
Supplementary material for: Learning to search
efficiently for causally near-optimal treatments

Samuel Håkansson
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A Proofs of theorems

A.1 Proof of Lemma 1 (Stationarity)

Lemma S1 (Lemma 1 restated). Let I be a permutation of the sequence (1, ..., s). Then, for our
causal graph under Assumption 2, for b ∈ A,

p(Y (b) | X,As = a, Y s = y) = p(Y (b) | X,As = (aI(1), ..., aI(s)), Y s = (yI(1), ..., yI(s)))

Proof. Let h = (x, (a1, y1), ..., (as, ys)). Let π be a permutation of 1, ..., s and π(r) the index
assigned to r. We use the short-hands p(a) = p(A = a), p(A | b) = p(A | B = b), etc.
p(Y (a) | Hs = hs, As = as) stationarity

=
p(Ys(a), hs, as)

p(hs, as)

=

∑
z p(Ys(a), hs, as, z)∑

z p(hs, as, z)
prob. laws

=

∑
z p(Ys(a) | hs, as, z)p(as | hs, z)p(hs | z)p(z)∑

z p(as | hs, z)p(hs | z)p(z)
expand

=

∑
z p(Ys(a) | hs, as, z)p(as | hs, z)

∏
r p(yr | hr, ar, z)p(ar | hr, z)p(z)∑

z

∏
r p(yr | hr, ar, z)p(ar | hr, z)p(z)

expand history

=

∑
z p(Ys(a) | as, z)p(as | hs)

∏
r p(yr | ar, z)p(ar | hr)p(z)∑

z p(as | hs)
∏
r p(yr | ar, z)p(ar | hr)p(z)

As ⊥⊥ Z | Hs

=

∑
z p(Ys(a) | z)

∏
r p(yr(ar) | z)p(z)∑

z

∏
r p(yr(ar) | z)p(z)

cancel terms

=

∑
z p(Y (a) | z)

∏
r p(Yπ(r)(ar) = yr | z)p(z)∑

z

∏
r p(Yπ(r)(ar) = yr | z)p(z)

stationarity

Since the last expression is invariant to π, the result follows.

A.2 Proof of Theorem 1 (Identifiability)

Theorem S1 (Theorem 1 restated). Under Assumptions 1–4, the stopping statistic ρ(h) in (2) and
ε, δ-optimality are identifiable from the observational distribution p(X,T,A, Y ). In particular, for

13



any time step s with history hs, let h(I)s = (x, aI(1), ..., aI(s), yI(1), ..., yI(s)) be an arbitrary
permutation of hs. Then, for any sequence of untried (future) actions as+1:k = (as+1, ..., ak) ∈
S(A−hs) with h(I)r the continued history at time r > s corresponding to as+1:k and ys+1:k,

ρ(hs) =
∑

ys+1:k∈Yk−s
1 [max(y) > µ(hs) + ε]

k∏
r=s+1

p(Yr = yr | Ar = ar, Hr = h(I)r−1) . (S1)

where µ(hs) = max(a,y)∈hs y.

Proof. Fix any history h = (x, (a1, y1), ..., (as, ys)) ∈ H with s = |h|, any time points q, r ∈ [k],
any a ∈ A and let a ∈ S(A) such that the subsequence as = (a1, ..., as) coincides with h. Then, by
Assumption 2, we have

Yr(a) = Yq(a) = Y (a) and max
a 6∈h

Y (a) =
k

max
r=s+1

Yr(ar) .

Below, we sum over sequences of outcomes ys+1:k = (ys+1, ..., yk) ∈ Yk−s and refer to the history
hr for r > s. Here, hr = (x, (a1, y1), ..., (ar, yr)) is a sequence of both observed actions and
outcomes (corresponding to the sub-sequence hs ⊆ hr) and unobserved ones. By definition, we have
for any sequence of actions a ∈ S(A) according to the above, for any µ ∈ Y

ρµ(hs) =
∑

ys+1:k∈Yk−s
p([Y (as+1), . . . , Y (ak)] = ys+1:k | Hs = hs)1[max(ys+1:k) > µ]

=
∑

ys+1:k∈Yk−s
1
[
max(ys+1:k) > µ

] k∏
r=s+1

p(Yr(ar) = yr | Hr−1 = hr−1)

=
∑

ys+1:k∈Yk−s
1
[
max(ys+1:k) > µ

] k∏
r=s+1

p(Yr = yr | Ar = ar, Hr−1 = hr−1) .

In the second step we apply Assumption 2 (stationarity) and in the third Assumptions 1–Assumptions 4
(consistency, sequential ignorability). Finally, from ignorability and stationarity, we have for any
permutations h(I)s,

ρµ(hs) =
∑

ys+1:k∈Yk−s
1
[
max(ys+1:k) > µ

] k∏
r=s+1

p(Yr = yr | Ar = ar, Hr−1 = h(I)r−1) .

Doing so, we obtain the result in (4). In solving (1), we only need to evaluate ρ(hs) for histories with
positive support under pπ . Assumption 3 (positivity) ensures that there exists at least one permutation
a ∈ S(A−hs) such that p(As+1:k = a | Hs = hs). This in turn implies identifiability.

A.3 Bounds on stopping criterion

Theorem S2. For any threshold µ ∈ Y and history h ∈ H, we have under Assumption 2,

max
a6∈h

[p (Y (a) > µ | h)]︸ ︷︷ ︸
Used for less conservative stopping

≤ p
(

max
a 6∈h

Y (a) > µ | h
)

︸ ︷︷ ︸
=: ρµ(h)

≤
∑
a 6∈h

p (Y (a) > µ | h)︸ ︷︷ ︸
Used for more conservative stopping

(S2)

Proof. Let A−h = {a ∈ A : a 6∈ h}. We start with the upper bound. By definition

{y ∈ Y |A−h| : max(y) > µ} =
⋃

a∈A−h

{y ∈ Y |A−h| : ya > µ}

Hence, by Boole’s inequality,

p

(
max
a 6∈h

Y (a) > µ | H = h

)
≤

∑
a∈A−h

∑
y∈Y|A−h| : y(a)>µ

p (Y (A−h) = y | H = h)

=
∑

a∈A−h

p (Y (a) > µ | h) .
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For the lower bound, the argument is equally straight-forward.

p

(
max
a6∈h

Y (a) > µ | H = h

)
=

∑
y : max(y)>µ

p (Y (A−h) = y | H = h)

≥ max
a∈A−h

∑
y : y(a)>µ

p (Y (A−h) = y | H = h)

= max
a∈A−h

p (Y (a) > µ | H = h) .

A.4 Proof of Theorem 2

We restate the following assumption and Theorem 2 for convenience.
Assumption S1. A random variable U has α-bounded propensity sensitivity relative to H if for all
u ∈ U , h ∈ H, with s = |h| and a ∈ Ak−s, for some α ≥ 1, with As+1:k = (As+1, ..., Ak),

1

α
≤ Pr[As+1:k = a | H = h]

Pr[As+1:k = a | U = u,H = h]
≤ α .

Theorem S3 (Theorem 2 restated). Given is that Assumption S1 (bounded propensity) holds for
H,U with sensitivity parameter α ≥ 1 and Assumption 4 (ignorability) holds for all s ∈ [k] w.r.t.
confounders (Hs, U). Let Yr be the (hypothetical) outcome of treatment Ar at time r = s+ 1, ..., k.
Then, for any history h ∈ Hs and the set of treatments a = A \ A(h), it holds that

Pr[
k

max
r=s+1

Yr > µ | As+1:k = a,Hs = h] ≤ δ

α
=⇒ Pr[max

a∈a
Y (a) > µ | Hs = h] ≤ δ .

Proof. We have by definition, where y > µ applies element-wise,

Pr[max
a∈a

Y (a) > µ | H = h] =
∑
y:y>µ

Pr[Y (a) = y | H = h]

Pr[max
i
Yi > µ | A = a,H = h] =

∑
y:y>µ

Pr[Y = y | A = a,H = h]

Then, marginalizing over the unobserved confounder U and conditioning on H ,

Pr[max
a∈a

Y (a) > µ | H = h] =
∑
y:y>µ
u∈U

Pr[Y (a) = y | h, U = u]p(U = u | h)

=
∑
y:y>µ
u∈U

Pr[Y = y | h, u, a]p(u | h)

where the last equality follows from ignorability w.r.t. H,U . Applying the same steps to
Pr[maxi Yi > µ | A = a], we get

Pr[max
i
Yi > µ | h,A = a] =

∑
y:y>µ
u∈U

Pr[Y = y | h, u, a]p(u | a, h)

We find that

Pr[max
a∈a

Y (a) > µ | h]− Pr[max
i
Yi > µ | h,A = a]

=
∑
y:y>µ
u∈U

Pr[y | h, u, a] (p(u | h)− p(u | a, h))

=
∑
y:y>µ
u∈U

Pr[y | h, u, a]p(u | a, h)

(
p(u | h)

p(u | a, h)
− 1

)
= (∗)
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By Bayes rule, we have

p(u | h)

p(u | a, h)
=

p(u | h)p(a | h)

p(a | u, h)p(u | h)
=

p(a | h)

p(a | u, h)

and so,

(∗) =
∑
y:y>µ
u∈U

Pr[y | h, u, a]p(u | a, h)

(
p(a | h)

p(a | u, h)
− 1

)

The result follows immediately from our Assumption S1, that 1
α ≤

p(a|h)
p(a|u,h) ≤ α. In fact, only the

upper bound is needed.

A.5 Proof of Theorem 3 (Correctness of dynamic programming)

Theorem S4 (Theorem 3 restated). Recall that H0 = (X, ∅, ∅). The policy maximizing (6), π(h) =
arg maxaQ(h, a), is an optimal solution to (1) and its expected search time is E[T ] = EX [−V (H0)].

Proof sketch. Recall that

γε,δ,α(h) := 1[Pr[max
a′ 6∈h

Y (a′) > µ(h) + ε | H = h] < δ/α] (S3)

Q(h, a) = r(h, a) + 1[a 6= STOP]
∑
y∈Y

p(Y (a) = y | h) max
a′∈A∪{STOP}

Q(h ∪ {(a, y)}, a′) ,

(S4)

rε,δ,α(h, a) =

{ −∞, if a = STOP, γε,δ,α(h) = 0
0, if a = STOP, γε,δ,α(h) = 1
−1, if a 6= STOP

. (S5)

and V (h) = maxa,cQ(h, a).

By definition, any policy that achieves a finite expected reward EH0 [V (H0)] satisfies the stopping
criterion, and is therefore a feasible solution to (1). Furthermore, any time search is terminated
(a = STOP or A−h = ∅), the expected sum of rewards for a sequence is equal to minus the number
of steps spent until the sequence terminates. The sequence is optimal if it terminates as soon
as an ε, δ-optimal treatment is found. Thus, a policy with finite expected return that maximizes
V (H0) = maxaQ(H0, a) is an optimally efficient search policy for effective treatments. �

A.6 Approximation ratio of greedy algorithms

The active learning problem concerns identification of a hypothesis g ∈ G by iteratively performing
tests suggested by a policy (Guillory and Bilmes, 2009). The problem then amounts to finding a
policy π which selects tests A = A1, ..., AT , the results Y (A1), ..., Y (AT ) of which identify g with
probability 1, p(G = g | Y (A1), ..., Y (AT )) = 1. We consider now the case were a prior distribution
p(G, Y (1), ..., Y (k)) is known, as studied by (Guillory and Bilmes, 2009). A sequence of tests A
which identifies g is associated with a cost c(A,G), and the objective is to find π which minimizes
the expected cost over p,

c(π) = EG,A∼π[c(A,G)] .

We have the following result from the literature.

Theorem S5 (Adapted from Theorem 4 of (Kosaraju et al., 1999)). There exists a greedy policy π
such that for any p such that Y (a) : a ∈ A are deterministic given G,

c(π) ≤ c(π∗)O(log |G|)

where π∗ = arg minπ′ c(π
′) .
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This bound is matched by a lower bound by (Chakaravarthy et al., 2007) which states that it is
NP-hard to achieve an approximation ratio better than o(log |G|).

In the setting with δ = 0, our problem may posed as active learning where the hypothesis corresponds
to the maximum value of potential outcomes, G = min{g ∈ Y : p(maxa Y (a) > g) ≤ 0}. Once
this quantity is identified, the stopping criterion may be determined immediately. However, under
this hypothesis, Y (a) are not deterministic given G and the results above do not apply. Golovin et al.
(2010) study the noisy case under the assumption that non-determinism in Y (a) is controlled by a
noise variable Θ, i.e., that Y (A) = f(G,Θ) for some deterministic function f .
Theorem S6 (Adapted from Theorem 3 in (Golovin et al., 2010) with uniform costs). Fix hypotheses
G, tests A and outcomes in Y , Fix a prior p(G,Θ) and a function f : G× supp(Θ)→ Y |A| which
define the probabilistic noise model. Let c(π) denote the expected cost of π incurs to identify which
equivalence class G the outcome vector Y (AT ) belongs to. Let π∗ denote the policy minimizing c(·),
and let π denote the adaptive policy implemented by the greedy algorithm EC2. Then,

c(π) ≤ c(π∗)O(log |A|+ log |supp(Θ)|) .

In the case that all combinations of outcomes are feasible, log |supp(Θ)| = |A| log |Y| and the bound
above is vacuous, since a trivial bound on the search time is |A|. When there is structure in potential
outcomes, supp(Θ) may be much smaller. For example, if the moderating variable Z controls all
uncertainty in Y (a), given X, the bound reduces to O(log |ZX |) where ZX = {z ∈ Z : p(Z | X) >
0}, which may be significantly smaller than |A| log |Y|.

A.7 Model-free RL and CDP are not equivalent

Let max(·,y)∈h y represent the best outcome so far at history h, with s = |h| and λ > 0 a parameter
trading off early termination and high outcome. Now, consider the reward function rmodel-free

λ (h, a)
following history h ∈ H defined below.

rmodel-free
λ (h, a) =

{
0, a 6= STOP
max(·,y)∈h y − λ|h|, a = STOP.

(S6)

and the policy maximizing the expected sum of rewards

π∗,model-free
λ = arg max

π
Eh,a∼π

[
k∑
s=1

rmodel-free
λ (hs, as)

]
. (S7)

Now consider the greedy policy maximizing the Q-function defined by
Q(h, a) = Eh′|h,a[rmodel-free

λ (h, a) + max
a′∈A−h∪{STOP}

Q(h′, a′) | Hs = h,As = a] . (S8)

For readers familiar with reinforcement learning, it is easy to see that policy maximizing Q defined
above also maximizes the expected sum of rewards given by (S6). Below, we prove that this algorithm
does not in general solve (1).
Theorem S7. There are instances of (1) (main problem), specified by a distribution p and parameters
ε, δ, such that the solutions to (1) and (S7) are distinct for every choice of λ > 0.

Proof. Consider a context-less setting with two actions A = {a, b} with the following potential
outcomes: p(Y (a) = 1.0) = 1/2, p(Y (a) = 0.5) = 1/2 and p(Y (b) = 0.5 + ε) = 1. In this
scenario, having observed nothing, the probability that action b yields a higher outcome than a is 1/2.
Hence, for δ = 0.5, CDP always prefers to start with action b and end immediately. Now, consider
NDL, which minimizes the expected return with the reward function,

r(h, a) =

{
0, a 6= STOP
max(·,y)∈h y − λ|h|, a = STOP

where s indicates the stop action and max(·,y)∈h y represents the best outcome so far at history h
and λ > 0. The Q-function is in (S8). NDP computes this recursively and uses the policy which
maximizes it. Under the version of this problem with ε < 0.25, we can show that there is no λ > 0
such that Q(∅, b) > Q(∅, a). We give the map of Q below under this assumption.

For λ > ε, Q(∅, a) = 0.75− λ and Q(∅, b) = max(0.5 + ε− λ, 0.75 + ε/2− 2λ) < Q(∅, a). For
0 < λ ≤ ε, we have Q(∅, a) = 0.75 − 1.5λ + ε/2 > Q(∅, b) by the assumption ε < 0.25. Hence,
NDL would, for any λ prefer action a. However, for δ = 0.5, CDP would prefer action b. Thus, for
δ = 0.5, there is no λ which make these equivalent.
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h a Q(h, a)
A1 Y1 A2 Y2

a 1.0 – – STOP 1.0− λ
a 0.5 – – STOP 0.5− λ
b 0.5 + ε – – STOP 0.5 + ε− λ
a 1.0 b 0.5 + ε STOP 1.0− 2λ
a 0.5 b 0.5 + ε STOP 0.5 + ε− 2λ
a 1.0 – – b 1.0− 2λ
a 0.5 – – b 0.5 + ε− 2λ

b 0.5 + ε – – a (1.0−2λ)+(0.5+ε−2λ)
2

– – – – a (1.0−λ)+max(0.5−λ,0.5+ε−2λ)
2

– – – – b max(0.5 + ε− λ, (1.0−2λ)+(0.5+ε−2λ)
2 )

B Historical smoothing and function approximation

The number of possible combinations (histories) grows exponentially with the number of actions,
k = |A|. As a result, it is very probably that certain combinations of histories h and actions a are
never observed in practice. We consider two solutions to this: historical smoothing and function
approximation. Historical smoothing is used in the discrete case by estimating the probability
p(Y (a) = y | Hs−1 = h) using a weighted average of outcomes for observations (h, a, y) and
observations for subsequences (h′, a, y) where h′ ⊆ h. Function approximation imputes p̂(Y (a) =
y | Hs−1 = h) using a regression estimator trained on all observations. We expand on these
approaches in Appendix B.

B.1 Historical smoothing

Consider estimating the function p(Y (a) | H = h) in the discrete case. Under the stationarity
assumption, Assumption 2, it is sufficient to represent the history in terms of indicators for tried
treatments, {Ba : a ∈ A} such that Ba ∈ {0, 1}, and observed outcomes of these actions. Hence,
p(Y (a) | H = h) may be represented by a table of dimensions |Y| × ({0, 1} × |Y|)|A|. Clearly,
even under this representation, the number of possible histories grows exponentially with the number
of actions. For this reason, for moderate to high numbers of actions, it will be unlikely to observe
samples for each cell of this table.

To obtain an estimate even in cases with high dimensionality, we use historical smoothing based on
a prior. In the discrete case, we may view the distribution of the outcomes Y (a) for a treatment a
following history h as a categorical distribution. We impose a Dirichlet prior on this distribution
and use the posterior distribution in estimating the stopping statistic ρ and in policy optimization.
A Dirichlet prior for p(Y (a) | H = h) is specified by pseudo-counts β1(a, h), ..., β|Y|(a, h). The
posterior parameters are then ny(a,h)+βy(a,h)∑

y′ ny′ (a,h)+βy′ (a,h) , where ny(a, h) is equal to the number of samples

where Y (a) = y following history h. In this work, we consider two different priors β.

Historical prior (kernel smoothing) The historical prior assumes that the conditional outcome
distribution changes slowly with the number of past observations. The prior itself is a weighted
average of the outcome probability at all possible previous histories,

βy(a, h) =
∑
h′⊂h

w(h, h′) · p̂(Y (a) | H = h′), (S9)

where the weight of the probability given by a shorter history is determined by its similarity to h,

w(h, h′) =
e−(|h|−|h′|−1)2

|h| · 2|h−hi|−1
. (S10)

Uninformed prior The uninformed prior assigns a small uniform value to all β.
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B.2 Function approximation

Observations for the ith subject are denoted x(i), a
(i)
t , y

(i)
t , a

(i)
s . To use function approximation, we

fit a single function f , acting on a representation of history φ(h) to estimate p(Y (a) | H = h) by
solving the following problem,

min
f∈F

n∑
i=1

ti∑
s=1

L(f(h(i)
s , a(i)

s ), y(i)
s ) , (S11)

for an appropriately chosen function class F and loss function L. In the discrete settings considered
in the paper, we use the logistic (cross-entropy) loss which leaves the solution to (S11) a probabilistic
classifier, or estimate of p(Y (a) | H = h) for all a, h.

C Additional experimental results

Below follow additional details and results from the experiments. All experiments were implemented
in Python and run on standard laptop computers. Each experiment on the synthetic DGP took less
than a handful of hours to finish. For the antibiotics experiment, the overall time to produce the
results for all values of δ was 2 days.

C.1 Synthetic data generating process

We describe the datagenerating process (DGP) for the synthetic dataset used in Figure 2b and
additional results described below. Let oa(h) = 1[a ∈ h] and o(h) = [o1(h), ..., ok(h)]>. The
moderator Z ∈ {0, 1}d and covariates X ∈ {0, 1}v are drawn according to

1. Z ∼ Bernoulli(α)

2. X ∼ Bernoulli(max(min(βZ, 0.98), 0.02)).

given a set of parameters α ∈ [0, 1]d, β ∈ [0, 1]v×d drawn element-wise uniformly at random.

The action STOP is drawn at any point following the first treatment with probability pSTOP = 0.1. To
emulate a closer-to-realistic policy, if not stopped, the next action is drawn according to a categorical
distribution with probabilities determined by the variable X and the dissimilarity of the new action A
to previous actions in H . Outcomes are drawn according to a categorical distribution with parameters
given by the pdf of a Cauchy random variable, itself with parameters depending on the variables X ,
Z and A. For a full description of the data generating distribution, see Algorithm 1.

C.1.1 Additional results for the synthetic DGP

We present additional results for CDP, CG and NDP applied to the synthetic DGP described above.
Unless otherwise specified, δ = 0.4, ε = 0, λ = 0.35 and CDP and CG use the upper bound
approximation of the stopping criterion described in Appendix A.3 with historical smoothing ( H), as
described in Appendix B.

In Figure S1, we illustrate the mean efficacy and search time (number of trials) as a function dataset
size, varying logarithmically from n = 50 to n = 75000 samples. We include the variance across
m random seeds for the experiment, σ̂2 = 1

m−1

∑m
i=1 (xi − x̄)

2. This Figure is a different view of
Figure 2b, where we clearly see that the efficacy for most algorithms go up as data set size grows and
search time decreases. For NDP, as noted in Section 6, we see the opposite trend, however.

Figure S2 shows the trade-off between search time (number of trials) for different algorithms and
40 different values of δ ∈ [0, 1] with λ = δ for n = 15000 samples, in the setting corresponding to
Figure 2b. In Figure S3, we give the corresponding comparison for using lower or upper bounds
in the estimation of the stopping criterion ρ, as described in Appendix A.3. Here, U refers to the
upper bound, L to the lower bound and E is “exact” estimator, i.e. the empirical estimator of the
exact expression for the stopping criterion, ρ. At first glance, the output of the different algorithms
using different bounds appear very similar. However, as we see in Figure S4, the trade-off induced by
a specific value of δ varies greatly depending on the estimation strategy. This is discussed also in
Section 6, where we note that the policy learned by NDP is very sensitive to the setting of λ.
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Figure S1: Efficacy and time over different sized training sets for the synthetic DGP. Interval widths
represent the variance across 50 realizations.
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Figure S2: Efficacy and search time (number of trials) for different policy optimization methods
operating the same model (historical smoothing, upper bound).
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(a) Constrained Dynamic Programming algorithm.
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(b) Constrained Greedy algorithm.

Figure S3: Results using estimates of the stopping criterion based on the upper ( U) and lower bounds
( L) described in Appendix A.3, as well as the no-bound (exact) estimate ( E) for the CDP and CG
algorithms with δ varying linearly in [0, 1].
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(a) Efficacy and search time (number of trials) for vary-
ing approximations used in estimating the stopping
criterion, with the upper bound, in the CDP algorithm.
U stands for using a uniform prior to fill in missing

valus. H is the historical kernel smoothing described
in Appendix B. F refers to function approximation
and T the result for using the true model.

(b) Efficacy and search time (number of trials) when
using different bounds on the stopping criterion ρ in
the CDP algorithm. U stands for using the upper
bound, L for the lower bound and E for the exact
(no bound) estimate of ρ.

Figure S4: Efficacy and mean search time (number of trials), varying δ in [0, 1].

C.2 Antibiotic resistance dataset

Below, we give additional information on the antibiotic resistance dataset compiled from MIMIC-III.

To gather a cohort for which a consistent set of culture tests had all been performed for every patient,
the set of organisms were restricted to a small subset. This selection was made based on overall
prevalence in the data as well as the co-occurrence with common antibiotic culture tests. The selected
organisms and antibiotics are listed below.

Selected (bacterial) microorganisms:

• Escherichia Coli (E. coli)
• Pseudomonas aeruginosa
• Klebsiella pneumoniae
• Proteus mirabilis

Selected antibiotics:

• Ceftazidime
• Piperacillin/Tazo
• Cefepime
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Figure S5: Efficacy and mean search time over different values of δ on the antibiotic resistance data
set. The width of the plots represent the unbiased empirical sample variance across random splits.
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Figure S6: Efficacy and mean number of trials over different values of λ for the Naive Dynamic
Programming algorithm. Variance is unbiased sample variance across random splits of the data. λ is
perturbed by 0.0001 in order to avoid division by zero for λ = 0.

• Tobramycin
• Gentamicin
• Meropenem

pending was also an “result” in MIMIC-III, there were few of these instances and they were removed.
Covariates X: Ages are divided into the four groups [0, 15], (15, 31], (31, 60], and (60,∞). The two
diseases are Infectious And Parasitic Diseases and Diseases Of The Skin And Subcutaneous Tissue as
classified by ICD (WHO, 1978). The data was split in training and test 70/30 from 1362 patients
and patients with multiple organisms were not split between the sets. Patients who had taken any
antibiotic other than our chosen ones were not included in the data. Figure S5 uses the same data as
Figure 3b but is split by δ and variance is shown.

# of treatments # of patients
1 860
2 340
3 137
4 22
5 3
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Algorithm 1: Generating distribution of actions and potential outcomes
Input: Weight parameter wx (default value 1)
Input: Number of outcomes ny
Input: Uniform stopping probability pSTOP

Generating parameters:
u1, u2 ∼ N (0k×(1+v+d), 1)
u2 ← |u2|
for i← 2 to v + 1 do

u1(·, i)← u1(·, i) · wx
u2(·, i)← u2(·, i) · wx

end
η ∼ N (0k×(1+v+k), 1)
for a← 1 to k do

u−1 (a)←
∑1+v+d
i=1 1[u−1 (a, i) < 0]u−1 (a, i)

u−2 (a)←
∑1+v+d
i=1 1[u−2 (a, i) < 0]u−2 (a, i)

u+
1 (a)←

∑1+v+d
i=1 1[u−1 (a, i) > 0]u−1 (a, i)

u+
2 (a)←

∑1+v+d
i=1 1[u−2 (a, i) > 0]u−2 (a, i)

end

Generating distribution of actions:
p(A = STOP) = pSTOP
for a, a′ ∈ {1, ..., k} do

∆(a, a′)← ‖u1(a)− u1(a′)‖22 + ‖u2(a)− u2(a′)‖22
end
for h ∈ H do

v = [1;x; o(h)]
for a ∈ {1, ..., k} do

p̃(a)← eη(a,·)>v for a′ ∈ h do
p̃(a)← p̃(a) ·∆(a, a′)

end
end
for a ∈ {1, ..., k} do

p(A = a | h,A 6= STOP)← p̃(a)∑
a∈{1,...,k} p̃(a)

end
end

Generating distribution of potential outcomes:
for x ∈ X , z ∈ Z do

for a← 1 to k do
v ← [1;x; z]
y0(a)← u1(a, ·)>v
y0(a)← (ny−1)(y0(a)−u−1 (a))

(u+
1 (a)−u−1 (a))

γ(a)← u1(a, ·)>v
γ(a)← (γ(a)−u−2 (a))

(u+
2 (a)−u−2 (a))

for y ← 1 to ny do
p̃(a, y)← fcauchy(y; y0(a), γ(a))

end
for y ← 1 to ny do

p(Y (a) = y | x, z)← p̃(a,y)∑ny
y=1 p̃(a,y)

end
end

end
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