Appendix for "FleXOR: Trainable Fractional Quantization"

A Example of a XOR-gate Network Structure Representation

In Figure 2, outputs of an XOR-gate network are given as

$$y_1 = x_1 \oplus x_3 \oplus x_4$$

$$y_2 = x_1 \oplus x_2$$

$$y_3 = x_1 \oplus x_2 \oplus x_3$$

$$y_4 = x_3 \oplus x_4$$

$$y_5 = x_2 \oplus x_4$$

$$y_6 = x_2 \oplus x_3 \oplus x_4.$$

Equivalently, the same structure as above can be represented in a matrix as

$$\boldsymbol{M}^{\oplus} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}.$$
 (1)

Note that elements of M^{\oplus} are matched with coefficients of $y_i(1 \le i \le 6)$. For two vectors $y = \{y_1, y_2, y_3, y_4, y_5, y_6\}$ and $x = \{x_1, x_2, x_3, x_4\}$, the following equation holds:

$$\boldsymbol{y} = \boldsymbol{M}^{\oplus} \cdot \boldsymbol{x}, \tag{2}$$

where element-wise addition and multiplication are performed by 'XOR' and 'AND' function, respectively. In Eq. (1), N_{tap} (i.e., the number of '1's in a row) is 2 or 3.

B Supplementary Data for Basic FleXOR Training Principles

A Boolean XOR gate can be modeled as $\mathcal{F}^{\oplus}(x_1, x_2) = (-1)\operatorname{sign}(x_1)\operatorname{sign}(x_2)$ if 0 is replaced with -1 as shown in Table 1.

	$\operatorname{sign}(x_1)$	$\operatorname{sign}(x_2)$	$\mathcal{F}^{\oplus}(x_1, x_2)$			
-	-1	-1	-1			
	-1	+1	+1			
	+1	-1	+1			
	+1	+1	-1			
Table 1: An XOR gate modeling using $\mathcal{F}^{\oplus}(x_1, x_2)$.						

In Eq. (1), forward propagation for y_3 is expressed as

$$y_3 = \mathcal{F}^{\oplus}(x_1, x_2, x_3) = (-1)^2 \operatorname{sign}(x_1) \operatorname{sign}(x_2) \operatorname{sign}(x_3).$$
(3)

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

while partial derivative of y_3 with respect to x_1 is given as (not derived from Eq. (3))

$$\frac{\partial y_3}{\partial x_1} = S_{\text{tanh}}(-1)^2 (1 - \tanh^2(x_1 \cdot S_{\text{tanh}})) \tanh(x_2 \cdot S_{\text{tanh}}) \tanh(x_3 \cdot S_{\text{tanh}}), \tag{4}$$

or as

$$\frac{\partial y_3}{\partial x_1} \approx S_{\text{tanh}}(-1)^2 (1 - \tanh^2(x_1 \cdot S_{\text{tanh}})) \operatorname{sign}(x_2) \operatorname{sign}(x_3).$$
(5)

We choose Eq. (5), instead of Eq. (4), as explained in Section 3.

Figure 1: The left graph shows hyperbolic tangent $(y = \tanh(x \cdot S_{tanh}))$ graphs with various scaling factors (S_{tanh}) , . The right graph shows their derivatives. These graphs support the arguments of **'Optimize S_{tanh'}** in Section 4.

As shown in Figure 1, large S_{tanh} yields sharp transitions for near-zero inputs. Such a sharp approximation of the Heaviside step function produces large gradient values for small inputs and encourages encrypted weights to be separated into negative or positive values. Too large S_{tanh} , however, has the same issues of a too-large learning rate.

Figure 4 presents training loss and test accuracy when $N_{tap}=2$ and N_{out} is 10 or 20. Compared with Figure 5, $N_{tap}=2$ presents improved accuracy for the cases of high compression configurations (e.g., $N_{in}=4$ and $N_{out}=10$). We use $N_{tap}=2$ for CIFAR-10 and ImageNet, since low N_{tap} avoids gradient vanishing problems or high approximation errors in Eq.(5) or Eq.(6).

Figure 5 plots the distribution of encrypted weights at different training steps when each row of M^{\oplus} is randomly assigned with $\{0, 1\}$ (i.e., N_{tap} is $N_{in}/2$ on average) or assigned with only two 1's ($N_{tap}=2$). Due to gradient calculations based on tanh and high S_{tanh} , encrypted weights tend to be clustered on the left or right (near-zero encrypted weights become less as N_{tap} increases) even without weight clipping.

C Supplementary Experimental Results of CIFAR-10 and ImageNet

In this section, we additionally provide various graphs and accuracy tables for ResNet models on CIFAR10 and ImageNet. We also present experimental results from wider hyper-parameters searches including q=2 with two separate M^{\oplus} configurations (with the same N_{in} and N_{out} for two M^{\oplus} matrices).

Figure 2: An example showing FleXOR operations for training. XOR gates are described in different ways for forward- and backward propagation. Once we obtain encrypted binary weights after training, we use digital XOR gates for inference.

Figure 3: Using the same weight storage footprint, FleXOR enables various internal quantization schemes. (Left): 1-bit internal quantization. (Right): 3-bit internal quantization with 3 different M^{\oplus} configurations.

	Bits/Weight	ResNet-20		ResNet-32		Comp. Ratio	
FP	32	91.87%	Diff.	92.33%	Diff.	1.0x	
N_{in} =10, N_{out} =10	1.0	90.21%	-1.66	91.40%	-0.93	29.95×	
$N_{in}=9, N_{out}=10$	0.9	90.03%	-1.84	91.28%	-1.05	31.82×	
N_{in} =8, N_{out} =10	0.8	89.73%	-2.14	90.96%	-1.37	35.32×	
$N_{in}=7, N_{out}=10$	0.7	89.88%	-1.99	90.67%	-1.66	39.68×	
$N_{in}=6, N_{out}=10$	0.6	89.21%	-2.66	90.41%	-1.92	45.27×	
$N_{in}=5, N_{out}=10$	0.5	88.59%	-3.28	89.95%	-2.38	52.70×	

Table 2: Weight compression comparison of ResNet-20 and ResNet-32 on CIFAR-10 when $N_{out}=10$. Parameters and recipes not described in the table are the same as in Table 1. We also present compression ratio for fractional quantized ResNet-32 when one scaling factor (α) is assigned to each output channel.

Figure 4: Test accuracy and training loss of LeNet-5 on MNIST when number of '1's in each row of M^{\oplus} is fixed to be 2 ($N_{tap}=2$). N_{out} is 10 or 20 to generate, effectively, 0.4, 0.6, or 0.8 bit/weight quantization. With low N_{tap} of M^{\oplus} , MNIST training presents less variations on training loss and test accuracy that in Figure 5.

Figure 5: Distribution of encrypted weight values for FC1 layer of LeNet-5 at different training steps using $S_{tanh}=100$ and $N_{out}=10$. (Left): M^{\oplus} is randomly filled ($N_{tap} \approx N_{in}/2$). (Right): $N_{tap} = 2$ for every row of M^{\oplus} .

	ResNet-20			ResNet-32			
	FP	Quant.	Diff.	FP	Quant.	Diff.	
TWN (ternary)	92.68%	88.65%	-4.03	93.40%	90.94%	-2.46	
BinaryRelax (ternary)	92.68%	90.07%	-1.91	93.40%	92.04%	-1.36	
TTQ (ternary)	91.77%	91.13%	-0.64	92.33%	92.37%	+0.04	
LQ-Net (2 bit)	92.10%	91.80%	-0.30	-	-	-	
$FleXOR(q = 2, N_{out} =$	20)						
N_{in} =20, 2.0 bit/weight		91.38%	-0.49		92.25%	-0.08	
N_{in} =18, 1.8 bit/weight		91.00%	-0.87		92.27%	-0.06	
N_{in} =16, 1.6 bit/weight	91.87%	90.88%	-0.99	92.33%	92.11%	-0.22	
N_{in} =14, 1.4 bit/weight		90.90%	-0.97		92.02%	-0.31	
N_{in} =12, 1.2 bit/weight		90.56%	-1.31		91.62%	-0.71	
$FleXOR(q = 2, N_{out} = 10)$							
N_{in} =10, 2.0 bit/weight		91.19%	-0.68		92.61%	+0.28	
N_{in} =9, 1.8 bit/weight		91.44%	-0.43		92.09%	-0.24	
N_{in} =8, 1.6 bit/weight	91.87%	91.10%	-0.77	92.33%	92.08%	-0.25	
N_{in} =7, 1.4 bit/weight		90.94%	-0.93		91.74%	-0.59	
N_{in} =6, 1.2 bit/weight		90.56%	-1.31		91.37%	-0.96	

Table 3: Weight compression comparison of ResNet-20 and ResNet-32 on CIFAR-10 using learning rate warmup (for 100 epochs) and q=2. As mentioned in Figure 6, multiple M^{\oplus} can be combined for multi-bit quantization schemes. Then, the number of scaling factors should be doubled. FleXOR with q=2 and two different M^{\oplus} structures achieve full-precision accuracy when both N_{in} and N_{out} are 10.

Figure 6: Distributions of encrypted weights (at the end of training) in various layers of ResNet-32 on CIFAR-10 using various S_{tanh} and the same N_{out} , N_{in} , and q as Figure 7. The ResNet-32 network mainly consists of three layers according to the feature map sizes: Layer1, Layer2 and Layer3.

Methods	Rits/Weight	Ton-1	Top-5
Wichious	Dits/ weight	10p-1	10p-5
Full Precision [1]	32	69.6%	89.2%
TWN [3]	ternary	61.8%	84.2%
ABC-Net [4]	2	63.7%	85.2%
BinaryRelax [5]	ternary	66.5%	87.3%
$TTQ(1.5 \times Wide)$ [7]	ternary	66.6%	87.2%
LQ-net [6]	2	68.0%	88.0%
QIL [2]	2	68.1%	88.3%
	1.6 (0.8×2)	66.2%	86.7%
FleXOR $(q=2, N_{out}=20)$	1.2 (0.6×2)	65.4%	86.0%
	0.8 (0.4×2)	63.8%	85.0%

Table 4: Weight compression comparison of ResNet-18 on ImageNet when q=2. Since q is 2, we also list the other compression schemes which use 2-bit or ternary quantization scheme for model compression.

(a) **Initial Learning Rate (0.1)**: Test accuracy of ResNet-32 on CIFAR10 using the learning schedule in Figure 7 and various initial learning rates (0.05, 0.1, 0.2, 0.5).

(b) **No Weight Clipping**: Test accuracy of ResNet-32 on CIFAR10 using the learning schedule in Figure 7. As for weight clipping, we restrict the encrypted weights to be ranged as $(-2.0/S_{tanh}, +2.0/S_{tanh})$. As can be observed, the red line implies that weight clipping is not effective with FleXOR.

(c) Weight Decay Factor (10^{-5}) : Two graphs depict test accuracy of ResNet-18 on ImageNet with or without weight decay. The learning rate in the red line (no weight decay) is reduced by half at the 100^{th} , 130^{th} and 150^{th} epochs. The learning rate of the blue line (with weight decay) is reduced by half at 70^{th} , 100^{th} and 130^{th} epochs. With weight decay (blue graph), despite slow convergence in the early training steps, model accuracy is eventually higher than the red one without weight decay scheme.

Figure 7: Comparison of various hyper-parameter choices for CIFAR-10 or ImageNet.

(b) Test accuracy using q=2. Compared to the above plots (Figure 8a), this figure shows that a combination of multiple M^{\oplus} for a binary code can lead to stable learning curves and higher model accuracy.

Figure 8: Test accuracy of ResNet-32 on CIFAR-10 using learning rate warmup (for 100 epochs) and $N_{out}=20$

References

- [1] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.
- [2] S. Jung, C. Son, S. Lee, J. Son, J.-J. Han, Y. Kwak, S. J. Hwang, and C. Choi. Learning to quantize deep networks by optimizing quantization intervals with task loss. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 4350–4359, 2019.
- [3] F. Li and B. Liu. Ternary weight networks. arXiv:1605.04711, 2016.
- [4] X. Lin, C. Zhao, and W. Pan. Towards accurate binary convolutional neural network. In Advances in Neural Information Processing Systems, pages 345–353, 2017.
- [5] P. Yin, S. Zhang, J. Lyu, S. Osher, Y. Qi, and J. Xin. Binaryrelax: A relaxation approach for training deep neural networks with quantized weights. *SIAM Journal on Imaging Sciences*, 11 (4):2205–2223, 2018.
- [6] D. Zhang, J. Yang, D. Ye, and G. Hua. Lq-nets: Learned quantization for highly accurate and compact deep neural networks. In *Proceedings of the European Conference on Computer Vision* (ECCV), pages 365–382, 2018.
- [7] C. Zhu, S. Han, H. Mao, and W. J. Dally. Trained ternary quantization. In *International Conference on Learning Representations (ICLR)*, 2017.