A Proof of Theorem 2

To prove Theorem 2, we observe the behavior of the algorithm on the i-th layer. Let $\psi:\{ \pm 1\}^{n_{i} / 2} \rightarrow$ $\{ \pm 1\}^{n_{i} / 2}$ be some mapping such that $\psi(\boldsymbol{x})=\left(\xi_{1} \cdot x_{1}, \ldots, \xi_{n_{i} / 2} \cdot x_{n_{i} / 2}\right)$ for $\xi_{1}, \ldots, \xi_{n_{i} / 2} \in\{ \pm 1\}$. We also define $\varphi_{i}:\{ \pm 1\}^{n_{i} / 2} \rightarrow\{ \pm 1\}^{n_{i} / 2}$ such that:

$$
\varphi_{i}(\boldsymbol{z})=\left(\nu_{1} z_{1}, \ldots, \nu_{n_{i} / 2} z_{n_{i} / 2}\right)
$$

where $\nu_{j}:= \begin{cases}\operatorname{sign}\left(c_{i-1, j}\right) & c_{i-1, j} \neq 0 \\ -1 & \mathcal{I}_{i-1, j}=0\end{cases}$
We can ignore examples that appear with probability zero. For this, we define the support of \mathcal{D} by $\mathcal{X}^{\prime}=\left\{\boldsymbol{x}^{\prime} \in \mathcal{X}: \mathbb{P}_{(\boldsymbol{x}, y) \sim \mathcal{D}}\left[\boldsymbol{x}=\boldsymbol{x}^{\prime}\right]>0\right\}$.
We have the following important result, which we prove in the sequel:
Lemma 2. Assume we initialize $\boldsymbol{w}_{l}^{(0)}$ such that $\left\|\boldsymbol{w}_{l}^{(0)}\right\| \leq \frac{1}{4 k}$. Fix $\delta>0$. Assume we sample $S \sim \mathcal{D}$, with $|S|>\frac{2^{11}}{\epsilon^{2} \Delta^{2}} \log \left(\frac{8 n_{i}}{\delta}\right)$. Assume that $k \geq \log ^{-1}\left(\frac{4}{3}\right) \log \left(\frac{8 n_{i}}{\delta}\right)$, and that $\eta \leq \frac{n_{i}}{32 k}$. Let $\Psi: \mathcal{X} \rightarrow[-1,1]^{n_{i} / 2}$ such that for every $\boldsymbol{x} \in \mathcal{X}^{\prime}$ we have $\Psi(\boldsymbol{x})=\psi \circ \Gamma_{(i+1) \ldots d}(\boldsymbol{x})$ for some ψ as defined above. Assume we perform the following updates:

$$
\boldsymbol{W}_{t}^{(i)} \leftarrow \boldsymbol{W}_{t-1}^{(i)}-\eta \frac{\partial}{\partial \boldsymbol{W}_{t-1}^{(i)}} L_{\Psi(S)}\left(P\left(B_{\boldsymbol{W}_{t-1}^{(i)}, \boldsymbol{V}_{0}^{(i)}}\right)\right)
$$

Then with probability at least $1-\delta$, for $t>\frac{6 n_{i}}{\sqrt{2} \eta \epsilon \Delta}$ we have: $B_{\boldsymbol{W}_{t}^{(i)}, \boldsymbol{V}_{0}^{(i)}}(\boldsymbol{x})=\varphi_{i} \circ \Gamma_{i} \circ \psi(\boldsymbol{x})$ for every $\boldsymbol{x} \in \Psi\left(\mathcal{X}^{\prime}\right)$.

Given this result, we can prove the main theorem:
Proof. of Theorem 2. Fix $\delta^{\prime}=\frac{\delta}{d}$. We show that for every $i \in[d]$, w.p at least $1-(d-i+1) \delta^{\prime}$, after the i-th step of the algorithm we have $\mathcal{N}_{i-1}(\boldsymbol{x})=\varphi_{i} \circ \Gamma_{i \ldots d}(\boldsymbol{x})$ for every $\boldsymbol{x} \in \mathcal{X}^{\prime}$. By induction on i :

- For $i=d$, we get the required using Lemma 2 with $\psi, \Psi=i d$.
- Assume the above holds for i, and we show it for $i-1$. By the assumption, w.p at least $1-(d-i+1) \delta^{\prime}$ we have $\mathcal{N}_{i-1}(\boldsymbol{x})=\varphi_{i} \circ \Gamma_{i \ldots d}(\boldsymbol{x})$ for every $\boldsymbol{x} \in \mathcal{X}^{\prime}$. Observe that:

$$
\frac{\partial L_{S}}{\partial \boldsymbol{W}_{t}^{(i-1)}}\left(P\left(B_{\boldsymbol{W}_{t-1}^{(i-1)}, \boldsymbol{V}_{0}^{(i-1)}} \circ \mathcal{N}_{i-1}\right)\right)=\frac{\partial L_{\mathcal{N}_{i-1}(S)}}{\partial \boldsymbol{W}_{t}^{(i-1)}}\left(P\left(B_{\boldsymbol{W}_{t}^{(i-1)}, \boldsymbol{V}_{0}^{(i-1)}}\right)\right)
$$

So using Lemma 2 with $\psi=\varphi_{i}, \Psi=\mathcal{N}_{i-1}$ we get that w.p at least $1-\delta^{\prime}$ we have $B_{\boldsymbol{W}_{T}^{(i-1)}, \boldsymbol{V}_{0}^{(i-1)}}(\boldsymbol{x})=\varphi_{i-1} \circ \Gamma_{i-1} \circ \varphi_{i}(\boldsymbol{x})$ for every $\boldsymbol{x} \in \mathcal{X}^{\prime}$. In this case, since $\varphi_{i} \circ \varphi_{i}=i d$, we get that for every $\boldsymbol{x} \in \mathcal{X}^{\prime}$:

$$
\begin{aligned}
\mathcal{N}_{i-2}(\boldsymbol{x}) & =B_{\boldsymbol{W}_{T}^{(i-1)}, \boldsymbol{V}_{0}^{(i-1)}} \circ \mathcal{N}_{i-1}(\boldsymbol{x}) \\
& =\left(\varphi_{i-1} \circ \Gamma_{i-1} \circ \varphi_{i}\right) \circ\left(\varphi_{i} \circ \Gamma_{i \ldots d}\right)(\boldsymbol{x})=\varphi_{i-1} \circ \Gamma_{(i-1) \ldots d}(\boldsymbol{x})
\end{aligned}
$$

and using the union bound gives the required.
Notice that $\varphi_{1}=i d$: by definition of $\mathcal{D}^{(0)}=\Gamma_{1 \ldots d}(\mathcal{D})$, for $(\boldsymbol{z}, y) \sim \mathcal{D}^{(0)}$ we have $\boldsymbol{z}=\Gamma_{1 \ldots d}(\boldsymbol{x})$ and also $y=\Gamma_{1 \ldots d}(\boldsymbol{x})$ for $(\boldsymbol{x}, y) \sim \mathcal{D}$. Therefore, we have $c_{0,1}=\mathbb{E}_{(x, y) \sim \mathcal{D}^{(0)}}[x y]=1$, and therefore $\varphi_{i}(z)=\operatorname{sign}\left(c_{0,1}\right) z=z$. Now, choosing $i=1$, the above result shows that with probability at least $1-\delta$, the algorithm returns \mathcal{N}_{0} such that $\mathcal{N}_{0}(\boldsymbol{x})=\varphi_{1} \circ \Gamma_{1} \circ \cdots \circ \Gamma_{d}(\boldsymbol{x})=h_{C}(\boldsymbol{x})$ for every $\boldsymbol{x} \in \mathcal{X}^{\prime}$.

In the rest of this section we prove Lemma 2. Fix some $i \in[d]$ and let $j \in\left[n_{i} / 2\right]$. With slight abuse of notation, we denote by $\boldsymbol{w}^{(t)}$ the value of the weight $\boldsymbol{w}^{(i, j)}$ at iteration t, and denote $\boldsymbol{v}:=\boldsymbol{v}^{(i, j)}$ and $g_{t}:=g_{\boldsymbol{w}^{(t)}, \boldsymbol{v}}$. Recall that we defined $\psi(\boldsymbol{x})=\left(\xi_{1} \cdot x_{1}, \ldots, \xi_{n_{i}} \cdot x_{n_{i}}\right)$ for $\xi_{1} \ldots \xi_{n_{i}} \in\{ \pm 1\}$. Let
$\underset{\sim}{\gamma}:=\gamma_{i-1, j}$, and let $\widetilde{\gamma}$ such that $\widetilde{\gamma}\left(x_{1}, x_{2}\right)=\underset{\gamma}{\gamma}\left(\xi_{2 j-1} \cdot x_{1}, \xi_{2 j} \cdot x_{2}\right)$. For every $\boldsymbol{p} \in\{ \pm 1\}^{2}$, denote $\widetilde{\boldsymbol{p}}:=\left(\xi_{2 j-1} p_{1}, \xi_{2 j} p_{2}\right)$, so we have $\gamma(\widetilde{\boldsymbol{p}})=\widetilde{\gamma}(\boldsymbol{p})$. Now, we care only about patterns \boldsymbol{p} that have positive probability to appear as input to the gate $(i-1, j)$. So, we define our pattern support by:

$$
\mathcal{P}=\left\{\boldsymbol{p} \in\{ \pm 1\}^{2}: \mathbb{P}_{(\boldsymbol{x}, y) \sim \Psi(\mathcal{D})}\left[\left(x_{2 j-1}, x_{2 j}\right)=\boldsymbol{p}\right]>0\right\}
$$

Finally, if the gate $\gamma_{i-1, j}$ has no influence on the target function (i.e., if $\mathcal{I}_{i-1, j}=0$), we can choose it arbitrarily without affecting the output of the circuit. So, w.l.o.g. we assume in this case that $\widetilde{\gamma} \equiv 1$. We start by observing the behavior of the gradient with respect to some pattern $\boldsymbol{p} \in \mathcal{P}$:
Lemma 3. Fix some $\boldsymbol{p} \in \mathcal{P}$. For every $l \in[k]$ such that $\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle>0$ and $g_{t}(\boldsymbol{p}) \in(-1,1)$, the following holds:

$$
-\widetilde{\gamma}(\boldsymbol{p}) v_{l} \nu_{j}\left\langle\frac{\partial L_{\Psi(\mathcal{D})}}{\partial \boldsymbol{w}_{l}^{(t)}}, \boldsymbol{p}\right\rangle>\frac{\epsilon}{n_{i}} \Delta
$$

Proof. Observe the following:

$$
\begin{aligned}
& \frac{\partial L_{\Psi(\mathcal{D})}}{\partial \boldsymbol{w}_{l}^{(t)}}\left(P\left(B_{\boldsymbol{W}^{(i)}, \boldsymbol{V}^{(i)}}\right)\right) \\
& =\mathbb{E}_{(\boldsymbol{x}, y) \sim \Psi(\mathcal{D})}\left[\ell^{\prime}\left(P\left(B_{\boldsymbol{W}^{(i)}, \boldsymbol{V}^{(i)}}\right)(\boldsymbol{x})\right) \cdot \frac{\partial}{\partial \boldsymbol{w}_{l}^{(t)}} \frac{2}{n_{i}} \sum_{j^{\prime}=1}^{n_{i} / 2} g_{\boldsymbol{w}^{\left(i, j^{\prime}\right)}, \boldsymbol{v}^{\left(i, j^{\prime}\right)}}\left(x_{2 j^{\prime}-1}, x_{2 j^{\prime}}\right)\right] \\
& +\mathbb{E}_{(\boldsymbol{x}, y) \sim \Psi(\mathcal{D})}\left[R_{\lambda}^{\prime}\left(P\left(B_{\boldsymbol{W}^{(i)}, \boldsymbol{V}^{(i)}}\right)(\boldsymbol{x})\right) \cdot \frac{\partial}{\partial \boldsymbol{w}_{l}^{(t)}} \frac{2}{n_{i}} \sum_{j^{\prime}=1}^{n_{i} / 2} g_{\boldsymbol{w}^{\left(i, j^{\prime}\right)}, \boldsymbol{v}^{\left(i, j^{\prime}\right)}}\left(x_{2 j^{\prime}-1}, x_{2 j^{\prime}}\right)\right] \\
& =\frac{2}{n_{i}} \mathbb{E}_{\Psi(\mathcal{D})}\left[(\lambda-y) \frac{\partial}{\partial \boldsymbol{w}_{l}^{(t)}} g_{t}\left(x_{2 j-1}, x_{2 j}\right)\right] \\
& =\frac{2}{n_{i}} \mathbb{E}_{\Psi(\mathcal{D})}\left[(\lambda-y) v_{l} \mathbf{1}\left\{g_{t}\left(x_{2 j-1}, x_{2 j}\right) \in(-1,1)\right\} \cdot \mathbf{1}\left\{\left\langle\boldsymbol{w}_{l}^{(t)},\left(x_{2 j-1}, x_{2 j}\right)\right\rangle>0\right\} \cdot\left(x_{2 j-1}, x_{2 j}\right)\right]
\end{aligned}
$$

We use the fact that $\ell^{\prime}\left(P\left(B_{\boldsymbol{W}^{(i)}, \boldsymbol{V}^{(i)}}\right)(\boldsymbol{x})\right)=-y$, unless $P\left(B_{\boldsymbol{W}^{(i)}, \boldsymbol{V}^{(i)}}\right)(\boldsymbol{x}) \in\{ \pm 1\}$, in which case $g_{t}\left(x_{2 j-1}, x_{2 j}\right) \in\{ \pm 1\}$, so $\frac{\partial}{\partial \boldsymbol{w}_{l}^{(t)}} g_{t}\left(x_{2 j-1}, x_{2 j}\right)=0$. Similarly, unless $\frac{\partial}{\partial \boldsymbol{w}_{l}^{(t)}} g_{t}\left(x_{2 j-1}, x_{2 j}\right)=0$, we get that $R_{\lambda}^{\prime}\left(P\left(B_{\boldsymbol{W}^{(i)}, \boldsymbol{V}^{(i)}}\right)(\boldsymbol{x})\right)=\lambda$. Fix some $\boldsymbol{p} \in\{ \pm 1\}^{2}$ such that $\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle>0$. Note that for every $\boldsymbol{p} \neq \boldsymbol{p}^{\prime} \in\{ \pm 1\}^{2}$ we have either $\left\langle\boldsymbol{p}, \boldsymbol{p}^{\prime}\right\rangle=0$, or $\boldsymbol{p}=-\boldsymbol{p}^{\prime}$ in which case $\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}^{\prime}\right\rangle<0$. Therefore, we get the following:

$$
\begin{aligned}
& \left\langle\frac{\partial L_{\Psi(\mathcal{D})}}{\partial \boldsymbol{w}_{l}^{(t)}}, \boldsymbol{p}\right\rangle \\
& =\frac{2}{n_{i}} \mathbb{E}_{\Psi(\mathcal{D})}\left[(\lambda-y) v_{l} \mathbf{1}\left\{g_{t}\left(x_{2 j-1}, x_{2 j}\right) \in(-1,1)\right\} \cdot \mathbf{1}\left\{\left\langle\boldsymbol{w}_{l}^{(t)},\left(x_{2 j-1}, x_{2 j}\right)\right\rangle \geq 0\right\} \cdot\left\langle\left(x_{2 j-1}, x_{2 j}\right), \boldsymbol{p}\right\rangle\right] \\
& =\frac{2}{n_{i}} \mathbb{E}_{\Psi(\mathcal{D})}\left[(\lambda-y) v_{l} \mathbf{1}\left\{g_{t}\left(x_{2 j-1}, x_{2 j}\right) \in(-1,1)\right\} \cdot \mathbf{1}\left\{\left(x_{2 j-1}, x_{2 j}\right)=\boldsymbol{p}\right\}\|\boldsymbol{p}\|^{2}\right]
\end{aligned}
$$

Denote $q_{\boldsymbol{p}}:=\mathbb{P}_{(\boldsymbol{x}, y) \sim \mathcal{D}^{(i)}}\left[\left(x_{2 j-1}, x_{2 j}\right)=\boldsymbol{p} \mid \gamma\left(x_{2 j-1}, x_{2 j}\right)=\gamma(\boldsymbol{p})\right]$. Using property 2, we have:

$$
\begin{aligned}
& \mathbb{P}_{(\boldsymbol{x}, y) \sim \mathcal{D}^{(i)}}\left[\left(x_{2 j-1}, x_{2 j}\right)=\boldsymbol{p}, y=y^{\prime}\right] \\
& =\mathbb{P}_{(\boldsymbol{x}, y) \sim \mathcal{D}^{(i)}}\left[\left(x_{2 j-1}, x_{2 j}\right)=\boldsymbol{p}, y=y^{\prime}, \gamma\left(x_{2 j-1}, x_{2 j}\right)=\gamma(\boldsymbol{p})\right] \\
& =\mathbb{P}_{(\boldsymbol{x}, y) \sim \mathcal{D}^{(i)}}\left[\left(x_{2 j-1}, x_{2 j}\right)=\boldsymbol{p}, y=y^{\prime} \mid \gamma\left(x_{2 j-1}, x_{2 j}\right)=\gamma(\boldsymbol{p})\right] \mathbb{P}_{(\boldsymbol{x}, y) \sim \mathcal{D}^{(i)}}\left[\gamma\left(x_{2 j-1}, x_{2 j}\right)=\gamma(\boldsymbol{p})\right] \\
& =q_{\boldsymbol{P}^{\prime}} \mathbb{x}_{(\boldsymbol{x}, y) \sim \mathcal{D}^{(i)}}\left[\gamma\left(x_{2 j-1}, x_{2 j}\right)=\gamma(\boldsymbol{p}), y=y^{\prime}\right] \\
& =q_{\boldsymbol{P}^{\prime}} \mathbb{P}_{(\boldsymbol{z}, y) \sim \mathcal{D}^{(i-1)}}\left[z_{j}=\gamma(\boldsymbol{p}), y=y^{\prime}\right]
\end{aligned}
$$

And therefore:

$$
\begin{aligned}
\mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}^{(i)}}\left[y \mathbf{1}\left\{\left(x_{2 j-1}, x_{2 j}\right)=\boldsymbol{p}\right\}\right] & =\sum_{y^{\prime} \in\{ \pm 1\}} y^{\prime} \mathbb{P}_{(\boldsymbol{x}, y) \sim \mathcal{D}^{(i)}}\left[\left(x_{2 j-1}, x_{2 j}\right)=\boldsymbol{p}, y=y^{\prime}\right] \\
& =q_{\boldsymbol{p}} \sum_{y^{\prime} \in\{ \pm 1\}} y^{\prime} \mathbb{P}_{(\boldsymbol{z}, y) \sim \mathcal{D}^{(i-1)}}\left[z_{j}=\gamma(\boldsymbol{p}), y=y^{\prime}\right] \\
& =q_{\boldsymbol{p}} \mathbb{E}_{(\boldsymbol{z}, y) \sim \mathcal{D}^{(i-1)}}\left[y \mathbf{1}\left\{z_{j}=\gamma(\boldsymbol{p})\right\}\right]
\end{aligned}
$$

Assuming $g_{t}(\boldsymbol{p}) \in(-1,1)$, using the above we get:

$$
\begin{aligned}
\left\langle\frac{\partial L_{\Psi(\mathcal{D})}}{\partial \boldsymbol{w}_{l}^{(t)}}, \boldsymbol{p}\right\rangle & =\frac{4 v_{l}}{n_{i}} \mathbb{E}_{(\boldsymbol{x}, y) \sim \Psi(\mathcal{D})}\left[(\lambda-y) \mathbf{1}\left\{\left(x_{2 j-1}, x_{2 j}\right)=\boldsymbol{p}\right\}\right] \\
& =\frac{4 v_{l}}{n_{i}} \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}^{(i)}}\left[(\lambda-y) \mathbf{1}\left\{\left(\xi_{2 j-1} x_{2 j-1}, \xi_{2 j} x_{2 j}\right)=\boldsymbol{p}\right\}\right] \\
& =\frac{4 v_{l}}{n_{i}} \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}^{(i)}}\left[(\lambda-y) \mathbf{1}\left\{\left(x_{2 j-1}, x_{2 j}\right)=\widetilde{\boldsymbol{p}}\right\}\right] \\
& =\frac{4 v_{l} q_{\widetilde{\boldsymbol{p}}^{2}}}{n_{i}} \mathbb{E}_{(\boldsymbol{z}, y) \sim \mathcal{D}^{(i-1)}}\left[(\lambda-y) \mathbf{1}\left\{z_{j}=\widetilde{\gamma}(\boldsymbol{p})\right\}\right]
\end{aligned}
$$

Now, we have the following cases:

- If $\mathcal{I}_{i-1, j}=0$, then by property $1 z_{j}$ and y are independent, so:

$$
\begin{aligned}
\left\langle\frac{\partial L_{\Psi(\mathcal{D})}}{\partial \boldsymbol{w}_{l}^{(t)}}, \boldsymbol{p}\right\rangle & =\frac{4 v_{l} q_{\widetilde{\boldsymbol{p}}}}{n_{i}} \mathbb{E}_{(\boldsymbol{z}, y) \sim \mathcal{D}^{(i-1)}}\left[(\lambda-y) \mathbf{1}\left\{z_{j}=\widetilde{\gamma}(\boldsymbol{p})\right\}\right] \\
& =\frac{4 v_{l} q_{\widetilde{\boldsymbol{p}}}}{n_{i}} \mathbb{E}_{(\boldsymbol{z}, y) \sim \mathcal{D}^{(i-1)}}[(\lambda-y)] \mathbb{P}_{(\boldsymbol{z}, y) \sim \mathcal{D}^{(i-1)}}\left[z_{j}=\widetilde{\gamma}(\boldsymbol{p})\right] \\
& =\frac{4 v_{l}}{n_{i}}\left(\lambda-\mathbb{E}_{(\boldsymbol{z}, y) \sim \mathcal{D}^{(i-1)}}[y]\right) \mathbb{P}_{(\boldsymbol{x}, y) \sim \mathcal{D}^{(i)}}\left[\left(x_{2 j-1}, x_{2 j}\right)=\widetilde{\boldsymbol{p}}\right]
\end{aligned}
$$

Since we assume $\widetilde{\gamma}(\boldsymbol{p})=1, \nu_{j}=-1$, and using property 3 and the fact that $\boldsymbol{p} \in \mathcal{P}$, we get that:

$$
\begin{aligned}
-\widetilde{\gamma}(\boldsymbol{p}) v_{l} \nu_{j}\left\langle\frac{\partial L_{\Psi(\mathcal{D})}}{\partial \boldsymbol{w}_{l}^{(t)}}, \boldsymbol{p}\right\rangle & =v_{l}\left\langle\frac{\partial L_{\Psi(\mathcal{D})}}{\partial \boldsymbol{w}_{l}^{(t)}}, \boldsymbol{p}\right\rangle \\
& =\frac{4}{n_{i}}(\lambda-\mathbb{E}[y]) \mathbb{P}_{(\boldsymbol{x}, y) \sim \mathcal{D}^{(i)}}\left[\left(x_{2 j-1}, x_{2 j}\right)=\widetilde{\boldsymbol{p}}\right]>\frac{\Delta \epsilon}{n_{i}}
\end{aligned}
$$

Using the fact that $\lambda=\mathbb{E}[y]+\frac{\Delta}{4}$.

- Otherwise, observe that:

$$
\begin{aligned}
\left\langle\frac{\partial L_{\Psi(\mathcal{D})}}{\partial \boldsymbol{w}_{l}^{(t)}}, \boldsymbol{p}\right\rangle & =\frac{4 v_{l} q_{\widetilde{\boldsymbol{p}}}}{n_{i}} \mathbb{E}_{(\boldsymbol{z}, y) \sim \mathcal{D}^{(i-1)}}\left[(\lambda-y) \mathbf{1}\left\{z_{j}=\widetilde{\gamma}(\boldsymbol{p})\right\}\right] \\
& =\frac{4 v_{l} q_{\widetilde{\boldsymbol{p}}}}{n_{i}}\left(\lambda \mathbb{P}_{(\boldsymbol{z}, y) \sim \mathcal{D}^{(i-1)}}\left[z_{j}=\widetilde{\gamma}(\boldsymbol{p})\right]-\mathbb{E}_{(\boldsymbol{z}, y) \sim \mathcal{D}^{(i-1)}}\left[y \frac{1}{2}\left(z_{j} \cdot \widetilde{\gamma}(\boldsymbol{p})+1\right)\right]\right) \\
& =\frac{2 v_{l} q_{\widetilde{\boldsymbol{p}}}}{n_{i}}\left(2 \lambda \mathbb{P}_{(\boldsymbol{z}, y) \sim \mathcal{D}^{(i-1)}}\left[z_{j}=\widetilde{\gamma}(\boldsymbol{p})\right]-\widetilde{\gamma}(\boldsymbol{p}) c_{i-1, j}-\mathbb{E}_{(\boldsymbol{z}, y) \sim \mathcal{D}^{(i-1)}}[y]\right)
\end{aligned}
$$

And therefore we get:
$-\widetilde{\gamma}(\boldsymbol{p}) v_{l} \operatorname{sign}\left(c_{i-1, j}\right)\left\langle\frac{\partial L_{\Psi(\mathcal{D})}}{\partial \boldsymbol{w}_{l}^{(t)}}, \boldsymbol{p}\right\rangle=\frac{2 q_{\widetilde{\boldsymbol{p}}}}{n_{i}}\left(\left|c_{i-1, j}\right|+\operatorname{sign}\left(c_{i-1, j}\right) \widetilde{\gamma}(\boldsymbol{p})\left(\mathbb{E}[y]-2 \lambda \mathbb{P}\left[z_{j}=\widetilde{\gamma}(\boldsymbol{p})\right]\right)\right)$

Now, if $\operatorname{sign}\left(c_{i-1, j}\right) \widetilde{\gamma}(\boldsymbol{p})=1$, using property 1 , since $\mathcal{I}_{i-1, j} \neq 0$ we get:

$$
-\widetilde{\gamma}(\boldsymbol{p}) v_{l} \operatorname{sign}\left(c_{i-1, j}\right)\left\langle\frac{\partial L_{\Psi(\mathcal{D})}}{\partial \boldsymbol{w}_{l}^{(t)}}, \boldsymbol{p}\right\rangle \geq \frac{q_{\widetilde{\boldsymbol{p}}}}{n_{i}}\left(\left|c_{i-1, j}\right|+\mathbb{E}[y]-2 \lambda\right)>\frac{\epsilon}{n_{i}} \Delta
$$

Otherwise, we have $\operatorname{sign}\left(c_{i-1, j}\right) \widetilde{\gamma}(\boldsymbol{p})=-1$, and then:

$$
-\widetilde{\gamma}(\boldsymbol{p}) v_{l} \operatorname{sign}\left(c_{i-1, j}\right)\left\langle\frac{\partial L_{\Psi(\mathcal{D})}}{\partial \boldsymbol{w}_{l}^{(t)}}, \boldsymbol{p}\right\rangle \geq \frac{q_{\widetilde{\boldsymbol{p}}}}{n_{i}}\left(\left|c_{i-1, j}\right|-\mathbb{E}[y]\right)>\frac{2 \epsilon}{n_{i}} \Delta
$$

where we use property 3 and the fact that $\boldsymbol{p} \in \mathcal{P}$.

We introduce the following notation: for a sample $S \subseteq \mathcal{X}^{\prime} \times \mathcal{Y}$, and some function $f: \mathcal{X}^{\prime} \rightarrow \mathcal{X}^{\prime}$, denote by $f(S)$ the sample $f(S):=\{(f(\boldsymbol{x}), y)\}_{(\boldsymbol{x}, y) \in S}$. Using standard concentration of measure arguments, we get that the gradient on the sample approximates the gradient on the distribution:
Lemma 4. Fix $\delta>0$. Assume we sample $S \sim \mathcal{D}$, with $|S|>\frac{2^{11}}{\epsilon^{2} \Delta^{2}} \log \frac{8}{\delta}$. Then, with probability at least $1-\delta$, for every $\boldsymbol{p} \in\{ \pm 1\}^{2}$ such that $\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle>0$ it holds that:

$$
\left|\left\langle\frac{\partial L_{\Psi(\mathcal{D})}}{\partial \boldsymbol{w}_{l}^{(t)}}, \boldsymbol{p}\right\rangle-\left\langle\frac{\partial L_{\Psi(S)}}{\partial \boldsymbol{w}_{l}^{(t)}}, \boldsymbol{p}\right\rangle\right| \leq \frac{\epsilon}{4 n_{i}} \Delta
$$

Proof. Fix some $\boldsymbol{p} \in\{ \pm 1\}^{2}$ with $\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle>0$. Similar to what we previously showed, we get that:

$$
\begin{aligned}
& \left\langle\frac{\partial L_{\Psi(S)}}{\partial \boldsymbol{w}_{l}^{(t)}}, \boldsymbol{p}\right\rangle \\
& =\frac{2}{n_{i}} \mathbb{E}_{(\boldsymbol{x}, y) \sim \Psi(S)}\left[(\lambda-y) v_{l} \mathbf{1}\left\{g_{t}\left(x_{2 j-1}, x_{2 j}\right) \in(-1,1)\right\} \cdot \mathbf{1}\left\{\left\langle\boldsymbol{w}_{l}^{(t)},\left(x_{2 j-1}, x_{2 j}\right)\right\rangle \geq 0\right\} \cdot\left\langle\left(x_{2 j-1}, x_{2 j}\right), \boldsymbol{p}\right\rangle\right] \\
& =\frac{2}{n_{i}} \mathbb{E}_{(\boldsymbol{x}, y) \sim \Psi(S)}\left[(\lambda-y) v_{l} \mathbf{1}\left\{g_{t}\left(x_{2 j-1}, x_{2 j}\right) \in(-1,1)\right\} \cdot \mathbf{1}\left\{\left(x_{2 j-1}, x_{2 j}\right)=\boldsymbol{p}\right\}\|\boldsymbol{p}\|^{2}\right] \\
& =\frac{4}{n_{i}} \mathbb{E}_{(\boldsymbol{x}, y) \sim \Psi(S)}\left[(\lambda-y) v_{l} \mathbf{1}\left\{g_{t}\left(x_{2 j-1}, x_{2 j}\right) \in(-1,1)\right\} \cdot \mathbf{1}\left\{\left(x_{2 j-1}, x_{2 j}\right)=\boldsymbol{p}\right\}\right]
\end{aligned}
$$

Denote $f(\boldsymbol{x}, y)=(\lambda-y) v_{l} \mathbf{1}\left\{g_{t}\left(x_{2 j-1}, x_{2 j}\right) \in(-1,1)\right\} \cdot \mathbf{1}\left\{\left(x_{2 j-1}, x_{2 j}\right)=\boldsymbol{p}\right\}$, and notice that since $\lambda \leq 1$, we have $f(\boldsymbol{x}, y) \in[-2,2]$. Now, from Hoeffding's inequality we get that:

$$
\mathbb{P}_{S}\left[\left|\mathbb{E}_{\Psi(S)}[f(\boldsymbol{x}, y)]-\mathbb{E}_{\Psi(\mathcal{D})}[f(\boldsymbol{x}, y)]\right| \geq \tau\right] \leq 2 \exp \left(-\frac{1}{8}|S| \tau^{2}\right)
$$

So, for $|S|>\frac{8}{\tau^{2}} \log \frac{8}{\delta}$ we get that with probability at least $1-\frac{\delta}{4}$ we have:

$$
\left|\left\langle\frac{\partial L_{\Psi(\mathcal{D})}}{\partial \boldsymbol{w}_{l}^{(t)}}, \boldsymbol{p}\right\rangle-\left\langle\frac{\partial L_{\Psi(S)}}{\partial \boldsymbol{w}_{l}^{(t)}}, \boldsymbol{p}\right\rangle\right|=\frac{4}{n_{i}}\left|\mathbb{E}_{\Psi(S)}[f(\boldsymbol{x}, y)]-\mathbb{E}_{\Psi(\mathcal{D})}[f(\boldsymbol{x}, y)]\right|<\frac{4}{n_{i}} \tau
$$

Taking $\tau=\frac{\epsilon}{16} \Delta$ and using the union bound over all $\boldsymbol{p} \in\{ \pm 1\}^{2}$ completes the proof.
Using the two previous lemmas, we can estimate the behavior of the gradient on the sample, with respect to a given pattern \boldsymbol{p} :
Lemma 5. Fix $\delta>0$. Assume we sample $S \sim \mathcal{D}$, with $|S|>\frac{2^{11}}{\epsilon^{2} \Delta^{2}} \log \frac{8}{\delta}$. Then, with probability at least $1-\delta$, for every $\boldsymbol{p} \in \mathcal{P}$, and for every $l \in[k]$ such that $\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle>0$ and $g_{t}(\boldsymbol{p}) \in(-1,1)$, the following holds:

$$
-\widetilde{\gamma}(\boldsymbol{p}) v_{l} \nu_{j}\left\langle\frac{\partial L_{\Psi(S)}}{\partial \boldsymbol{w}_{l}^{(t)}}, \boldsymbol{p}\right\rangle>\frac{\epsilon}{2 n_{i}} \Delta
$$

Proof. Using Lemma 3 and Lemma 4, with probability at least $1-\delta$:

$$
\begin{aligned}
-\widetilde{\gamma}(\boldsymbol{p}) v_{l} \nu_{j}\left\langle\frac{\partial L_{\Psi(S)}}{\partial \boldsymbol{w}_{l}^{(t)}}, \boldsymbol{p}\right\rangle & =-\widetilde{\gamma}(\boldsymbol{p}) v_{l} \nu_{j}\left(\left\langle\frac{\partial L_{\Psi(\mathcal{D})}}{\partial \boldsymbol{w}_{l}^{(t)}}, \boldsymbol{p}\right\rangle+\left\langle\frac{\partial L_{\Psi(S)}}{\partial \boldsymbol{w}_{l}^{(t)}}, \boldsymbol{p}\right\rangle-\left\langle\frac{\partial L_{\Psi(\mathcal{D})}}{\partial \boldsymbol{w}_{l}^{(t)}}, \boldsymbol{p}\right\rangle\right) \\
& \geq-\widetilde{\gamma}(\boldsymbol{p}) v_{l} \nu_{j}\left\langle\frac{\partial L_{\Psi(\mathcal{D})}}{\partial \boldsymbol{w}_{l}^{(t)}}, \boldsymbol{p}\right\rangle-\left|\left\langle\frac{\partial L_{\Psi(S)}}{\partial \boldsymbol{w}_{l}^{(t)}}, \boldsymbol{p}\right\rangle-\left\langle\frac{\partial L_{\Psi(\mathcal{D})}}{\partial \boldsymbol{w}_{l}^{(t)}}, \boldsymbol{p}\right\rangle\right| \\
& >\frac{\epsilon}{n_{i}} \Delta-\frac{\epsilon}{4 n_{i}} \Delta \geq \frac{3 \epsilon}{4 n_{i}} \Delta
\end{aligned}
$$

We want to show that if the value of g_{t} gets "stuck", then it recovered the value of the gate, multiplied by the correlation $c_{i-1, j}$. We do this by observing the dynamics of $\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle$. In most cases, its value moves in the right direction, except for a small set that oscillates around zero. This set is the following:

$$
A_{t}=\left\{(l, \boldsymbol{p}): \boldsymbol{p} \in \mathcal{P} \wedge \widetilde{\gamma}(\boldsymbol{p}) v_{l} \nu_{j}<0 \wedge\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle \leq \frac{8 \eta}{n_{i}} \wedge\left(\widetilde{\gamma}(-\boldsymbol{p}) v_{l} \nu_{j}<0 \vee-\boldsymbol{p} \in \mathcal{P}\right)\right\}
$$

We have the following simple observation:
Lemma 6. With the assumptions of Lemma 5, with probability at least $1-\delta$, for every t we have: $A_{t} \subseteq A_{t+1}$.

Proof. Fix some $(l, \boldsymbol{p}) \in A_{t}$, and we need to show that $\left\langle\boldsymbol{w}_{l}^{(t+1)}, \boldsymbol{p}\right\rangle \leq \frac{8 \eta}{n_{i}}$. If $\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle=0$ then ${ }^{4}$ $\left\langle\boldsymbol{w}_{l}^{(t+1)}, \boldsymbol{p}\right\rangle=\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle \leq \frac{8 \eta}{n_{i}}$ and we are done. If $\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle>0$ then, since $\boldsymbol{p} \in \mathcal{P}$ we have from Lemma 5, w.p at least $1-\delta$:

$$
-\left\langle\frac{\partial L_{\Psi(S)}}{\partial \boldsymbol{w}_{l}^{(t)}}, \boldsymbol{p}\right\rangle<\widetilde{\gamma}(\boldsymbol{p}) v_{l} \nu_{j} \frac{\epsilon}{2 n_{i}} \Delta<0
$$

Where we use the fact that $\widetilde{\gamma}(\boldsymbol{p}) v_{l} \nu_{j}<0$. Therefore, we get:

$$
\left\langle\boldsymbol{w}_{l}^{(t+1)}, \boldsymbol{p}\right\rangle=\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle-\eta\left\langle\frac{\partial L_{\Psi(S)}}{\partial \boldsymbol{w}_{l}^{(t)}}, \boldsymbol{p}\right\rangle \leq\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle \leq \frac{8 \eta}{n_{i}}
$$

Otherwise, we have $\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle<0$, so:

$$
\left\langle\boldsymbol{w}_{l}^{(t+1)}, \boldsymbol{p}\right\rangle=\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle-\eta\left\langle\frac{\partial L_{\Psi(S)}}{\partial \boldsymbol{w}_{l}^{(t)}}, \boldsymbol{p}\right\rangle \leq\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle+\frac{8 \eta}{n_{i}} \leq \frac{8 \eta}{n_{i}}
$$

Now, we want to show that all $\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle$ with $(l, \boldsymbol{p}) \notin A_{t}$ and $\boldsymbol{p} \in \mathcal{P}$ move in the direction of $\widetilde{\gamma}(\boldsymbol{p}) \cdot \nu_{j}$:
Lemma 7. With the assumptions of Lemma 5, with probability at least $1-\delta$, for every l, t and $\boldsymbol{p} \in \mathcal{P}$ such that $\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle>0$ and $(l, \boldsymbol{p}) \notin A_{t}$, it holds that:

$$
\left(\sigma\left(\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle\right)-\sigma\left(\left\langle\boldsymbol{w}_{l}^{(t-1)}, \boldsymbol{p}\right\rangle\right)\right) \cdot \widetilde{\gamma}(\boldsymbol{p}) v_{l} \nu_{j} \geq 0
$$

Proof. Assume the result of Lemma 5 holds (this happens with probability at least $1-\delta$). We cannot have $\left\langle\boldsymbol{w}_{l}^{(t-1)}, \boldsymbol{p}\right\rangle=0$, since otherwise we would have $\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle=0$, contradicting the assumption. If $\left\langle\boldsymbol{w}_{l}^{(t-1)}, \boldsymbol{p}\right\rangle>0$, since we require $\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle>0$ we get that:

$$
\sigma\left(\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle\right)-\sigma\left(\left\langle\boldsymbol{w}_{l}^{(t-1)}, \boldsymbol{p}\right\rangle\right)=\left\langle\boldsymbol{w}_{l}^{(t)}-\boldsymbol{w}_{l}^{(t-1)}, \boldsymbol{p}\right\rangle=-\eta\left\langle\frac{\partial L_{\Psi(S)}}{\partial \boldsymbol{w}_{l}^{(t-1)}}, \boldsymbol{p}\right\rangle
$$

and the required follows from Lemma 5. Otherwise, we have $\left\langle\boldsymbol{w}_{l}^{(t-1)}, \boldsymbol{p}\right\rangle<0$. We observe the following cases:

[^0]- If $\widetilde{\gamma}(\boldsymbol{p}) v_{l} \nu_{j} \geq 0$ then we are done, since:

$$
\left(\sigma\left(\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle\right)-\sigma\left(\left\langle\boldsymbol{w}_{l}^{(t-1)}, \boldsymbol{p}\right\rangle\right)\right) \cdot \widetilde{\gamma}(\boldsymbol{p}) v_{l} \nu_{j}=\sigma\left(\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle\right) \cdot \widetilde{\gamma}(\boldsymbol{p}) v_{l} \nu_{j} \geq 0
$$

- Otherwise, we have $\widetilde{\gamma}(\boldsymbol{p}) v_{l} \nu_{j}<0$. We also have:

$$
\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle=\left\langle\boldsymbol{w}_{l}^{(t-1)}, \boldsymbol{p}\right\rangle-\eta\left\langle\frac{\partial L_{\Psi(S)}}{\partial \boldsymbol{w}_{l}^{(t)}}, \boldsymbol{p}\right\rangle \leq\left\langle\boldsymbol{w}_{l}^{(t-1)}, \boldsymbol{p}\right\rangle+\frac{8 \eta}{n_{i}} \leq \frac{8 \eta}{n_{i}}
$$

Since we assume $(l, \boldsymbol{p}) \notin A_{t}$, we must have $-\boldsymbol{p} \in \mathcal{P}$ and $\widetilde{\gamma}(-\boldsymbol{p}) v_{l} \nu_{j} \geq 0$. Therefore, from Lemma 5 we get:

$$
\left\langle\frac{\partial L_{\Psi(S)}}{\partial \boldsymbol{w}_{l}^{(t)}},-\boldsymbol{p}\right\rangle<-\widetilde{\gamma}(-\boldsymbol{p}) v_{l} \nu_{j} \frac{\epsilon}{2 n_{i}} \Delta
$$

And hence:

$$
0<\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle=\left\langle\boldsymbol{w}_{l}^{(t-1)}, \boldsymbol{p}\right\rangle+\eta\left\langle\frac{\partial L_{\Psi(S)}}{\partial \boldsymbol{w}_{l}^{(t-1)}},-\boldsymbol{p}\right\rangle \leq-\eta \widetilde{\gamma}(-\boldsymbol{p}) v_{l} \nu_{j} \frac{\epsilon}{2 n_{i}} \Delta<0
$$

and we reach a contradiction.

From the above, we get the following:
Corollary 1. With the assumptions of Lemma 5, with probability at least $1-\delta$, for every l,t and $\boldsymbol{p} \in \mathcal{P}$ such that $\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle>0$ and $(l, \boldsymbol{p}) \notin A_{t}$, the following holds:

$$
\left(\sigma\left(\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle\right)-\sigma\left(\left\langle\boldsymbol{w}_{l}^{(0)}, \boldsymbol{p}\right\rangle\right)\right) \cdot \widetilde{\gamma}(\boldsymbol{p}) v_{l} \nu_{j} \geq 0
$$

Proof. Notice that for every $t^{\prime} \leq t$ we have $(l, \boldsymbol{p}) \notin A_{t^{\prime}} \subseteq A_{t}$. Therefore, using the previous lemma:

$$
\left(\sigma\left(\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle\right)-\sigma\left(\left\langle\boldsymbol{w}_{l}^{(0)}, \boldsymbol{p}\right\rangle\right)\right) \cdot \widetilde{\gamma}(\boldsymbol{p}) v_{l} \nu_{j}=\sum_{1 \leq t^{\prime} \leq t}\left(\sigma\left(\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle\right)-\sigma\left(\left\langle\boldsymbol{w}_{l}^{\left(t^{\prime}\right)}, \boldsymbol{p}\right\rangle\right)\right) \cdot \widetilde{\gamma}(\boldsymbol{p}) v_{l} \nu_{j} \geq 0
$$

Finally, we need to show that there are some "good" neurons, that are moving strictly away from zero:
Lemma 8. Fix $\delta>0$. Assume we sample $S \sim \mathcal{D}$, with $|S|>\frac{2^{11}}{\epsilon^{2} \Delta^{2}} \log \frac{8}{\delta}$. Assume that $k \geq$ $\log ^{-1}\left(\frac{4}{3}\right) \log \left(\frac{4}{\delta}\right)$. Then with probability at least $1-2 \delta$, for every $\boldsymbol{p} \in \mathcal{P}$, there exists $l \in[k]$ such that for every t with $g_{t-1}(\boldsymbol{p}) \in(-1,1)$, we have:

$$
\sigma\left(\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle\right) \cdot \widetilde{\gamma}(\boldsymbol{p}) v_{l} \nu_{j} \geq \eta t \frac{\epsilon}{2 n_{i}} \Delta
$$

Proof. Assume the result of Lemma 5 holds (happens with probability at least $1-\delta$). Fix some $\boldsymbol{p} \in \mathcal{P}$. For $l \in[k]$, with probability $\frac{1}{4}$ we have both $v_{l}=\widetilde{\gamma}(\boldsymbol{p}) \nu_{j}$ and $\left\langle\boldsymbol{w}_{l}^{(0)}, \boldsymbol{p}\right\rangle>0$. Therefore, the probability that there exists $l \in[k]$ such that the above holds is $1-\left(\frac{3}{4}\right)^{k} \geq 1-\frac{\delta}{4}$. Using the union bound, w.p at least $1-\delta$, there exists such $l \in[k]$ for every $\boldsymbol{p} \in\{ \pm 1\}^{2}$. In such case, we have $\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle \geq \eta t \frac{\epsilon}{2 n_{i}} \Delta$, by induction:

- For $t=0$ this is true since $\left\langle\boldsymbol{w}_{l}^{(0)}, \boldsymbol{p}\right\rangle>0$.
- If the above holds for $t-1$, then $\left\langle\boldsymbol{w}_{l}^{(t-1)}, \boldsymbol{p}\right\rangle>0$, and therefore, using $v_{l}=\widetilde{\gamma}(\boldsymbol{p}) \nu_{j}$ and Lemma 5:

$$
-\left\langle\frac{\partial L_{\Psi(\mathcal{D})}}{\partial \boldsymbol{w}_{l}^{(t)}}, \boldsymbol{p}\right\rangle>\widetilde{\gamma}(\boldsymbol{p}) v_{l} \nu_{j} \frac{\epsilon}{2 n_{i}} \Delta
$$

And we get:

$$
\begin{aligned}
\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle & =\left\langle\boldsymbol{w}_{l}^{(t-1)}, \boldsymbol{p}\right\rangle-\eta\left\langle\frac{\partial L_{\Psi(\mathcal{D})}}{\partial \boldsymbol{w}_{l}^{(t)}}, \boldsymbol{p}\right\rangle \\
& >\left\langle\boldsymbol{w}_{l}^{(t-1)}, \boldsymbol{p}\right\rangle+\eta \widetilde{\gamma}(\boldsymbol{p}) v_{l} \nu_{j} \frac{\epsilon}{2 n_{i}} \Delta \\
& \geq \eta(t-1) \frac{\epsilon}{2 n_{i}} \Delta+\eta \frac{\epsilon}{2 n_{i}} \Delta
\end{aligned}
$$

Using the above results, we can analyze the behavior of $g_{t}(\boldsymbol{p})$:
Lemma 9. Assume we initialize $\boldsymbol{w}_{l}^{(0)}$ such that $\left\|\boldsymbol{w}_{l}^{(0)}\right\| \leq \frac{1}{4 k}$. Fix $\delta>0$. Assume we sample $S \sim \mathcal{D}$, with $|S|>\frac{2^{11}}{\epsilon^{2} \Delta^{2}} \log \frac{8}{\delta}$. Then with probability at least $1-2 \delta$, for every $\boldsymbol{p} \in \mathcal{P}$, for $t>\frac{6 n_{i}}{\sqrt{2} \eta \in \Delta}$ we have:

$$
g_{t}(\boldsymbol{p})=\widetilde{\gamma}(\boldsymbol{p}) \nu_{j}
$$

Proof. Using Lemma 8, w.p at least $1-2 \delta$, for every such \boldsymbol{p} there exists $l_{\boldsymbol{p}} \in[k]$ such that for every t with $g_{t-1}(\boldsymbol{p}) \in(-1,1)$:

$$
v_{l_{p}} \sigma\left(\left\langle\boldsymbol{w}_{l_{p}}^{(t)}, \boldsymbol{p}\right\rangle\right) \cdot \widetilde{\gamma}(\boldsymbol{p}) \nu_{j} \geq \eta t \frac{\epsilon}{2 n_{i}} \Delta
$$

Assume this holds, and fix some $\boldsymbol{p} \in \mathcal{P}$. Let t, such that $g_{t-1}(\boldsymbol{p}) \in(-1,1)$. Denote the set of indexes $J=\left\{l:\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle>0\right\}$. We have the following:

$$
\begin{aligned}
g_{t}(\boldsymbol{p}) & =\sum_{l \in J} v_{l} \sigma\left(\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle\right) \\
& =v_{l_{p}} \sigma\left(\left\langle\boldsymbol{w}_{l_{\boldsymbol{p}}}^{(t)}, \boldsymbol{p}\right\rangle\right)+\sum_{l \in J \backslash\left\{l_{\boldsymbol{p}}\right\},(l, \boldsymbol{p}) \notin A_{t}} v_{l} \sigma\left(\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle\right)+\sum_{l \in J \backslash\left\{l_{\boldsymbol{p}}\right\},(l, \boldsymbol{p}) \in A_{t}} v_{l} \sigma\left(\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle\right)
\end{aligned}
$$

From Corollary 1 we have:

$$
\widetilde{\gamma}(\boldsymbol{p}) \nu_{j} \cdot \sum_{l \in J \backslash\left\{l_{\boldsymbol{p}}\right\},(l, \boldsymbol{p}) \notin A_{t}} v_{l} \sigma\left(\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle\right) \geq-k \sigma\left(\left\langle\boldsymbol{w}_{l}^{(0)}, \boldsymbol{p}\right\rangle\right) \geq-\frac{1}{4}
$$

By definition of A_{t} and by our assumption on η we have:

$$
\widetilde{\gamma}(\boldsymbol{p}) \nu_{j} \cdot \sum_{l \in J \backslash\left\{l_{\boldsymbol{p}}\right\},(l, \boldsymbol{p}) \in A_{t}} v_{l} \sigma\left(\left\langle\boldsymbol{w}_{l}^{(t)}, \boldsymbol{p}\right\rangle\right) \geq-k \frac{8 \eta}{n_{i}} \geq-\frac{1}{4}
$$

Therefore, we get:

$$
\widetilde{\gamma}(\boldsymbol{p}) \nu_{j} \cdot g_{t}(\boldsymbol{p}) \geq \eta t \frac{\epsilon}{2 \sqrt{2} n_{i}} \Delta-\frac{1}{2}
$$

This shows that for $t>\frac{6 n_{i}}{\sqrt{2} \eta \epsilon \Delta}$ we get the required.

Proof. of Lemma 2. Using the result of Lemma 9, with union bound over all choices of $j \in\left[n_{i} / 2\right]$. The required follows by the definition of $\widetilde{\gamma}\left(x_{2 j-1}, x_{2 j}\right)=\gamma_{i-1, j}\left(\xi_{2 j-1} x_{2 j-1}, \xi_{2 j} x_{2 j}\right)$.

B Proofs of Section 3.2

Proof. of Lemma 1. Property 1 is immediate from assumption 1. For property 2, fix some $i \in$ $[d], j \in\left[n_{i} / 2\right], \boldsymbol{p} \in\{ \pm 1\}^{2}, y^{\prime} \in\{ \pm 1\}$, such that:

$$
\mathbb{P}_{(\boldsymbol{x}, y) \sim \mathcal{D}^{(i)}}\left[\gamma_{i-1, j}\left(x_{2 j-1}, x_{2 j}\right)=\gamma_{i-1, j}(\boldsymbol{p})\right]>0
$$

Assume w.l.o.g. that $j=1$. Denote by W the set of all possible choices for $x_{3}, \ldots, x_{n_{i}}$, such that when $\left(x_{1}, x_{2}\right)=\boldsymbol{p}$, the resulting label is y^{\prime}. Formally:

$$
W:=\left\{\left(x_{3}, \ldots, x_{n_{i}}\right): \Gamma_{i \ldots d}\left(p_{1}, p_{2}, x_{3}, \ldots, x_{n_{i}}\right)=y^{\prime}\right\}
$$

Then we get:

$$
\begin{aligned}
& \mathbb{P}_{\mathcal{D}^{(i)}}\left[\left(x_{1}, x_{2}\right)=\boldsymbol{p}, y=y^{\prime}, \gamma_{i-1, j}\left(x_{1}, x_{2}\right)=\gamma_{i-1, j}(\boldsymbol{p})\right] \\
& =\mathbb{P}_{\mathcal{D}^{(i)}}\left[\left(x_{1}, x_{2}\right)=\boldsymbol{p},\left(x_{3}, \ldots, x_{n_{i}}\right) \in W, \gamma_{i-1, j}\left(x_{1}, x_{2}\right)=\gamma_{i-1, j}(\boldsymbol{p})\right] \\
& =\mathbb{P}_{\mathcal{D}^{(i)}}\left[\left(x_{1}, x_{2}\right)=\boldsymbol{p}, \gamma_{i-1, j}\left(x_{1}, x_{2}\right)=\gamma_{i-1, j}(\boldsymbol{p})\right] \cdot \mathbb{P}_{\mathcal{D}^{(i)}}\left[\left(x_{3}, \ldots, x_{n_{i}}\right) \in W\right] \\
& =\mathbb{P}_{\mathcal{D}^{(i)}}\left[\left(x_{1}, x_{2}\right)=\boldsymbol{p} \mid \gamma_{i-1, j}\left(x_{1}, x_{2}\right)=\gamma_{i-1, j}(\boldsymbol{p})\right] \cdot \mathbb{P}_{\mathcal{D}^{(i)}}\left[\gamma_{i-1, j}\left(x_{1}, x_{2}\right)=\gamma_{i-1, j}(\boldsymbol{p}),\left(x_{3}, \ldots, x_{n_{i}}\right) \in W\right] \\
& =\mathbb{P}_{\mathcal{D}^{(i)}}\left[\left(x_{1}, x_{2}\right)=\boldsymbol{p} \mid \gamma_{i-1, j}\left(x_{1}, x_{2}\right)=\gamma_{i-1, j}(\boldsymbol{p})\right] \cdot \mathbb{P}_{\mathcal{D}^{(i)}}\left[y=y^{\prime}, \gamma_{i-1, j}\left(x_{1}, x_{2}\right)=\gamma_{i-1, j}(\boldsymbol{p})\right]
\end{aligned}
$$

And dividing by $\mathbb{P}_{\mathcal{D}^{(i)}}\left[\gamma_{i-1, j}\left(x_{1}, x_{2}\right)=\gamma_{i-1, j}(\boldsymbol{p})\right]$ gives the required.
For property 3 , we observe two cases. If $c_{i, j} \geq 0$ then:

$$
\begin{aligned}
\Delta \leq c_{i, j}-\mathbb{E}[y] & =\mathbb{E}\left[x_{j} y-y\right]=\mathbb{E}\left[y\left(x_{j}-1\right)\right] \\
& =2 \mathbb{P}\left[x_{j}=-1 \wedge y=-1\right]-2 \mathbb{P}\left[x_{j}=-1 \wedge y=1\right] \\
& \leq 2 \mathbb{P}\left[x_{j}=-1 \wedge y=-1\right] \leq 2 \mathbb{P}\left[x_{j}=-1\right]
\end{aligned}
$$

Otherwise, if $c_{i, j}<0$ we have:

$$
\begin{aligned}
\Delta \leq-c_{i, j}-\mathbb{E}[y] & =\mathbb{E}\left[-x_{j} y-y\right]=-\mathbb{E}\left[y\left(x_{j}+1\right)\right] \\
& =2 \mathbb{P}\left[x_{j}=1 \wedge y=-1\right]-2 \mathbb{P}\left[x_{j}=1 \wedge y=1\right] \\
& \leq 2 \mathbb{P}\left[x_{j}=1 \wedge y=-1\right] \leq 2 \mathbb{P}\left[x_{j}=1\right]
\end{aligned}
$$

So, in any case $\mathbb{P}\left[x_{j}=1\right] \in\left(\frac{\Delta}{2}, 1-\frac{\Delta}{2}\right)$, and since every bit in every layer is independent, we get property 3 holds with $\epsilon=\frac{\Delta^{2}}{4}$.

C Proofs of Section 3.3

C. 1 Parity Circuits

We observe the k-parity problem, where the target function is $f(\boldsymbol{x})=\prod_{j \in I} x_{j}$ some subset $I \subseteq[n]$ of size $|I|=k$. A simple construction shows that f can be implemented by a tree structured circuit as defined previously. We define the gates of the first layer by:

$$
\gamma_{d-1, j}\left(z_{1}, z_{2}\right)= \begin{cases}z_{1} z_{2} & x_{2 j-1}, x_{2 j} \in I \\ z_{1} & x_{2 j-1} \in I, x_{2 j} \notin I \\ z_{2} & x_{2 j} \in I, x_{2 j-1} \notin I \\ 1 & o . w\end{cases}
$$

And for all other layers $i<d-1$, we define: $\gamma_{i, j}\left(z_{1}, z_{1}\right)=z_{1} z_{2}$. Then we get the following:
Lemma 10. Let C be a Boolean circuit as defined above. Then: $h_{C}(\boldsymbol{x})=\prod_{j \in I} x_{j}=f(\boldsymbol{x})$.
Now, let $\mathcal{D}_{\mathcal{X}}$ be some product distribution over \mathcal{X}, and denote $p_{j}:=\mathbb{P}_{\mathcal{D}_{\mathcal{X}}}\left[x_{j}=1\right]$. Let \mathcal{D} be the distribution of $(\boldsymbol{x}, f(\boldsymbol{x}))$ where $\boldsymbol{x} \sim \mathcal{D}_{\mathcal{X}}$. Then for the circuit defined above we get the following:
Lemma 11. Fix some $\xi \in\left(0, \frac{1}{4}\right)$. For every product distribution \mathcal{D} with $p_{j} \in\left(\xi, \frac{1}{2}-\xi\right) \cup\left(\frac{1}{2}+\xi, 1-\xi\right)$ for all j, if $\mathcal{I}_{i, j} \neq 0$ then $\left|c_{i, j}\right|-|\mathbb{E}[y]| \geq(2 \xi)^{k}$ and $\mathbb{P}_{(\boldsymbol{z}, y) \sim \Gamma_{(i+1) \ldots d}(\mathcal{D})}\left[z_{j}=1\right] \in(\xi, 1-\xi)$.

The above lemma shows that every non-degenerate product distribution that is far enough from the uniform distribution, satisfies assumption 1 with $\Delta=(2 \xi)^{k}$. Using the fact that at each layer, the output of each gate is an independent random variable (since the input distribution is a product distribution), we get that property 3 is satisfied with $\epsilon=\xi^{2}$. This gives us the following result:
Corollary 2. Let \mathcal{D} be a product distribution with $p_{j} \in\left(\xi, \frac{1}{2}-\xi\right) \cup\left(\frac{1}{2}+\xi, 1-\xi\right)$ for every j, with the target function being a $(\log n)$-parity (i.e., $k=\log n$). Then, when running algorithm 1 as described in Theorem 2, with probability at least $1-\delta$ the algorithm returns the true target function h_{C}, with run-time and sample complexity polynomial in n.

Proof. of Lemma 10.
For every gate (i, j), let $J_{i, j}$ be the subset of leaves in the binary tree whose root is the node (i, j). Namely, $J_{i, j}:=\left\{(j-1) 2^{d-i}+1, \ldots, j 2^{d-i}\right\}$. Then we show inductively that for an input $\boldsymbol{x} \in$ $\{ \pm 1\}^{n}$, the (i, j) gate outputs: $\prod_{l \in I \cap J_{i, j}} x_{l}$:

- For $i=d-1$, this is immediate from the definition of the gate $\gamma_{d-1, j}$.
- Assume the above is true for some i and we will show this for $i-1$. By definition of the circuit, the output of the $(i-1, j)$ gate is a product of the output of its inputs from the previous layers, the gates $(i, 2 j-1),(i, 2 j)$. By the inductive assumption, we get that the output of the $(i-1, j)$ gate is therefore:

$$
\left(\prod_{l \in J_{i, 2 j-1} \cap I} x_{l}\right) \cdot\left(\prod_{l \in J_{i, 2 j} \cap I} x_{l}\right)=\prod_{l \in\left(J_{i, j 2-1} \cup J_{i, 2 j}\right) \cap I} x_{l}=\prod_{l \in J_{i-1, j}} x_{l}
$$

From the above, the output of the target circuit is $\prod_{l \in J_{0,1} \cap I} x_{l}=\prod_{l \in I} x_{l}$, as required.
Proof. of Lemma 11.
By definition we have:
$c_{i, j}=\mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}}\left[\Gamma_{(i+1) \ldots d}(\boldsymbol{x})_{j} y\right]=\mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}}\left[\Gamma_{(i+1) \ldots d}(\boldsymbol{x})_{j} y\right]=\mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}}\left[\Gamma_{(i+1) \ldots d}(\boldsymbol{x})_{j} x_{1} \cdots x_{k}\right]$
Since we require $\mathcal{I}_{i, j} \neq 0$, then we cannot have $\Gamma_{(i+1) \ldots d}(\boldsymbol{x})_{j} \equiv 1$. So, from what we showed previously, it follows that $\Gamma_{(i+1) \ldots d}(\boldsymbol{x})_{j}=\prod_{j^{\prime} \in I^{\prime}} x_{j^{\prime}}$ for some $\emptyset \neq I^{\prime} \subseteq I$. Therefore, we get that:

$$
c_{i, j}=\mathbb{E}_{\mathcal{D}}\left[\prod_{j^{\prime} \in I \backslash I^{\prime}} x_{j^{\prime}}\right]=\prod_{j^{\prime} \in I \backslash I^{\prime}} \mathbb{E}_{\mathcal{D}}\left[x_{j^{\prime}}\right]=\prod_{j^{\prime} \in I \backslash I^{\prime}}\left(2 p_{j^{\prime}}-1\right)
$$

Furthermore, we have that:

$$
\mathbb{E}_{\mathcal{D}}[y]=\mathbb{E}_{\mathcal{D}}\left[\prod_{j^{\prime} \in I} x_{j^{\prime}}\right]=\prod_{j^{\prime} \in I} \mathbb{E}_{\mathcal{D}}\left[x_{j^{\prime}}\right]=\prod_{j^{\prime} \in I}\left(2 p_{j^{\prime}}-1\right)
$$

And using the assumption on p_{j} we get:

$$
\begin{aligned}
\left|c_{i, j}\right|-\left|\mathbb{E}_{\mathcal{D}}[y]\right| & =\prod_{j^{\prime} \in[k] \backslash I^{\prime}}\left|2 p_{j^{\prime}}-1\right|-\prod_{j^{\prime} \in[k]}\left|2 p_{j^{\prime}}-1\right| \\
& =\left(\prod_{j^{\prime} \in[k] \backslash I^{\prime}}\left|2 p_{j^{\prime}}-1\right|\right)\left(1-\prod_{j^{\prime} \in I^{\prime}}\left|2 p_{j^{\prime}}-1\right|\right) \\
& \geq\left(\prod_{j^{\prime} \in[k] \backslash I^{\prime}}\left|2 p_{j^{\prime}}-1\right|\right)\left(1-(1-2 \xi)^{\left|I^{\prime}\right|}\right) \\
& \geq(2 \xi)^{k-\left|I^{\prime}\right|}(1-(1-2 \xi)) \geq(2 \xi)^{k}
\end{aligned}
$$

Now, for the second result, we have:

$$
\begin{aligned}
\mathbb{P}_{(\boldsymbol{z}, y) \sim \Gamma_{i \ldots d}(\mathcal{D})}\left[z_{j}=1\right] & =\mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}}\left[\mathbf{1}\left\{\Gamma_{(i+1) \ldots d}(\boldsymbol{x})_{j}=1\right\}\right] \\
& =\mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}}\left[\frac{1}{2}\left(\prod_{j^{\prime} \in I^{\prime}} x_{j^{\prime}}+1\right)\right] \\
& =\frac{1}{2} \prod_{j^{\prime} \in I^{\prime}} \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}}\left[x_{j^{\prime}}\right]+\frac{1}{2}
\end{aligned}
$$

And so we get:

$$
\begin{aligned}
\left|\mathbb{P}_{(\boldsymbol{z}, y) \sim \Gamma_{i \ldots d}(\mathcal{D})}\left[z_{j}=1\right]-\frac{1}{2}\right| & =\frac{1}{2} \prod_{j^{\prime} \in I^{\prime}}\left|\mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}}\left[x_{j^{\prime}}\right]\right| \\
& <\frac{1}{2}(1-2 \xi)^{\left|I^{\prime}\right|} \leq \frac{1}{2}-\xi
\end{aligned}
$$

C. 2 AND/OR Circuits

We limit ourselves to circuits where each gate is chosen from the set $\{\wedge, \vee, \neg \wedge, \neg \vee\}$. For every such circuit, we define a generative distribution as follows: we start by sampling a label for the example. Then iteratively, for every gate, we sample uniformly at random a pattern from all the pattern that give the correct output. For example, if the label is 1 and the topmost gate is OR, we sample a pattern uniformly from $\{(1,1),(1,-1),(-1,1)\}$. The sampled pattern determines what should be the output of the second topmost layer. For every gate in this layer, we sample again a pattern that will result in the correct output. We continue in this fashion until reaching the bottom-most layer, which defines the observed example. Formally, for a given gate $\Gamma \in\{\wedge, \vee, \neg \wedge, \neg \vee\}$, we denote the following sets of patterns:

$$
S_{\Gamma}=\left\{\boldsymbol{v} \in\{ \pm 1\}^{2}: \Gamma\left(v_{1}, v_{2}\right)=1\right\}, S_{\Gamma}^{c}=\{ \pm 1\}^{2} \backslash S_{\Gamma}
$$

We recursively define $\mathcal{D}^{(0)}, \ldots, \mathcal{D}^{(d)}$, where $\mathcal{D}^{(i)}$ is a distribution over $\{ \pm 1\}^{2^{i}} \times\{ \pm 1\}$:

- $\mathcal{D}^{(0)}$ is a distribution on $\{(1,1),(-1,-1)\}$ s.t. $\mathbb{P}_{\mathcal{D}^{(0)}}[(1,1)]=\mathbb{P}_{\mathcal{D}^{(0)}}[(-1,-1)]=\frac{1}{2}$.
- To sample $(\boldsymbol{x}, y) \sim \mathcal{D}^{(i)}$, sample $(\boldsymbol{z}, y) \sim \mathcal{D}^{(i-1)}$. Then, for all $j \in\left[2^{i-1}\right]$, if $z_{j}=1$ sample $\boldsymbol{x}_{j}^{\prime} \sim U\left(S_{\gamma_{i, j}}\right)$, and otherwise sample $\boldsymbol{x}_{j}^{\prime} \sim U\left(S_{\gamma_{i, j}}^{c}\right)$. Set $\boldsymbol{x}=\left[\boldsymbol{x}_{1}^{\prime}, \ldots, \boldsymbol{x}_{2^{i-1}}^{\prime}\right] \in$ $\{ \pm 1\}^{2^{i}}$, and return (\boldsymbol{x}, y).

Then we have the following results:
Lemma 12. For every $i \in[d]$ and every $j \in\left[2^{i}\right]$, denote $c_{i, j}=\mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}^{(i)}}\left[x_{j} y\right]$. Then we have:

$$
\left|c_{i, j}\right|-\mathbb{E}[y]>\left(\frac{2}{3}\right)^{d}=n^{\log (2 / 3)}
$$

Lemma 13. For every $i \in[d]$ we have $\Gamma_{i}\left(\mathcal{D}^{(i)}\right)=\mathcal{D}^{(i-1)}$.
Notice that from Lemma 12, the distribution $\mathcal{D}^{(d)}$ satisfies property 1 with $\Delta=n^{\log (2 / 3)}$ (note that since we restrict the gates to AND/OR/NOT, all gates have influence). By its construction, the distribution also satisfies property 2 , and it satisfies property 3 with $\epsilon=\left(\frac{1}{4}\right)^{d}=\frac{1}{n^{2}}$. Therefore, we can apply Theorem 2 on the distribution $\mathcal{D}^{(d)}$, and get that algorithm 1 learns the circuit C exactly in polynomial time. This leads to the following corollary:
Corollary 3. With the assumptions and notations of Theorem 2, for every circuit C with gates in $\{\wedge, \vee, \neg \wedge, \neg \vee\}$, there exists a distribution \mathcal{D} such that when running algorithm 1 on a sample from \mathcal{D}, the algorithm returns h_{C} with probability $1-\delta$, in polynomial run-time and sample complexity.

Proof. of Lemma 12 For every $i \in[d]$ and $j \in\left[2^{i}\right]$, denote the following:

$$
p_{i, j}^{+}=\mathbb{P}_{(\boldsymbol{x}, y) \sim \mathcal{D}^{(i)}}\left[x_{j}=1 \mid y=1\right], p_{i, j}^{-}=\mathbb{P}_{(\boldsymbol{x}, y) \sim \mathcal{D}^{(i)}}\left[x_{j}=1 \mid y=-1\right]
$$

Denote $\left.\mathcal{D}^{(i)}\right|_{\boldsymbol{z}}$ the distribution $\mathcal{D}^{(i)}$ conditioned on some fixed value \boldsymbol{z} sampled from $\mathcal{D}^{(i-1)}$. We prove by induction on i that $\left|p_{i, j}^{+}-p_{i, j}^{-}\right|=\left(\frac{2}{3}\right)^{i}$:

- For $i=0$ we have $p_{i, j}^{+}=1$ and $p_{i, j}^{-}=0$, so the required holds.
- Assume the claim is true for $i-1$, and notice that we have for every $\boldsymbol{z} \in\{ \pm 1\}^{2^{i-1}}$:

$$
\begin{aligned}
\mathbb{P}_{(\boldsymbol{x}, y) \sim \mathcal{D}^{(i)}}\left[x_{j}=1 \mid y=1\right]= & \mathbb{P}_{(\boldsymbol{x}, y) \sim \mathcal{D}^{(i)} \mid \boldsymbol{z}}\left[x_{j}=1 \mid z_{\lceil j / 2\rceil}=1\right] \cdot \mathbb{P}_{(\boldsymbol{z}, y) \sim \mathcal{D}^{(i-1)}}\left[z_{\lceil j / 2\rceil}=1 \mid y=1\right] \\
+ & \mathbb{P}_{(\boldsymbol{x}, y) \sim \mathcal{D}^{(i) \mid \boldsymbol{z}}}\left[x_{j}=1 \mid z_{\lceil j / 2\rceil}=-1\right] \cdot \mathbb{P}_{(\boldsymbol{z}, y) \sim \mathcal{D}^{(i-1)}}\left[z_{\lceil j / 2\rceil}=-1 \mid y=1\right] \\
= & \begin{cases}p_{i-1,\lceil j / 2\rceil}^{+}+\frac{1}{3}\left(1-p_{i-1,\lceil j / 2\rceil}^{+}\right) & \text {if } \gamma_{i-1,\lceil j / 2\rceil}=\wedge \\
\frac{2}{3} p_{i-1,\lceil j / 2\rceil}^{+} & \text {if } \gamma_{i-1,\lceil j / 2\rceil}=\vee \\
\frac{1}{3} p_{i-1,\lceil j / 2\rceil}^{+}+\left(1-p_{i-1,\lceil j / 2\rceil}^{+}\right) & \text {if } \gamma_{i-1,\lceil j / 2\rceil}=\neg \wedge \\
\frac{2}{3}\left(1-p_{i-1,\lceil j / 2\rceil}^{+}\right) & \text {if } \gamma_{i-1,\lceil j / 2\rceil}=\neg \vee\end{cases} \\
= & \begin{cases}\frac{2}{3} p_{i-1,\lceil j / 2\rceil}^{+}-\frac{1}{3} & \text { if } \gamma_{i-1,\lceil j / 2\rceil}=\wedge \\
\frac{2}{3} p_{i-1,\lceil j / 2\rceil}^{+} & \text {if } \gamma_{i-1,\lceil j / 2\rceil}=\vee \\
1-\frac{2}{3} p_{i-1,\lceil j / 2\rceil}^{+} & \text {if } \gamma_{i-1,\lceil j / 2\rceil}=\neg \wedge \\
\frac{2}{3}-\frac{2}{3} p_{i-1,\lceil j / 2\rceil}^{+} & \text {if } \gamma_{i-1,\lceil j / 2\rceil}=\neg \vee\end{cases}
\end{aligned}
$$

Similarly, we get that:

$$
\mathbb{P}_{(\boldsymbol{x}, y) \sim \mathcal{D}^{(i)}}\left[x_{j}=1 \mid y=-1\right]= \begin{cases}\frac{2}{3} p_{i-1,\lceil j / 2\rceil}^{-}-\frac{1}{3} & \text { if } \gamma_{i-1,\lceil j / 2\rceil}=\wedge \\ \frac{2}{3} p_{i-1,\lceil j / 2\rceil}^{-} & \text {if } \gamma_{i-1,\lceil j / 2\rceil}=\vee \\ 1-\frac{2}{3} p_{i-1,\lceil j / 2\rceil}^{-} & \text {if } \gamma_{i-1,\lceil j / 2\rceil}=\neg \wedge \\ \frac{2}{3}-\frac{2}{3} p_{i-1,\lceil j / 2\rceil}^{-} & \text {if } \gamma_{i-1,\lceil j / 2\rceil}=\neg \vee\end{cases}
$$

Therefore, we get:

$$
\left|p_{i, j}^{+}-p_{i, j}^{-}\right|=\frac{2}{3}\left|p_{i-1,\lceil j / 2\rceil}^{+}-p_{i-1,\lceil j / 2\rceil}^{-}\right|=\left(\frac{2}{3}\right)^{i}
$$

From this, we get:

$$
\begin{aligned}
\left|\mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}^{(i)}}\left[x_{j} y\right]\right| & =\left|\mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}^{(i)}}\left[\left(2 \mathbf{1}\left\{x_{j}=1\right\}-1\right) y\right]\right| \\
& =\left|2 \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}^{(i)}}\left[\mathbf{1}\left\{x_{j}=1\right\} y\right]-\mathbb{E}[y]\right| \\
& =\left|2\left(\mathbb{P}_{\mathcal{D}^{(i)}}\left[x_{j}=1, y=1\right]-\mathbb{P}_{\mathcal{D}^{(i)}}\left[x_{j}=1, y=-1\right]\right)\right| \\
& =\left|2\left(p_{i, j}^{+} \mathbb{P}[y=1]-p_{i, j}^{-} \mathbb{P}[y=-1]\right)\right| \\
& =\left|p_{i, j}^{+}-p_{i, j}^{-}\right|=\left(\frac{2}{3}\right)^{d}
\end{aligned}
$$

And hence:

$$
\left|\mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}^{(i)}}\left[x_{j} y\right]\right|-\left|\mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}^{(i)}}[y]\right| \geq\left(\frac{2}{3}\right)^{d}
$$

Proof. of Lemma 13 Fix some $\boldsymbol{z}^{\prime} \in\{ \pm 1\}^{n_{i} / 2}$ and $y^{\prime} \in\{ \pm 1\}$. Then we have:

$$
\begin{aligned}
\mathbb{P}_{(\boldsymbol{x}, y) \sim \Gamma_{i}\left(\mathcal{D}^{(i)}\right)}\left[(\boldsymbol{x}, y)=\left(\boldsymbol{z}^{\prime}, y^{\prime}\right)\right] & =\mathbb{P}_{(\boldsymbol{x}, y) \sim \mathcal{D}^{(i)}}\left[\left(\Gamma_{i}(\boldsymbol{x}), y\right)=\left(\boldsymbol{z}^{\prime}, y^{\prime}\right)\right] \\
& =\mathbb{P}_{(\boldsymbol{x}, y) \sim \mathcal{D}^{(i)}}\left[\forall j \gamma_{i-1, j}\left(x_{2 j-1}, x_{2 j}\right)=z_{j}^{\prime} \text { and } y=y^{\prime}\right] \\
& =\mathbb{P}_{(\boldsymbol{z}, y) \sim \mathcal{D}^{(i-1)}}\left[(\boldsymbol{z}, y)=\left(\boldsymbol{z}^{\prime}, y^{\prime}\right)\right]
\end{aligned}
$$

By the definitions of $\mathcal{D}^{(i)}$ and $\mathcal{D}^{(i-1)}$.

[^0]: ${ }^{4}$ We take the sub-gradient zero at zero.

