ph,a(x′|x, a)V (x′).

Then, the following LP can be seen to be equivalent to the Bellman optimality equations:

minimize
V

V1(x1)

∣∣∣∣ subject to
Vh ≥ ra + Ph,aVh+1 ∀a ∈ A, h ∈ [H],

(1)

where the inequality is to be understood to hold entrywise. Defining the vector qh,a =
(qh(x1, a), . . . , qh(xS , a))T, the dual of the above LP is given as

maximize
q∈Q(x1)

〈qh,a, ra〉
∣∣∣∣ subject to∑

a qh+1,a =
∑
a P

T

a,hqh,a ∀x ∈ S, h ∈ [H], (2)

for Q(x1) = {q ∈ RS×A×H+ :
∑
a q1(x, a) = I{x = x1}, qh(x, a) ≥ 0 ∀(x, a) ∈ Z, h ∈ [H]}.

Feasible points of the above LP can be interpreted as occupancy measures. For a fixed policy
π, the occupancy measure qπ of policy π at the state-action pair x, a is defined as qπh (x, a) =
Pπ [xh = x, ah = a]. It can be shown that the set of occupancy measures is uniquely characterized
by Q(x1) and the constraint in (2). Each feasible q induces a stochastic policy πq defined as
πqh(a|x) = qh(x,a)∑

a′∈A qh(x,a′) if the denominator is nonzero, and defined arbitrarily otherwise. The
optimal solution q∗ to the LP in (2) can be shown to induce an optimal policy π∗ which satisfies the
Bellman optimality equations. For proofs and further details of this formulation, see Puterman [40].

Linear function approximation in MDPs. In most practical problems, the state space is too large
to use the above results and it is common to work with parameterized estimates of the quantities
of interest. We focus on the classic idea of linear function approximation to represent the action-
value functions as linear functions of some fixed d-dimensional feature map ϕ : S → Rd, so
Qθh(x, a) = 〈θh,a, ϕ(x)〉 for some θh,a ∈ Rd for each action a and stage h. To avoid technicalities,
we assume that the state space S is still finite, although potentially very large. This allows us to define
the S × d feature matrix Φ with its xthrow being ϕT(x), and represent the action-value function as
Qh,a = Φθh,a. We make the following assumption:
Assumption 1 (Factored linear MDP [51, 39, 26]). For each action a and stage h, there exists a d×S
matrixMh,a and a vector ρa such that the transition matrix can be written as Ph,a = ΦMh,a, and the
reward function as ra = Φρa. Furthermore, the rows of Mh,a, mh,a(x), satisfy ‖mh,a(x)‖1 ≤ CP
for all (x, a, h), ρ satisfies ‖ρa‖2 ≤ Cr, and ‖ϕ(x)‖2 ≤ R for some positive constants CP , Cr, R.

As shown by Jin et al. [26], this assumption implies that for every policy π, there exists a θπ such
that Qπ

h (x, a) = 〈θπh,a, ϕ(x)〉. We now show that factored linear MDPs also enjoy a strong dual
realizability property. Let Wh,a be an arbitrary symmetric S × S weight matrix for each action a
such that ΦTWh,aΦ is full rank, and notice that, due to the realizability of the action-value functions,
the optimal value functions can be written as the solution to the following LP:

minimize
V,θ

V1(x1)

∣∣∣∣∣∣
subject to

θh,a = (ΦTWaΦ)
−1

ΦTWh,a (ra + Ph,aVh+1) ∀h ∈ [H],
Vh ≥ Φθh,a ∀a ∈ A, h ∈ [H].

Under Assumption 1, this LP is feasible and has a finite solution. It also holds that parameter vectors
θh,a are independent of the choice of the weight matrix Wh,a. The dual of this LP can be written as

maximize
q∈Q(x1),ω

H∑
h=1

∑
a

〈Wh,aΦωh,a, ra〉

∣∣∣∣∣∣
subject to∑
a qh+1,a =

∑
a P

T

h,aWh,aΦωh,a ∀h ∈ [H]
ΦTqh,a = ΦTWh,aΦωh,a ∀a ∈ A, h ∈ [H]

(3)
Due to the boundedness and feasibility of the primal LP, the dual is also feasible and bounded.
Moreover, any vector q that is feasible for (3) is also a feasible solution to the full LP (2), since∑
a

qh+1,a =
∑
a

P T

h,aΦWh,aωh,a =
∑
a

Mh,aΦTWh,aΦωa,h =
∑
a

Mh,aΦTqh,a =
∑
a

Ph,aqh,a.
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Thus, for factored linear MDPs, the set of occupancy measures is exactly characterized by the
constraints in (3). To the best of our knowledge, these LP formulations and results are novel and
may have other uses beyond the setting of factored linear MDPs. For instance, MDPs exhibiting
zero inherent Bellman error [54] can be also seen to yield a feasible and finite solution for both LPs,
although the above dual realizability property is not guaranteed to hold for all occupancy measures.

3 Regret Minimization in Episodic Reinforcement Learning

We consider algorithms that sequentially interact with a fixed but unknown MDP over K episodes. In
each episode, t, the algorithm selects a policy πt with the aim of maximizing the cumulative reward
in that episode. We assume that the learner has no prior knowledge of the transition function, and can
only learn about the MDP through interaction. The performance is measured in terms of the regret,

RT =

K∑
t=1

(V ∗1 (x1,t)− V πk
1 (x1,t))

where T = KH is the total number of rounds and x1,t ∼ α is the initial state in episode t.

In tabular MDPs, the lower bound on the regret is Ω(H
√
SAT ) [24, 36, 25]3.Most optimistic algo-

rithms are either model-optimistic or value-optimistic. Some notable model-optimistic approaches
are UCRL2 [24] and REGAL [7] which have regret Õ(S

√
H3AT ), and KL-UCRL [20, 48] and

UCRL2-B [21], which have regret Õ(H
√
SΓAT ) where Γ ≤ S is the maximal number of reachable

states from any (x, a) ∈ Z and stage h ∈ [H]. These algorithms differ predominantly in the choice of
distance and concentration bounds defining the set of feasible transition functions. Value-optimistic
approaches often enjoy low regret at a cost of a more complex analysis. Some examples of these
include UBEV [16] which has regret Õ(

√
H5SAT ), and UCB-VI [6] which has regret Õ(H

√
SAT )

for large enough T and SA ≥ H , thus matching the lower bound. Other value optimistic algorithms
achieving the optimal regret without requiring SA ≥ H , are EULER [52] and ORLC [17]. These
value optimistic approaches also often more clearly resemble empirically successful RL algorithms.
We note that optimism has also been used in the model free setting (e.g. [25]), and that other
non-optimistic approaches have also been successful at regret minimization (see e.g. [37, 3]). Other
related works include [55, 41] which also use occupancy measures, [49] where optimistic linear
programs are used, and [33, 48] which exploit duality in specific cases. Similar techniques have been
developed in the context of robust learning in MDPs by [23] and [32].

For factored linear MDPs, all optimistic algorithms we are aware of are value-based, without a clear
model-based interpretation: LSVI-UCB [26] uses dynamic programming and has regret Õ(

√
d3H3T ),

while ELEANOR [54] has regret Õ(Hd
√
T ) but requires solving a complex optimization problem in

each episode. The UC-MatrixRL algorithm [50] considers a different problem with two feature maps
but is model-based with regret Õ(H2d

√
T ). Non-optimistic approaches include [42, 53].

4 Optimism in Tabular Reinforcement Learning

We now present our main contribution: a general framework for designing, analyzing and implement-
ing optimistic RL algorithms in episodic tabular MDPs. Our framework naturally extends the LPs
in (1) and (2) to account for uncertainty about the transition function. We use confidence intervals
for the transition functions to express uncertainty in the space of occupancy measures and maximize
the expected reward over this set. Our key result shows that the dual of this optimization problem
can be written in dynamic-programming form with added exploration bonuses, the size of which are
determined by the shape of the primal confidence sets.

We define the uncertainty sets using confidence intervals around a reference transition function P̂ .
For a divergence measure D(p, p′) between probability distributions p, p′, define the confidence sets

P =
{
P̃ ∈ ∆ : D

(
P̃h(·|x, a), P̂h(·|x, a)

)
≤ ε(x, a) ∀(x, a) ∈ S ×A, h ∈ [H]

}
, (4)

3The extra
√
H due to having a different Ph per stage. We use Õ(·) to denote order up to logarithmic terms.
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where ∆ is the set of valid transition functions. We assume that the divergence measure D is jointly
convex in its arguments so that P is convex, and that D is positive homogeneous so for any α ≥ 0,
D(αp, αp′) = αD(p, p′). Note that the distance ‖p− p′‖ for any norm and all f -divergences satisfy
these conditions [31]. Using P , we modify (2) to get the optimistic primal optimization problem,

maximize
q∈Q(x1)

P̃∈∆

H∑
h=1

〈qh,a, r〉

∣∣∣∣∣∣∣
subject to∑
a qh+1,a =

∑
a P̃

T

h,aqh,a ∀h ∈ [H]

D
(
P̃h(·|x, a), P̂h(·|x, a)

)
≤ ε(x, a) ∀(x, a) ∈ Z, h ∈ [H]

(5)

We pick ε such that P ∈ P with high probability. In this case, the above optimization problem
returns an “optimistic” occupancy measure with higher expected reward than the true optimal
policy. Unfortunately, the optimization problem in (5) is not convex due to the bilinear constraint
qh+1,a =

∑
a P̃

T

h,aqh,a. Our main result below shows that it is still possible to obtain an equivalent
value-optimistic formulation via Lagrangian duality and an appropriate reparametrization. We make
use of the conjugate of the divergence D defined for any function z, distribution p′ and threshold ε as

D∗ (z|ε, p′) = max
p∈∆
{〈z, p− p′〉|D(p, p′) ≤ ε} .

Proposition 1. Let CBh(x, a) = D∗(Vh+1|εh(x, a), P̂h(·|x, a)) and denote its vector representation
by CBh,a. The optimization problem in (5) can be equivalently written as

minimize
V

V1(x1)

∣∣∣∣ subject to
Vh ≥ ra + P̂h,aVh+1 + CBh,a ∀a ∈ A, h ∈ [H]

(6)

Proof sketch. The full proof is in Appendix A.1. Here we outline the key ideas. To show strong dual-
ity, we reparameterize the problem as follows: define Jh(x, a, x′) = P̃h(x′|x, a)qh(x, a) and note that
due to homogeneity of D, the constraint on P̃ is equivalent to D(Jh(x, a, ·), P̂h(·|x, a)qh(x, a)) ≤
εh(x, a)qh(x, a), which is convex in q and J . It is straightforward to verify the Slater condition for
the resulting convex program, and thus strong duality holds for both parametrizations.

Letting L(q, P̃ ;V ) be the Lagrangian of (5) and using the non-negativity of q, the maximum of (5) is

min
V

max
q≥0

P̃∈P

L(q, P̃ ;V ) = min
V

max
q≥0

{ ∑
x,a,h

qh(x, a)

(∑
y

P̂h(y|x, a)Vh+1(y) + r(x, a)− Vh(x)

+ max
P̃h(·|x,a)∈Ph(x,a)

∑
y

(
P̃h(y|x, a)− P̂h(y|x, a)

)
Vh+1(y)

)}
. (7)

Then, letting p̂ = P̂h(·|x, a)), p̃(x′) = P̃h(·|x, a), and using the definition of D and D∗, the inner
maximum can be written as maxp̃∈∆{〈Vh+1, p̃− p̂〉 ;D(p̃, p̂) ≤ εh(x, a)} = D∗(Vh+1|εh(x, a), p̂).
We then substitute this into (7) and use standard techniques to get the dual from the Lagrangian.

This result enables us to establish a number of important properties of the optimal solutions of the
optimistic optimization problem (5). The following two propositions (proved in in Appendix A.2)
highlight that optimal solutions to (5) are optimistic, bounded, and can be found by a dynamic-
programming procedure. This implies that any model-optimistic algorithm that solves (5) in each
episode is equivalent to value-optimistic algorithm using an appropriate choice of exploration bonuses.

Proposition 2. Let V + be the optimal solution to (6) and CB+
h (x, a) = D∗(V

+
h+1|ε(x, a), P̂h). Then,

the optimal policy π+ extracted from any optimal solution q+ of the primal LP in (5) satisfies

V +
h (x) = r(x, π+

h (x)) + CB+
h (x, π+

h (x)) +
∑
y∈S

P̂h(y|x, π+
h (x))V +

h+1(y) ∀x ∈ S, h ∈ [H]. (8)

Proposition 3. If the true transition function P satisfies the constraint in Equation (5), the optimal
solution V + of the dual LP satisfies V ∗h (x) ≤ V +

h (x) ≤ H − h+ 1 for all x ∈ S.
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4.1 Regret bounds for optimistic algorithms

We consider algorithms that, in each episode t, define the confidence sets Pt in (4) using some
divergence measure D and the reference model P̂h,t(x′|x, a) =

Nh,t(x,a,x
′)

Nh,t(x,a) ∀x, x
′ ∈ S, a ∈ A. Here

Nh,t(x, a, x
′) is the total number of times that we have played action a from state x in stage h and

landed in state x′ up to the beginning of episode t, and Nh,t(x, a) = max{
∑
x′ Nh,t(x, a, x

′), 1}. In
episode t, the algorithm follows the optimistic policy πt extracted from the solution of the primal
optimistic problem in (5), or equivalently, the optimistic dynamic programming procedure in (6). The
following theorem establishes a regret guarantee of the resulting algorithm:
Theorem 4. On the event ∩Kt=1{P ∈ Pt}, the regret is bounded with probability at least 1− δ as

RT ≤
K∑
t=1

H∑
h=1

(
CBh,t(xh,t, πh,t(xh,t)) + CB−h,t(xh,t, πt(xh,t))

)
+H

√
2T log(1/δ)

where CB−h,t(x, a) = D∗(−V +
h+1,t|εh,t(x, a), P̂h,t) and CBh,t(x, a) = D∗(V

+
h+1,t|εh,t(x, a), P̂h,t).

The proof is in Appendix A.3. While similar results are commonly used in the analysis of value-based
algorithms [6, 16], the merit of Theorem 4 is that it is derived from a model-optimistic perspective,
and thus cleanly separates the probabilistic and algebraic parts of the regret analysis. Indeed, proving
the probabilistic statement that P is in the confidence set is very simple in the primal space where
our constraints are specified. Once this is established, the regret can be bounded in terms of the
dual exploration bonuses. This simplicity of analysis is to be contrasted with the analyses of other
value-optimistic methods that often interleave probabilistic and algebraic steps in a complex manner.

Inflating the exploration bonus. The downside of the optimistic dynamic-programming algorithm
derived above is that the exploration bonuses may sometimes be difficult to calculate explicitly.
Luckily, it is easy to show that the regret guarantees are preserved if we replace the bonuses by an
easily-computed upper bound. This is helpful for instance when D is defined as D(p, p′) = ‖p− p′‖,
whence the conjugate can be simply bounded by the dual norm ‖V ‖∗. Formally, we can consider an
inflated conjugate D†∗ satisfying D†∗(f |ε′, P̂ ) ≥ D∗(f |ε, P̂ ) for every function f : S → [0, H], and
obtain an optimistic value function by the following dynamic-programming procedure:

V †h (x) = max
a

{
min

{
H − h+ 1, r(x, a) + P̂h(·|x, a)V †h+1 +D†∗(V

†
h+1|ε

′(x, a), P̂h)

}}
, (9)

with V †H+1(x) = 0∀x ∈ S. In this case, we need to clip the value functions since we can no
longer use Proposition 3 to show they are bounded. The resulting value-estimates then satisfy
V ∗1 (x1) ≤ V +

1 (x1) ≤ V †1 (x1) with high probability, so we can bound the regret of this algorithm in
the following theorem, whose proof is in Appendix A.4:

Theorem 5. Let D†∗(f |ε′, P̂ ) be an upper bound on D∗(f |ε, P̂ ) and D∗(−f |ε, P̂ ) for every f : S →
[0, H], and, CB†h,t(x, a) = D†∗(V

†
h+1,t|ε′h,t(x, a), P̂h,t). Then, on the event ∩Kt=1{P ∈ Pt}, with

probability greater than 1− δ, the policy returned by the procedure in (9) incurs regret

RT ≤ 2

K∑
t=1

H∑
h=1

CB†h,t(xh,t, πh,t(xh,t)) + 4H
√

2T log(1/δ).

Examples. Theorems 4 and 5 show that the key quantities governing the size of the regret are the
conjugate distance and the confidence width ε. This explicitly quantifies the impact of the choice of
primal confidence set on the regret. We provide some example choices of divergences along with
their conjugates, the best known confidence widths, and the resulting regret bounds in Table 4.1, with
derivations in Appendix A.5. Many of these correspond to existing methods for which our framework
suggests their first dynamic-programming implementation in the original state space S, rather than
the extended state-space which was traditionally used [24, 20, 33]. More generally, our framework
captures any algorithm that defines confidence sets in terms of a norm or f -divergence, along with
many others. It may also be possible to derive model-optimistic forms of value-optimistic methods.
However, in this case care needs to be taken to show that the primal confidence sets are valid. For
example, a variant of UCB-VI [6] can be derived from the divergence measure 〈P − P̂ , V +

h+1〉, but
the probabilistic analysis here is complicated due to the dependence between P̂ and V +

h+1.
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Algorithm Distance D(p, p̂) ε Conjugate D†∗(V |ε, p̂) Regret
UCRL2 [24]: ‖p− p̂‖1

√
S/N ε · span (V ) S

√
H3AT

UCRL2B [21]: maxx
(p(x)−p̂(x))2

p̂(x) 1/N
∑
x

√
εp̂(x)|V (x)− p̂V | H

√
SΓAT

KL-UCRL4: KL(p, p̂) S/N
√

(ε+ (1−
∑
y p̂(y)))V̂(V ) HS

√
AT

χ2-UCRL5 ∑
x

(p(y)−p̂(y))2

p̂(y) S/N

√
εV̂(V ) HS

√
AT

Table 1: Various algorithms in our framework. For all algorithms except UCRL2, we use
P̂+
h,t(y|x, a) =

max 1,Nh,t(x,a,y)
Nh,t(x,a) as the base measure to avoid division by 0, for UCRL2, we use

P̂ (y|x, a). We denote V̂(V ) =
∑
x p̂(x) (V (x)− 〈p̂, V 〉)2. The third column gives scaling of the

confidence width in terms of S and the number of sample transitions N . The fourth column gives
a tractable upper bound on the value of the conjugate. The last column gives the the regret bound
derived from Theorem 5 (up to logarithmic factors) with exploration bonus defined from the inflated
conjugate and the smallest value of ε that guarantees ∩Kt=1{P ∈ Pt} w.h.p.

5 Optimism with realizable linear function approximation

We now extend our framework to factored linear MDPs, where all currently known algorithms are
value-optimistic. We provide the first model-optimistic formulation by modeling uncertainty about
the MDP in the primal LP involving occupancy measures in (3). All proofs are in Appendix B.

A key challenge in this setting is that the uncertainty can no longer be expressed using distance
metrics in the state space, since this could lead to trivially large confidence sets6. Instead, we define
confidence sets in terms of a distance that takes the linear structure into account. These are centered
around a reference model P̂ defined for each h, a as P̂h,a = ΦM̂h,a for some d × S matrix M̂h,a.
We consider reference models implicitly defined by the LSTD algorithm [12, 28, 38]. In episode t,
let Σh,a,t =

∑t
k=1 I{ah,k=a}ϕ(xh,k)ϕT(xh,k) + λI for some λ ≥ 0, and ex be the unit vector in RS

corresponding to state x. Then, our reference model in episode t is defined for each action a as

M̂h,a,t = Σ−1
h,a,t−1

t−1∑
k=1

I{ah,k=a}ϕ(xh,k)exh+1,k
. (10)

Finally, the weight matrix in the LP formulation (3) is chosen asWh,a,t =
∑t
k=1 I{ah,k=a}exh,k

eT
xh,k

,
so that ΦTWh,a,tΦ = Σh,a,t − λI . We establish the following important technical result:

Proposition 6. Consider the reference model P̂h,a,t = ΦM̂h,a,t with M̂h,a,t defined in Equation (10).
Then, for any fixed function g : S → [−H,H], the following holds with probability at least 1− δ:

∥∥(Mh,a,t − M̂h,a,t

)
g
∥∥

Σh,a,t−1
≤ H

√
d log

(
1 + tR2/λ

δ

)
+ CPH

√
λd.

The proof is based on the fact that for a fixed g,
(
Mh,a,t − M̂h,a,t

)
g is essentially a vector-valued

martingale. Our main contribution in this setting is to use this result to identify two distinct ways of
deriving tight confidence sets that incorporate optimism into (3). Both approaches use the optimistic
parametric Bellman (OPB) equations with some exploration bonus CBh,t(x, a) (defined later):

θ+
h,a,t = ρa + Σ−1

h,a,t−1

t−1∑
k=1

I{ah,k=a}ϕ(xh,k)V +
h+1,t (xh+1,k)

V +
h,t(x) = max

a

{(
Φθ+

h,a,t

)
(x) + CBh,t(x, a)

} (11)

4We consider the un-normalized KL-divergence, KL(p, p̂) =
∑

x p(x) log
p(x)
p̂(x)

+
∑

x(p̂(x)− p(x)). The
original KL-UCRL algorithm, [20, 48] considers the reverse (normalized) KL-divergence. This also fits into our
framework. See Appendix A.5.3 for details.

5[33] also use a χ2-divergence but require P̃ (x) > p0 for some p0 if P̃ (x) > 0 making P non-convex.
6E.g., for the total variation distance, concentration bounds scale with

√
S which is potentially unbounded.
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Both bonuses we derive can be upper-bounded by CB†h,t(x, a) = C(d) ‖ϕ(x)‖Σ−1
h,a,t−1

for some
C(d) > 0. Then, one can apply a variant Theorem 5 to bound the regret of both algorithms in terms
of the sum of these inflated exploration bonuses, amounting to a total regret of Õ(C(d)

√
dHT ).

5.1 Optimism in state space through local confidence sets

Our first approach models the uncertainty locally in each state-action pair x, a using some distance
metric D between transition functions. We consider the following optimization problem:

maximize
q∈Q(x1),ω∑H
h=1

∑
a 〈Wh,aΦωa,h, ra〉

∣∣∣∣∣∣∣∣
subject to∑
a qh+1,a =

∑
a P̃h,aWh,aΦωh,a ∀h ∈ [H]

ΦTqh,1 = ΦTWh,aΦωh,a ∀a ∈ A, h ∈ [H]

D
(
P̃h(·|x, a), P̂h(·|x, a)

)
≤ εh(x, a) ∀(x, a) ∈ Z, h ∈ [H]

(12)

As in the tabular case, (12) can be reparametrized so that the constraint set is convex, allowing us to
appeal to Lagrangian duality to get an equivalent formulation as shown in the following proposition.
Proposition 7. The optimization problem (12) is equivalent to solving the optimistic Bellman equa-
tions (11) with the exploration bonus defined as CBh(x, a) = D∗(V +

h+1|εh(x, a), P̂h(·|x, a)).

Taking the form of V +
h into account, in episode t, we define our confidence sets as in (4) with

D
(
P̃h,t(·|x, a), P̂h,t(·|x, a)

)
= sup
g∈Vh+1,t

∑
x′

(
P̃h,t(x

′|x, a)− P̂h,t(x′|x, a)
)
g(x′) (13)

and P̂h,a,t = ΦM̂h,a,t where Vh+1,t is the set of value functions that can be produced by solving the
OPB equations (11). For any choice of εt, CBh,t(x, a) ≤ εh,t(x, a), so one can simply use the bonus
CB†h,t(x, a) = εh,t(x, a). The following theorem bounds the regret for an appropriate choice of εt

Theorem 8. The choice εh,t(x, a) = C ‖ϕ(x)‖Σ−1
h,a,t−1

with C = Õ(Hd) guarantees that the
transition model P is feasible for (12) in every episode twith probability 1−δ. The resulting optimistic
algorithm with exploration bonus CB†h,t(x, a) = εh,t(x, a) has regret bounded by Õ(

√
H3d3T ).

This algorithm coincides with the LSVI-UCB method of [26] and our performance guarantee matches
theirs. The advantage of our result is a simpler analysis allowed by our model-optimistic perspective.

5.2 Optimism in feature space through global constraints

Our second approach exploits the structure of the reference model (10), and constrains P̃a through
global conditions on M̃a. We define Pt using the distance metric suggested by Proposition 6 as

D(M̃h,a, M̂h,a) = sup
f∈Vh+1

∥∥(M̃h,a − M̂h,a

)
f
∥∥

Σh,a
≤ εh,a (14)

for Vh+1 as in (13) and some εh,a > 0. We then consider the following optimization problem:

maximize
q∈Q(x1),

ω,M̃

H∑
h=1

∑
a

〈Wh,aΦωh,a, ra〉

∣∣∣∣∣∣∣∣
subject to∑
a qh+1,a =

∑
a P̃

T

h,aWh,aΦωh,a ∀h ∈ [H]
ΦTqh,a = ΦTWh,aΦωh,a ∀a ∈ A, h ∈ [H]

D(M̃h,a, M̂h,a) ≤ εh,a ∀a ∈ A, h ∈ [H].

(15)

Unfortunately, directly constraining M leads to an optimization problem that, unlike in the other
settings, cannot easily be re-written as an convex problem exhibiting strong duality. Nevertheless, for a
fixed M̃ , the value of (15) is equivalent toG(M̃) = V +

1 (x1) where V + solves the OPB equations (11)
with CBh(x, a) =

〈
ϕ(x),

(
M̃h,a − M̂h,a

)
Vh+1

〉
. LetM = {M̃ ∈ Rd×S : D(M̃, M̂) ≤ ε}, then,

we can re-write (15) as maximizingG(M̃) over M̃ ∈M. Exploiting this we provide a more tractable
version of the optimization problem, and bound the regret of the resulting algorithm, below:
Theorem 9. Define the function G′(B) = V +

1 (x1) with V + the solution of the OPB equations (11)
with exploration bonus CBh(x, a) = 〈ϕ(x), Bh,a〉 and let Bt =

{
B : ‖Bh,a‖Σh,a,t−1

≤ εh,a,t
}

for

all episodes t ∈ [K]. Then, maxB∈Bt
G′(B) ≥ max

M̃∈Mt
G(M̃) and the optimistic algorithm with

exploration bonuses corresponding to the optimal solutions B†t has regret bounded by Õ(d
√
H3T ).
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The algorithm suggested in this theorem essentially coincides with the ELEANOR method proposed
recently in [54], and our guarantees match theirs under our realizability assumption. Our model-based
perspective suggests that the problem of implementing ELEANOR is inherently hard: the form of the
primal optimization problem reveals that G′(B) is a convex function of B, and thus its maximization
over a convex set is intractable in general. Note that the celebrated LinUCB algorithm for linear
bandits must solve the a similar convex maximization problem [15, 1]. As in linear bandits, it remains
an open question to get regret Õ(Hd

√
T ) with a computationally efficient algorithm.

6 Conclusion

We have provided a new framework unifying model-optimistic and value-optimistic approaches for
episodic reinforcement learning. These results demonstrate that many desirable features are enjoyed
by both approaches.

In the tabular setting, we provided improved implementations and analyses of a general class of
model-optimistic algorithms. While these results demonstrate the strength and flexibility of the
model-based perspective, our regret bounds feature an additional factor of

√
S on top of the minimax

optimal bounds, which has been eliminated by value-optimistic methods [6, 16]. We believe that
in order to recover these algorithms in our framework with improved regret bounds in the tabular
setting, it may be necessary to consider more sophisticated (potentially non-local) confidence sets on
the transition functions. In this paper, we have shown that this is indeed the case for factored linear
MDPs. Here using global constraints in a model-optimistic algorithm was shown to be equivalent
to a state of the art value-optimistic algorithm. This leads us to believe that a similar approach may
enable us to derive model-optimistic algorithms that are equivalent to state of the art value-optimistic
algorithms in the tabular setting, although we leave this as future work.

Finally, we note that our structural results concerning equivalence of model constraints and reward
perturbations may have impact beyond the particular problem we consider in this paper. One
immediate generalization of our results beyond regret minimization is to the PAC MDP setting, where
the same techniques can be applied to draw parallels between model-based and model-free algorithms
[16]. Beyond optimistic exploration, uncertainty sets and reward perturbations are also broadly used
in the context of robust optimization in MDPs, and in fact Iyengar [23] has previously established
connections between these concepts in a way similar to our work. It remains to be seen if these
connections can be further explored and if establishing a convex-optimization formulation of robust
MDPs is possible in a way similar to the proof of our Proposition 1. Lastly, it is straightforward
to extend our framework for infinite-horizon MDPs, although analyzing the regret of the resulting
algorithms remains challenging. We leave pursuing these exciting directions for future research.

Broader Impact

The results presented in this paper are largely theoretical. We define a class of algorithms which
are theoretically well understood, but also benefit from a computationally efficient implementation.
The framework provided in this paper is very general so, in principle, any algorithm which fits
into the framework could be applied to any reinforcement learning problem in a tabular or factored
linear MDP. Consequently, as for any reinforcement learning algorithm, there is the potential for
algorithms developed using the ideas presented in this paper to be applied in settings which have
negative societal impacts, or in settings where the reward function is not well specified leading to
undesirable behaviors.
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