
Appendix for
“FleXOR: Trainable Fractional Quantization”

A Example of a XOR-gate Network Structure Representation

In Figure 2, outputs of an XOR-gate network are given as

y1 = x1 ⊕ x3 ⊕ x4
y2 = x1 ⊕ x2
y3 = x1 ⊕ x2 ⊕ x3
y4 = x3 ⊕ x4
y5 = x2 ⊕ x4
y6 = x2 ⊕ x3 ⊕ x4.

Equivalently, the same structure as above can be represented in a matrix as

M⊕ =


1 0 1 1
1 1 0 0
1 1 1 0
0 0 1 1
0 1 0 1
0 1 1 1

 . (1)

Note that elements of M⊕ are matched with coefficients of yi(1 ≤ i ≤ 6). For two vectors
y = {y1, y2, y3, y4, y5, y6} and x = {x1, x2, x3, x4}, the following equation holds:

y = M⊕ · x, (2)

where element-wise addition and multiplication are performed by ‘XOR’ and ‘AND’ function,
respectively. In Eq. (1), Ntap (i.e., the number of ‘1’s in a row) is 2 or 3.

B Supplementary Data for Basic FleXOR Training Principles

A Boolean XOR gate can be modeled as F⊕(x1, x2) = (−1) sign(x1) sign(x2) if 0 is replaced with
−1 as shown in Table 1.

sign(x1) sign(x2) F⊕(x1, x2)
−1 −1 −1
−1 +1 +1
+1 −1 +1
+1 +1 −1

Table 1: An XOR gate modeling using F⊕(x1, x2).

In Eq. (1), forward propagation for y3 is expressed as

y3 = F⊕(x1, x2, x3) = (−1)2 sign(x1) sign(x2) sign(x3). (3)
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while partial derivative of y3 with respect to x1 is given as (not derived from Eq. (3))

∂y3
∂x1

= Stanh(−1)2(1− tanh2(x1 · Stanh)) tanh(x2 · Stanh) tanh(x3 · Stanh), (4)

or as
∂y3
∂x1

≈ Stanh(−1)2(1− tanh2(x1 · Stanh)) sign(x2) sign(x3). (5)

We choose Eq. (5), instead of Eq. (4), as explained in Section 3.
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Figure 1: The left graph shows hyperbolic tangent (y = tanh(x · Stanh)) graphs with various scaling
factors (Stanh), . The right graph shows their derivatives. These graphs support the arguments of
‘Optimize Stanh’ in Section 4.

As shown in Figure 1, large Stanh yields sharp transitions for near-zero inputs. Such a sharp
approximation of the Heaviside step function produces large gradient values for small inputs and
encourages encrypted weights to be separated into negative or positive values. Too large Stanh,
however, has the same issues of a too-large learning rate.

Figure 4 presents training loss and test accuracy when Ntap=2 and Nout is 10 or 20. Compared
with Figure 5, Ntap=2 presents improved accuracy for the cases of high compression configurations
(e.g., Nin=4 and Nout=10). We use Ntap = 2 for CIFAR-10 and ImageNet, since low Ntap avoids
gradient vanishing problems or high approximation errors in Eq.(5) or Eq.(6).

Figure 5 plots the distribution of encrypted weights at different training steps when each row of
M⊕ is randomly assigned with {0, 1} (i.e., Ntap is Nin/2 on average) or assigned with only two
1’s (Ntap=2). Due to gradient calculations based on tanh and high Stanh, encrypted weights tend to
be clustered on the left or right (near-zero encrypted weights become less as Ntap increases) even
without weight clipping.

C Supplementary Experimental Results of CIFAR-10 and ImageNet

In this section, we additionally provide various graphs and accuracy tables for ResNet models on
CIFAR10 and ImageNet. We also present experimental results from wider hyper-parameters searches
including q=2 with two separate M⊕ configurations (with the same Nin and Nout for two M⊕

matrices).
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Figure 2: An example showing FleXOR operations for training. XOR gates are described in different
ways for forward- and backward propagation. Once we obtain encrypted binary weights after training,
we use digital XOR gates for inference.
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Figure 3: Using the same weight storage footprint, FleXOR enables various internal quantization
schemes. (Left): 1-bit internal quantization. (Right): 3-bit internal quantization with 3 different M⊕

configurations.

Bits/Weight ResNet-20 ResNet-32 Comp. Ratio
FP 32 91.87% Diff. 92.33% Diff. 1.0x

Nin=10, Nout=10 1.0 90.21% -1.66 91.40% -0.93 29.95×
Nin=9, Nout=10 0.9 90.03% -1.84 91.28% -1.05 31.82×
Nin=8, Nout=10 0.8 89.73% -2.14 90.96% -1.37 35.32×
Nin=7, Nout=10 0.7 89.88% -1.99 90.67% -1.66 39.68×
Nin=6, Nout=10 0.6 89.21% -2.66 90.41% -1.92 45.27×
Nin=5, Nout=10 0.5 88.59% -3.28 89.95% -2.38 52.70×

Table 2: Weight compression comparison of ResNet-20 and ResNet-32 on CIFAR-10 when Nout=10.
Parameters and recipes not described in the table are the same as in Table 1. We also present
compression ratio for fractional quantized ResNet-32 when one scaling factor (α) is assigned to each
output channel.
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Figure 4: Test accuracy and training loss of LeNet-5 on MNIST when number of ‘1’s in each row of
M⊕ is fixed to be 2 (Ntap=2). Nout is 10 or 20 to generate, effectively, 0.4, 0.6, or 0.8 bit/weight
quantization. With low Ntap of M⊕, MNIST training presents less variations on training loss and
test accuracy that in Figure 5.
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Figure 5: Distribution of encrypted weight values for FC1 layer of LeNet-5 at different training steps
using Stanh=100 and Nout=10. (Left): M⊕ is randomly filled (Ntap ≈ Nin/2). (Right): Ntap = 2
for every row of M⊕.

ResNet-20 ResNet-32
FP Quant. Diff. FP Quant. Diff.

TWN (ternary) 92.68% 88.65% -4.03 93.40% 90.94% -2.46
BinaryRelax (ternary) 92.68% 90.07% -1.91 93.40% 92.04% -1.36

TTQ (ternary) 91.77% 91.13% -0.64 92.33% 92.37% +0.04
LQ-Net (2 bit) 92.10% 91.80% -0.30 - - -

FleXOR(q = 2, Nout = 20)
Nin=20, 2.0 bit/weight

91.87%

91.38% -0.49

92.33%

92.25% -0.08
Nin=18, 1.8 bit/weight 91.00% -0.87 92.27% -0.06
Nin=16, 1.6 bit/weight 90.88% -0.99 92.11% -0.22
Nin=14, 1.4 bit/weight 90.90% -0.97 92.02% -0.31
Nin=12, 1.2 bit/weight 90.56% -1.31 91.62% -0.71
FleXOR(q = 2, Nout = 10)
Nin=10, 2.0 bit/weight

91.87%

91.19% -0.68

92.33%

92.61% +0.28
Nin=9, 1.8 bit/weight 91.44% -0.43 92.09% -0.24
Nin=8, 1.6 bit/weight 91.10% -0.77 92.08% -0.25
Nin=7, 1.4 bit/weight 90.94% -0.93 91.74% -0.59
Nin=6, 1.2 bit/weight 90.56% -1.31 91.37% -0.96

Table 3: Weight compression comparison of ResNet-20 and ResNet-32 on CIFAR-10 using learning
rate warmup (for 100 epochs) and q=2. As mentioned in Figure 6, multiple M⊕ can be combined
for multi-bit quantization schemes. Then, the number of scaling factors should be doubled. FleXOR
with q=2 and two different M⊕ structures achieve full-precision accuracy when both Nin and Nout

are 10.
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(a) First convolution layer in Layer1
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(b) Last convolution layer in Layer1
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(c) First convolution layer in Layer2
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(d) Last convolution layer in Layer2

Figure 6: Distributions of encrypted weights (at the end of training) in various layers of ResNet-32 on
CIFAR-10 using various Stanh and the same Nout, Nin, and q as Figure 7. The ResNet-32 network
mainly consists of three layers according to the feature map sizes: Layer1, Layer2 and Layer3.

Methods Bits/Weight Top-1 Top-5
Full Precision [1] 32 69.6% 89.2%
TWN [3] ternary 61.8% 84.2%
ABC-Net [4] 2 63.7% 85.2%
BinaryRelax [5] ternary 66.5% 87.3%
TTQ(1.5×Wide) [7] ternary 66.6% 87.2%
LQ-net [6] 2 68.0% 88.0%
QIL [2] 2 68.1% 88.3%

FleXOR (q=2, Nout=20)
1.6 (0.8×2) 66.2% 86.7%
1.2 (0.6×2) 65.4% 86.0%
0.8 (0.4×2) 63.8% 85.0%

Table 4: Weight compression comparison of ResNet-18 on ImageNet when q=2. Since q is 2, we
also list the other compression schemes which use 2-bit or ternary quantization scheme for model
compression.
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(a) Initial Learning Rate (0.1): Test accuracy of ResNet-32 on CIFAR10 using the learning schedule in Figure 7
and various initial learning rates (0.05, 0.1, 0.2, 0.5).
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(b) No Weight Clipping: Test accuracy of ResNet-32 on CIFAR10 using the learning schedule in Figure 7. As
for weight clipping, we restrict the encrypted weights to be ranged as (−2.0/Stanh, +2.0/Stanh). As can be
observed, the red line implies that weight clipping is not effective with FleXOR.
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(c) Weight Decay Factor (10-5): Two graphs depict test accuracy of ResNet-18 on ImageNet with or without
weight decay. The learning rate in the red line (no weight decay) is reduced by half at the 100th, 130th and
150th epochs. The learning rate of the blue line (with weight decay) is reduced by half at 70th, 100th and 130th

epochs. With weight decay (blue graph), despite slow convergence in the early training steps, model accuracy is
eventually higher than the red one without weight decay scheme.

Figure 7: Comparison of various hyper-parameter choices for CIFAR-10 or ImageNet.
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(a) Test accuracy using q=1.
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(b) Test accuracy using q=2. Compared to the above plots (Figure 8a), this figure shows that a combination of
multiple M⊕ for a binary code can lead to stable learning curves and higher model accuracy.

Figure 8: Test accuracy of ResNet-32 on CIFAR-10 using learning rate warmup (for 100 epochs) and
Nout=20
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