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In Appendix [A] we introduce some basic definitions that are needed for our theoretical results. In
Appendix [B] we provide sufficient conditions for Assumption [I] that were mentioned in the main
text. In Appendix [C|and Appendix [D] we prove the error bounds for PPI and PQI. In Appendix [E]
and Appendix [F] we present more details of our experimental results.

A Definition of auxiliary MDP and policy projection

First we introduce the definition of an auxiliary MDP M’ based on M: each state in M has an
absorbing action which leads to a self-looping absorbing state. All the other dynamics are preserved.
Rewards are O for the absorbing action and unchanged elsewhere. More formally: The auxiliary
MDP M’ given M =< S, A, R, P,v,p > is defined as M/ =< S’ A", R, P’,~,p >, where
S = SU{sas}, A" = AU{auws}. R and P’ are the same as R and P for all (s,a) € § x A.
R'(s,a) if s = Syps OF @ = ayps is a point mass on 0, and P’(s,a) if s = Sups OF @ = g is a point
mass on Sups. A data set D generated from distribution p on M is also from the distribution y on
M, since all distributions on S x A are the same between the two MDPs. This MDP is used only to
perform our analysis about the error bounds on the algorithm, and is not needed at all for executing
Algorithm|[T|and[2] As some of the notations is actually a function of the MDP, we clarify the usage
of notation w.r.t. M/M’ in the appendix:

1. Policy value functions V™/Q™ and Bellman operators 7/7 ™ correspond to M’ unless they
have additional subscripts.

2. The definition of F, IL, 7¢, ’TC’T, 1t is independent of the change from M to M.

3. p is also a distribution over S’ x A’. The definition of ¢ will be extended to S’ x A’ as
follow:

[ 1(i(s,a) >b) s€S,acA
C(S,a)—{ 0 § = Sabs OF 4 = Qb

(That means there is only one version of y and ¢ across M and M’, instead of like we have
T and T for M and M'.)

Recall the definition of semi-norm of any function of state-action pairs. For any function g : 8" x
A = R, v € A(S'xA'),and p > 1, define the shorthand ||g||,., := (E(s,a)~u[|9(s, a)[P])!/P. With
some abuse of notation, later we also use this norm for v € A(S x A) (specifically, ) by viewing
the probability of v on additional (s, a) pairs as zero. Given a policy 7, let 17 (s) be the marginal
distribution of s, under =, that is, nf(s) = Pr[s, = s|sg ~ p,7], ni(s,a) = nf(s)n(als),
and 0™ (s,a) = (1 — ) Y p= v "nF (s,a). We also use P(s,a) and P(v) to denote the next state
distribution given a state action pair or given the current state action distribution.

The norm || - || ,,,,, are defined over S8’ x A’. Though for the input space of function f € Fis S X A,
the norm can still be well-defined. All of the norm would not need the value of f(s,a) on s = Sups
Or @ = ayups, because the distribution does not cover those (s, a), or the f inside of the norm is
multiplied by other function that is zero for those (s, a).

We first formally state an obvious result about policy value in M and M’.
Lemma 1. For any policy w that only have non-zero probability for a € A, vi; = v},.

Proof. By the definition of M’, P and R are the same with M over S x A.

h h
> y'relso ~p, W] =Ewm lz V'rilso ~ p, 77] = v}y

t=0 t=0

’UJT{4 = E]y[

For the readability we repeat the Definition [T here

Definition 1 ({-constrained policy set ). Let Hacll be the set of policies S — A(A) such that
Pr(¢(s,a) =0|m) < ec. That is

(1=9) > Y"Eaamnz [1({(s.a) =0)] < & )
h=0
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Now we introduce another constrained policy set. Different from (-constrained policy set which
we introduced in Deﬁnition this policy set is on M’ instead of M and the policy is forced to take
action au,s when ((s, a) = 0 for all a. The reason we introduce this is to help us formally analyze the
(lower bound of) performance of the resulting policy. We essentially treat any action taken outside
of the support to be aaps. Later we will define a projection to achieve that and show results about
how the policy value changes after projection.

Definition 2 (strong (-constrained policy set). Let TI%L be the set of all policies S' — A(A') such
that forV(s,a) w(a|s) > 0 then 1) ((s,a) > 0, or 2) a = agps.

Notice that for (-constrained policy set we have no requirement for 7 if for any action (s, a) is zero.
For strong (-constrained policy set we enforce 7 to take action a,,s. The second difference is (-
constrained policy set requires the condition holds for s, a that is reachable, which means 17 (s) > 0
and w(als) > 0. Here we require the same condition holds for any s, a such that w(als) > 0. In
general, this is a stronger definition. However, we can show that for any policy in (-constrained
policy set , it can be mapped to a policy in strong (-constrained policy set , with changing value
bounds. Since we only need to change the behavior of policy in the state actions such that the state
actions that ¢ = 0, the value of policy will not be much different.

Now we define a projection that maps any policy to IT%.

Definition 3 (¢-constrained policy projection). (E7)(a|s) equals ((s,a)n(a|s) if a € A, and equals
ZLVEA’ 7T(a/|s)(1 - C(Sa CL/)) l:fa = Qaps

Next we show that the projection of policy will has an equal or smaller value than the original policy.

Lemma 2. For any policy 7 : §' — A(A'), vf, > vi},ﬂ, and vy, = UJEV[(,TF) if for any (s, a)
reachable by T, ((s,a) = 1.

Proof. We drop the subscription of M’ in this proof for ease of notation. For any given s,

> w(als)@(s,a) = Y w(als) Q=M (s, a) (Q™ (5, aaps = 0))
ac A’ acA
> ((als)r(als)Q=™ (s,a) )
acA
= () (aus|$) Q% (5, aaps) + > E()(als)Q=™ (s,a)  (Def of =)
acA
=Y E(m)(als)Q* (s, a) 6)
acA’
= V= (s) (7)

The inequality is an equality if for any a s.t. w(a|s) > 0, (s, a) = 1. By the performance difference
lemma [3, Lemma 6.1]:

vE™ T = Z’thsw,;: VEM(5) — Z m(als)QZ™ (s,a)| <0 (8)

h=0 ac A’
The inequality is an equality if for any (s,a) s.t. nf(s)m(als) > 0 for some h, {(s,a) = 1.
In another word for any state-action reachable by w (nf(s) > 0 and w(a|s) > 0 for some h),
¢(s,a) = 1. O

The following results shows for any policy 7 in the (-constrained policy set the projection will not
change the policy value much.

+ €¢ Vimax

Lemma 3. For any policy © € TI&, o7, < v T

Proof. Since 7 only takes action in A, by Lemma we have that v]; = v7,,. Since 7 € TIZ!, we
have that Pr ({(s,a) = O|7) < €¢, which means that:

(1= D A Bomy [1(¢(s,0) = 0)] < e )

h=0
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Thus:

=) T = thEswn;{ VE(”)(S) - Z W(G‘S)QE(W)(«S’ a)] (10)
h=0 ac A’
= A Bz |[VEO(s) = > w(as)é(&a)QE(”)(s,a)] (11)
h=0 ac A’
=YV By [L(C(s,0) = 0) Q57 (s,0)| (12)
h=0
oo
> AV By |[VED(s) = W(aS)C(s,a)Q:(”)(s,a)] (13)
h=0 ac A’
- Vmax Z ’YhE&aNn,’; [1 (C(Sa a) = O)] (14)
h=0
e =(r =(7 vaax6
> A By |VE(s) = Y wlals)((s,a)Q5M (s,a) | — 25 (15)
h=0 ac A’ "
_ Vmaxeg (16)
L—n
The last step follows from the first part in the proof of Lemma Vi — vi[(,ﬂ ) < L{‘ixf . O

B Justification of Assumption I]

In this section we prove a claim stated in Section [5|about the upper bound on density functions. We
are going to prove Assumption [T|holds under when the transition density is bounded.

Lemma 4. Let p(-|s, a) be the probability density function of transition distribution: p(so) < VU <
00, p(Sty1lse, ar) < VU < oo and Vr(ag|se, h) < VU < oo, forall sg, s, 5141 € S and a € A.
Then in M’ for any non-stationary policy m : 8’ x N — A(A") and h > 0, nf (s,a) < U for any
se€Sanda € A

Proof. We first prove that 17 (s) < +/U for any non-stationary policy 7. For b = 0, nff (s) = p(s) <
VU.Forh>1lands € S:

nr(s) = / Z nh_1(s—1)m(a—1|s—1,h — Dp(s|s—1,a—1)ds_1 (17)
s_1€S’ ac A’
= / Z nr_q(s—1)m(a—1]s—1,h — 1)p(s]s—1,a_1)ds_1 (18)
s-1€8 acA
<Ejr  xx(n-1) [P(s]s-1,a-1)] (19)
<VU (20)

The first step follows from the inductive definition of 17 (s). The second step follows from that s,ps is
absorbing state and a,ps only leads to absorbing state. The third step follows from transition density
p(s|s—1,a_1) is non-negative. The last step follows from that the transition density p(s|s_1,a_1)
is the same between M and M’ for s,s_1 € S,a_1 € A, and p(s|s_1,a_1) in M is upper bounded
by U. Finally, the joint density function over s and a 1] (s, a) = nf (s)m(als, h) is bounded by U,
and we finished the proof. O

For the convenience of notation later we use admissible distribution to refer to state-action distribu-
tions introduced by non-stationary policy 7 in M. This definition is from [1]:

Definition 4 (Admissible distributions). We say a distribution or its density functionv € A(S'x A’)
is admissible in MDP M, if there exists h > 0, and a (non-stationary) policy m : 8’ x N — A(A’),
such that v(s,a) = 07 (s, a).
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C Proofs for Policy Iteration Guarantees

In this section we are going to prove the result of Thedrém 1 using the de nition of the strong
constrained policy set . At a high level, the proof is done in two steps. First we prove similar result
to Theore for any policy in the strongconstrained policy set : an upper boundvgfo Vv, o

where can be any policy in the strongconstrained policy set and is the output of the algorithm
(Theoreni 2, formally stated in Appendix €.4). Then we are going to show that for any policy

in the -constrained policy set after a projectionit is in the strong -constrained policy set and

Vi V|\5| o)+ V”‘% Then we can provide the upper bound¥gr v,, forany in -constrained

policy set .

The proof of Theorerﬁ]z (the &L version of TheorerE]l, formally stated in Appen@]CA) goes as
follow. First, we show the xed pointof isQ( ) for any policy , indicating the inner loop of
policy evaluation step is actually evaluating= ( b;). We prove this result formally in Lemnja 6.

To bound the gap betweerp and any policye inthe -constrained policy set, we use the contraction
property of T to recursively decompose it into a discounted summation over policy improvement
gapQ **  Q t. e inthe -constrained policy set is needed because the opefataonstrains

the backup on the support set of

Next, we bound the policy improvement gap in Lenjmj 12:
Q™ Q' O (k(Q" fux)ky)

for some admissible distributionrelated to {4, . The fact that we only need to measure the error
on the support set of is important. It follows from the fact that both.; and ; only takes action

on the support set of exceptagps which gives us a constant value. This allows us to change the
measure from arbitrary distributionto data distribution , without needing concentratability

The rest of proof is to upper boutkd(Q t fx )Ki. using contraction and concentration inequali-
ties. Firstk (Q * fuk )ki. isupperbounded b@kfik T frk koo =(1  )in Lemm@, using
a standard contraction analysis technique. Notice that here we can change the measwith to
costC to allow us to apply concentration inequality. Then Len[r’pa 8 boltids T fik ko

by a function of sample size and completeness errgr using Bernstein's inequality.

While writing the proof, we will rst introduce the xed point o isQ( ) in sectio. We

prove the upper bound of the policy evaluation eko¢Q *  f.x )ki. , in section C.2, and the
policy improvement step in section C.3. After we proved the main theorem, we will prove when we
can bound the value gap with the optimal value in Corollary 1, as we showed in the main text.

C.1 Fixed point property

In Algorithm 1, the output policy i$+1 . However, we will show that is actually equivalent with
the following algorithm,

Algorithm 3 Pessimistic Policy Iteration (PPI, repeat Algorithm 1)

Input: D,F, ,b,b
Output: by
Initialize o2 .
fort=0toT 1do
Initializefio 2 F
fork=0toK do
/I Policy Evaluation
feksr  argminge Lo (Ff ek o)
end for
/I Policy Improvement
biss argmax , Ep[E [ (s;a)fuk (S;a)]]
t#1 ( bre1)
end for




128 The output policy is stilbys; , and we know that®+ v 2 | So if we can lower bound t+
120 we immediately have the lower bound e+ . The only difference in algorithm is we change the
130 policy evaluation operator from bt to T , where { is the projection ob;. The following result

131 shows these two operators are actually the same. For the ease of notation, we refer to Algorithm 3
132 in our analysis.

133 Lemmas. Forany policy :S°! ( A9, T =T¢ ),

134 Proof. We only need to prove forarfy, T f = T €t For anya2 A,

" #
X
(T f)(s;a)=r(s;a)+ E (a9 (s%a)f (s%a? (21)
w a02A
y #
=r(s;a)+ E (a9 2(s%ad%f (s% a9 (22)
a02A
9 #
=r(s;a)+ Ee ( 0@%s9) (s%a9)Q (s%a)) (23)
a02A
=(T ¢ t)(s:a) (24)
135 Fora= ams (T f)(s:8)=0=(T¢ ’f)(s;a). O

136 The next result is a key insight abolit 's behavior inM °that guide our analysis.

137 Lemma 6. For any policy : S°! ( A9, the xed point solution off is equal toQ( ) on
18 S A .

130 Proof. By de nition Q( ) is the xed point of the standard Bellman evaluation operatoivbh
140 TM(0 ). So for any(s;a)2S A :

Q( )(s;a) (25)
=(T\o'Q0 ))(sia) . (26)
X
=r(s;a)+ Ego ( )@%4sHQ¢ I(s%aY (27)
. a02A 0
X #
=r(s;a)+ Eo ( )(2awds)QC (s%aumd + ( )(@3s9Q¢ (%)  (28)
" « #aOZA
=r(s;a+ Eg ( )(@3sHQ¢ (s%a?) (29)
w a02A
X #
=r(s;a)+ Ee (@39 (s%a)Qt (s%a% (30)
a02A
=(T Q( ))s;a) (31)
141 So we proved tha® ( ) is also the xed-point solution of constrained o5 A . O

142 An obvious consequences of these two lemmas is that the xed point solutibn'of TPt equals
s QtonS A .



144 C.2 Proofs for policy evaluation step

145 We start with an useful result of the expected loss of the solution from empirical loss minimization,
16 by applying a concentration inequality.

17 Lemma7. Given 2 () andAssumption 3, I = argmingr kg T fky ,thenkg’
g T fkg; r. The dataseD is generated i.i.d. fronM as follows: (s; a) , = R(s;a),
o S° P(s;a). DenelL (f;f% )= Ep[Lp(f;f% )]. We have tha8f 2 F , with probability at
150 leastl ,
s
112v2,, In FI_1 LY

L (Tofif; ) L (g ) “n -

In Fii_i

151 whereT ., f =argmin g, Lo (g:f; ).

152 Proof. This proof is similar with the proof of Lemma 16 in [1], and we adapt it to theonstrained
153 Bellman evaluation operatdf . First, there is no difference ihp andL betweenM andM ©,

154 and the right hand side is also the same constarf@ndM . The distribution oD in M andM ©
155 are the same, sincedoes not coves,psandagys SO we are going to prove the inequality idr,
156 and thus this bound holds foi °too.

P
157 For the simplicity of notations, le¥; (s) = o (ajs) (s;a)f (s;a). Fixanyf,g 2 F, and
158 de ne

X(g:fg7)= gsia r Vi) g(sia r V(9 (32)

159 Plugging each (s;a;r;s9 2 D into X(g;f;g/), we get iid. variables
w0 X1(9:F:97): X2(9:F,97): 11 Xn(9: f;97). Itis easy to see that

1 X ) ,
- Xi(9:;f;9¢)= Lo(g:f; ) L o(g;f; ): (33)
i=1

161 By the de nition ofL , it is also easy to show that
" I#
2

X !
L(gf )= gT f 5 +Esa Viso r+ (@%sY (s®a%)f(s%a®) ; (34)
' af2A

12 WhereV,so is the variance over conditional distribution ofands® given (s; a). Notice that the
163 second part does not dependsgpThen

L(gf, )L (T ff; )=kg T fkj (35)
164 Then we bound the variance Hf:
VIX(g:f;00)]  EX(9;f;97)%]

E gsa) r V92 gsa 1 Vi)
(De nitioin of X)

h
E osa) ¢(sa gsa+g(sa 2r 2Vi(sh?
h i

NZLE  9sa) g(sia)
=4VZ, kg o'ks
8V2a (EIX(9:F;97)1+2 £): (36)



16!

a

The last step holds because

kg of k.
2 kg T fk3 +KT f o'ks (a+ b2 2a%2+27)
=2 kg T fK5. KT f g’k +2KkT f g’k3.

=2 (L (@f; )L (T f;f ) (L(g:f )L (T f;f; N+2kT f g’ks.
(Equation (35))

=2 (L (gfi ) L (o:f; )+2kT f olks
=2 E[X(g;f;g))]+2KT f gk
2(E X(9;f:9{) +2 F)

166 Next, we apply (one-sided) Bernstein's inequality and union bound ovér allF , g 2 F, and
167 2 () . With probability atleast , we have

S
1 X VX (gif;gP)lIn FE gy gnIFfL
E[X (g;f;g?)] 0 Xi(f; f; g f’)) r: + max o
i=1

\lﬂ ? iFii R

_ P 32Vrﬁax E[X (g;f§gf')]+2 e In Ll . 8Vn%ax In ”:”7.

) n 3n '

(37)

P
SinceT ., f minimizesLp ( ;f; ), italso minimizest [, X;(;f;g{). Thisis because the two
objectives only differ by a constaht, (g7; f; ). Hence,

1 X . f- ? 1 X P fen? .

n Xi(Tp fifi9¢) n Xi(g;f;97)=0:
i=1 i=1

168 Then,
M
Havz EX(T, f97)]+2 ¢ InHELI 2 R
E[X (T.D f;f;g f?)] 0+ max D f + 8Vmax In :
' n 3n
169 Solving for the quadratic formula,
v )
u 1 - o
8v2  |n Fi_i 64v2. |n Fi_i 56V2._ |n Fi_i
EX T f;f; ? P 48 max + max + max
X(Tp gl an n F an
(56 +32° 3)VZ, InFL_1 , 64V, In i)
3n D n D F D -
(a+b "a+ bandin > 0
s
UNZ, In B 6avz, InF)
3n n F

170 Noticing thatE[X (Tp f;f;g /)= L (To f;f; ) L (¢;f; ), we complete the proof. O

171 Lemma 8 (Policy Evaluation Accuracy)For anyt;k  1and ¢, frx andfy 1 from Algorithm
172 1,

2
ft;k T [ft;k 1 > 1

208Vv2 In FL_i
173 where | = —™———+2 ¢



Proof.

2
ft;k T ‘ft;k 1
2

=L (fexsfex 10 o L (T "Fex 15fex 15 o)
= L (fekifex 15 ¢) L (gf?t;k Sfee 1t) L (T “fex oifex 15 o) L (gf?t;k Sfee 1t

s
1122, nFL1  gave inFLJ ) 1
3n + n Ft U o T fre 1 2
s (Equation (35) and Lemma 7)
1NV2, In 1 eavz, In L
ma;n + maXn F+ E (De nition of gf'-’t;k , and Assumption 3)
1V2, In B 3pv2 o i P
ma>én + maxn + g+ = 4 ( 2ab a+ b)
174 O]

175 From this lemma to the proof of main theorem, we are going to condition on the fact that the event
176 in Assumption 2 holds. In the proof of the main theorem we will impose the union bound on all
177 failures.

178 Lemma 9. For any admissible distribution onS® A © and any  from Algorithm 1.

CCut Vi ),

T K Vimax (38)

k (sia)(fex (si@) Q '(s;a)ky.

179 where 1 is de ned in Lemma 8.

180 (Althoughfik isonlydenedonS A , isalways zero for any othgs; a). Thus the all values
181 used in the proof are well-de ned. Later, when it is necessary for proof, we de ne the vafyg of
182 outside ofS A to be zero. In the algorithm, we will never need to query the valueof outside
183 Of S A )

184 Proof. Foranyk 1 and any distribution onS°® A &

k (fue  Q Yk, (39)
fex T fex 1 Lt T e 2 T Q! y (40)

fex T “fex 1 " + T few 2 T 'Q " (41)

C fex T 'fex 2 1;b+ T 2 T Q! 5 (42)
C fux T ‘fex 1 Lt Vmax  + T e 2 T 1Q ¢ y (43)

C fu T 'fex 1 N + Vinax + T 'y ¢+ T Q¢ . (Jensen's inequality)

C(p71+vmax )+ T e T QE (Lemma 8)
X

=c(’ "1+ Vimax )+ E  Ep() ((@93sY) (%) (fex 1(s%a) Q :(s%a%) (44)
a%A

:qEﬁWm)+E Er(y L (@) (fu 1(2a9) Q' (s%ad)] (45)

C(p]+vmax )+ Ep(y ) (S5 (fu 1(s%@) Q t(s%ad); (46)

CC u+ Vi )+ K (Fue 1 Q Dkyp( (47)



185 Equation (42) holds since for alk;a) s.t. (s;a) > 0, (s;a) U %b(s;a) = Cb(s;a).
186 Equation (43) holds since the total variation distance betweand b is bounded by and the
187 Bellman error is bounded in Vimax ; Vimax ]. Equation (44) follows from; 2 g"c. Soif (s;a)=
188 0, (ajs) =0 foralla 2 A. Equation (45) holds sinceg ; asng = 0. The next equation follows
18s fromthat = 2

190 Note that this holds for any admissible distributiomn S° A %and andk, as well as ; does not
191 depends ok. Repeating this fok from K to 1 we will have that

K p_ K
C 1t Vimax + Vimax (48)

k(sia)(fix (sia) Q(s;aDky,

<c('°11+ Viax ) |

192 O

K Vimax (49)

193 C.3 Proofs for policy improvement step

Lemma 10 (Concentration of Policy Improvement Losdjor anyf 2 F , with probability at least
1 )

r—
In(jFjj =)
Ep, [ (s;a)f (s;@)] max (s;a)f (s;a) +2V, —_—
f a2A 1 max 2n
194 Wherebs =argmax , Ep [E [ (s;a)f (s;a)]l.
105 Proof. Fixedf, dene X(s; ) = maxaoa (S;a)f(s;a) E [ (s;a)f (s;a)]. Notice that by

196 de nition X (s; ) is always non-negative, andk = argmax , Ep [E [ (s;a)f (s;a)]] =
17 argmin , Ep[X(s; )l

Only in this proof, let ¢ be:
argminE [X(s; )]=argmin E [ (s;a)f (s;a)] rr12an (s;a)f (s; a)
2 2 a

1

18 X(S; ) 2 [0;Vmax]- By Hoeffding's inequality and union bound over all2 ,f 2 F, with
199 probability at least foranyf and 6 ¢,

| ——
EX(S ] EolX(S )] Voo OLIZ) (50
200 for = ¢
EolX(si )] EX(5 )] Vinx g (51)
200 If by = ¢, thenE [X(s;bs)] . Otherwise,
E X (sibr)] (52)
Eo [X (b1 + Vinax 02— (53)
In(iFj_i=)
EolX (5 )]+ Vinwe g —— (54)
: nurl 1=
E [X (S, f)]+2Vmax T r - (55)
= min B[ (553l mx (A  +2Va w (56)
U ,
_ InGFii_i=)
= A2V o 57)
202 O



203 For the following proof until the main theorem, we are going to condition on the fact that the high
204 probability bound in the lemma above holds, and impose an union bound in the proof of main
205 theorem.

206 Lemma 11. For any admissible distribution on S, any policy :S°! ( A9,
E E.Ll(safk(sial E [ (sr; A)ftk (s;a)] |

In(iFjj _j=)

C + Vmax + 2Vmax 2n

207 Proof. Recallthat (+1 = ( bt+1). SO 41 (8jS) = bi+1 (as) for allasuch that (s;a) = 1. Then

E [ (sa)fk (s;8)]= Ep,, [ (Si8)frk (s;8)]
E E.Ll[safw(sa] =E B, [ (558 (sia)]

E E..[(safk(sia] E [ (sia)fik (s;a) (58)
E Ep., [ (sa@fu (s58)] E [ (sia)fik (s;@)] (59)

E Eo.. [ (Si8)fix (s58)] max (s;a)fu (s;8)+max (s;a)fek (s;8) E [ (s;@)fux (s;2)]

(60)
E Eo [ (58 (s;a)] max (s;a)fuk (sia) (61)
E Ep. [ (ss@)fik (s;a)] max (s;a)f ik (s;9) (62)
= Eb.., [ (s;a)fex (s;a)] Tzan (s;a)fik (s; @) (63)
1
C Eou [ (sia)fex (58] max (s;a)fu (s:2) (64)
1;b

208 The last step follows from that(s;a) =1 ) b(s;a) b) b(s) b) (s) U
200 Cb(s), and for all othel(s; a) the term inside of norm is zero. Since the total variation distance
210 betweerb and is bounded by

B [ (s;8)f1k (si@)] max (s;a)fik (s;a) (65)

a2A 1:b
Boa [ (Si8)fex (s:@)] max (s;a@)fux (S;8)  + Vimax (66)

1

211 By Lemma 10:
r—
In(jFjj j=
Eb. [ (@) (s:8)] max (sia)fu (sia) 2V MFL 2D g)
a2A 1 2n

212 Then we nished the proof by plug this into the last equation. O

213 Lemma12. Forany(s;a) 2S° A % andany {, (+1 in Algorithm 1,

p— K
2C + 3Vmax C +2 "V,
Q " (s;a Q (s;a) 21 )”;ax 2 1 max (68)
a TET =Y
214 Where 1 isde nedin Lemma8,, = C + 2 Vinax %

10



215 Proof. For anys®, only in this proof, let ,,'"* be the state distribution on tireh step from initial
216 states®following .1 . By applying performance difference lemma [3],

Vor(sy vy " (69)
X X
= "E, - (1+11(a2)Q (z;8)  (aj2)Q *(z; ) (70)
h=1 wa2A 0
* X _ _
= "IE, - 1 @a)( wm(@2)Q (z;a) (a82)Q '(zd)  (71)
h=1 a2A 0 #
X
+ (za)( 141 (a2)Q (z;8)  1(8j2)Q '(z;4)) (72)
a2A 0

217 Because; 1+ 2 &L, (z;a) =0 means either(ajz) = (41 (ajz) = 0 ora = aus So the
218 rsttermis zero. Then:

V() vosh (73)
R X #
= " E, e (z;a) ( t+1(a2)Q *(z;8)  +(aj2)Q *(z; ) (74)
h=1 wa2A o
R X #
= " E, R (z;a) ( +1(aj2)Q '(z;8)  (aj2)Q (z;4)) (75)
h=1 wa2A
X X
= " E, e (z;d)( +1(82)Q (z;8) i (@2)fik (z;@)  (76)
h=1 a2A
+ (z;a) (1 (@2)fix (z:8)  (aj2)fik (z; ) (77)
a2A
X #
+ (z;a) ( (ain)fex (z:@)  1(a2)Q '(z; @) (78)
a2A

219 Equation 75 follows fronQ (s;aspg =0 for any ands. By Lemma 11, for any,

#

X
E, (z;a) (a1 (@2)fik (z:@)  (@i2)f ik (z:@) (79)
a2A

=E, = E, [sdfw (sl E.[(siafx(sia) 2 CVmax (80)

z

11



220 Then

Vorr(sh vy (81)
R X
"'E, (z;a)( +1(aj2)Q (z;8) i (@2)fik (z;d)  (82)
h=lX a2A #
v @A @)k ma)  (@2Q @A) T ()
a2A
"1k (z:a)(Q (z:a) fik (z;a)k,. o (84)
h=1
PR ZAQ (2id) T (ma)k, o | 2 (85)
h1 k(z;a)(Q '(z;a) fek (z;a))kz: o (86)
h=1
+ k (z;a)(Q '(z;8) fik (z;a)k,. R % (87)
p_
2C 1t e 2 Vi 2+ Clex (Lemma 9)

@ )2 1 1

21 Equation 87 follows from Jensen's inequality. Since this holds forshye proved that for any
22 (S;a),

Q ™ (s;a) Q ‘(s;a)] (88)
=  Eso [Vp v1(s) V(s (89)
2C 71+ Vmax 2 K Vmax 2t CVmax
(1 )2 1 1 (90)
p— K
2C" 71+ 3CVnax 2 " Vmax 2
(1 )2 1 1 (91)
223 O

224 C.4 Proof of main theorems

225 Theorem 2. Givenan MDPM =< S;A;R;P; ;p > ,adataseD = f(s;a;r;s%)gwithn samples
26 thatis draw i.i.d. from R P, and a nite Q-function classeB and a nite policy class

227 satisfying Assumption 3 and 4, = ( b;) from Algorithm 1 satis es that with probability at least
28 1 3,

0s 1
4c 412, In FL_1 soP A 6CVmax , 2C +3 ¥ 'V
@a » 3n @ ) @ )

229 forany policye 2 2.

208V2, In Fi_1

230 Proof. For simdolicity of the notation, let ; = —m——— + 2, , =
2 C +2Vinax MUFLJZ) gng 5 = %€ ?;'3 V)m;x c 4 2"21K Vm - \We start by proving

22 a stronger result. For ang 2 &L, we will upper boundE [V¢ V t] for any admissible

12



233 distribution overS®which will naturally be an upper bound fof v ¢

E Ve V2
A\ ] "

X X
=B V'O w1 (@9)Q (sA+  wa(@9)Q (58 V()

a2A © a2A 0
#

X X
=E V®(s) t+1 (ajs)Q *(s;a) + 1+1 (@9)(Q t(s;@) Q * (s;a))

X h a2A 0 a2A 0 i
E e(@s)Q°(s;a)  ta (as)Q '(s;a) + 3 (Lemma 12)
=E (s;a)[e(ajs)Q%(s;a)  t+1 (aIS)Q ‘(s; )]+ 3
FIZA Oh .

=E Ee (s;Q°(s; a)l E ..l (ssafi(s;a)l
tE L(S:a)ft(S:a)] B [ (si8)Q (S:'c})] + 3
E Ee (s;8Q°%(s;a) E ., [ (s;a)fi(s;a)
+ kh(z;;]a)(Q Hz:a) fuza)k, ., * 3

i i p_
c 1+ oy
E E (552Q°(sia) E. [ (safusia] + "+ “Vow* 3
(Lemma 9)
h h i i P—, cv
E Ee (s5;8Q°(s;a) Ee[ (s;a)fi(s;@)] + 2+ CViax  + c 11 CVax
(Lemma 11)

h h i i p—
2ocP 7T +3cy
E E (552Q°(sia) Ee[ (s@)Q (sid)] + o+ =g +2 KViac +
(Lemma 9)
h i 2cP T+ 3CVina
=E ¢ (s;9Q°(s;a) (s;@Q (s;a) + 2+ I +2 KVipax + 3
h i P
ocPT+3cy,
=E ¢ Q°(ss@d Q(s;a) + 2+ ! M +2 KV + 3 (¢2 3

1
2cP T +3CVm

1 +2 KVmax+ 3

Ep( ¢[V® V ']+ o+

23 The second to last step follows from 2 &L : for all s; a such thae(ajs) > 0, either (s;a) =1,
235 Ora = agns The later two indicate tha® t(s;a) = Q€(s;a) = 0. So for all s;a such that
236 e(ajs) > 0,Q%(s;a) = (s;a)Qe(s;a) andQ t(s;a) = (s;a)Q '(s;a). Now we proved

2cP T +3CVin

EV® V] Ep( olV® V ]+ 2+ 3+ 1

+2 " Viax (92)

13
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237 holds for any distribution . The error terms do not depend biand this holds for any. We can
238 repeatedly apply thisforal <t® t. Assumingt K this will give us :

E [Ve V 1+1]
t ocPT+3cV

]J-_ 2t 3t 11 o +2 KVmax + thax

> . s, 20'072+3cvmaxz RERA
1 1 p(l 2 @) 1

2 2 + 4C 71 + 6Cvmax + 3 K leax
e ) @ )3r @ ) @ )2

2C . 4C  VZuGFi =), 4”7 | 6CVmx |, 3% Vo
@y a ¥ a P a B a p
2C_, 4C VRG] =), 208, nGFi =), |
@a )y @ ) 2n 3n
4 6CVmax 3" Vinax

a »a r |
2, 4C VR In(Fi =), 2082y In(Fi j=) , Py
@ )2 @ )3 2n 3n F

6C Vinax 3 K Whax
taop ey |

r H
2 Eii iz - K 1

2C 4 4C i AN IR =) , Py, 6CVmax3 , 3 vmzax
@ )y @« ) 3n @ ) @ )

239 The last step follows from that+ b P 2(a? + ?). The error bound is nished by simplifying the
240 expression. The failure probabiligy is from the union bound of probabilityon which Assumption
241 2 fails, probability on which Lemma 7 fails, and the probabilityon which Lemma 10 fails. [

222 Now we are going to use the fact that there is an almost no-value-loss projection from the
243 constrained policy set to the strongconstrained policy set in order to prove an error bound w.r.t
24 anye2 .
255 Theorem 1. Givenan MDPM =< S;A;R;P; ;p > ,adataseD = f(s;a;r;s®)gwithn samples
26 that is draw i.i.d. from R P, and a nite Q-function classeB and a nite policy class
247 satisfying Assumption 3 and i, from Algorithm 1 satis es that with probability at least 3,

0s 1

e

4 g HNZ,In Fi J’ﬁsz?A+ 6CVmax , 2C  +3 ¥ 'Vinax , Vimax
TERE 3n @ )3 @ )2 1

Ve vl
228 for any policye 2 @' and only take action ovek.

249 Proof. For any policye that only take action oveh, Lemma 3 tells thavy, V|\5| e 4 VT‘*

250 Since = ( by) andb; only takes action irA, by Lemma 1 and Lemma \23; = v,f’,"o vy -
51 Thenvs, v v,é, S Vot \"‘1‘5‘7 and Theorem 2 completes the proof. O

22 When there exist an optimal policy that is supported well by\We can derive the following result
253 about value gap between learned policy and optimal policy immediately from the main theorem
254 about approximate policy iteration.

14



255 Corollary 2. If there exists an * on M such thatPr( (s;a) 25 7) . then under the
256 assumptions of Theoremli;, from Algorithm 1 satis es that with probability at least 3 ,

0s S 1
, 4C 4N2, InFL1 5 eV,

‘ @ max +20 A ¢ 2o fmax

e W@y an BARNNCRRRE

+ 2C +3 K leax n Vimax( + C )
@ )2 1

257 Proof. Given the condition of ?,

Prob(ssa) b ? Pr((s;a 25 )+Pr(j(s;a b(s;aj Wb 7)) (93

+Pr(j (5@ b(s;a)j b ?) (©4)
,E 2 i (s;att)) b(s; a)j] (95)
L Udnv( (s k;’:1);b(s: a)) (96)
+C ©7)
28 Then 72 & with = + C ,andapplying Theorem 1 nished the proof. O

259 C.5 Safe Policy Improvement Result

260 In many scenarios we aim to have a policy improvement that is guaranteed to be no worse than
261 the data collection policy, which is called safe policy improvement. By abusing the notation a bit,
262 let (ajs) be a policy that generate the data set. For our algorithm, the safe policy improvement
263 willholdif 2 & Toshow 2 &, we only need thaPr( (s;a) b ) . When

264 the state-action space is nite, there must exist an minimum value for all non-4sr@)'s. Let

265 min = MiNgast (sa)>0 (S;@). Then we have that, ib mn- Pr( (s;a) b )=0. Thus

266 We have:

267 Corollary 3. With nite state action space anld i, , under the assumptions as Theorenip,
268 from Algorithm 1 satis es that with probability at leagt 3,

[« I — p
o 5Vmax  JSJAI ( In@2jSjiAj =)+ In(1+ NVmay)) +8
o T CRDE
o 1V SHA] IN@JSjAI =) , 3 € Vimax
nb(l1 )3 @a )2

260 Proof. In nite state action space, the number of all deterministic policies is lessjfjat . Thus
270 we have a policy class with = 0 andj j jAj SI. Since theQ value is bounded if0; Vimax ],
21 we can construct a covering sef of all value functions if0; Vimax JSIA - with (Ymec + 1) ISiA
272 functions. Theng  maxgmingor kf gk. > maxgming o ki gky
273 We can also bound in nite state action space. For any xest a, by Berstein's inequality we
274 have that with probability of ]IW:
1 X _ _ . :
- 1(s) = s;a) = a)  E[A(s" = s;a) = a)] (98)

i=1
r

2V[1(s) = s;ald) = a)]In(2jSjjAj =) N 4In(2jSjjAj =)
; n n
_ 2 (a1 (s;@)In2jSjiAi=) . 4In(2iSjiA =)

n n

jb(s;a)  (s;a)j

(99)

(100)
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275 By taking summation ofb(s; a) (s;a)j and union bound over afk; a), we can bound the total
276 variation bounds betwedmand , with probability at least

X
b kv =y jb(sia) (s (101)
sia r |
X : : SiAT = QA = :
1 2 (s;a)1  (s;@)In(2jSjjAi=) , 4In(2SjiA =) (102)
2 n n
sa r
_ 2SiiAl In@jsjiAi=) , 1% 2 (s;a)(1  (s;a)In2]SjiAj =) (103)
n 2 ca n
5
Cne A cm s u X i arns — ) X
ASPA IN@ISIAI=) | 2 2 (Si)INRISIA=) 7 (6 )
n 2 s;a n s;a ’

(Cauchy-Schwartz's inequality)

r
_ ZSiiAl In@jSijAi=) . 1 2In(ZjSjiA =)

- ? o (SjiAl 1) (104)
2SiAj In@jSjiAi =) . ISIAI In@2jSjiAl =) (105)
n 2n

277 Now in a nite state action space we can construct the policy @flinction sets withjFj
s (Ymac +1)ISIAL jojoj AJSE =0, ¢ , and bounded . By plugging these terms into the
279 result of Theorem 1, we have the following bound:

r
v v 4C 412, (jSjInjAj + jSjiAj IN(1 + Vmax=) +In(1 =)) N 2p -

MoTMo@ )3 3n
r !
6C Vimax JSiiAl In@2jSjiAj =) | 2ISjiA] IN@jSjiAj=) | 3 "Vinax .
@a )3 2n n @a )H)2’
(106)

280 for any chosen > 0. So we can set that= 1=n to upper bound the the in mum of this upper

281 bound. |
r ro_!
A 4C A41NV2,, (1SjInJA] + JSJIA] In(1 + NVipax) +In(1 =) 1

Y A +2 -
MoM@ )3 3n n

r !
6C Vimax JSIAI InjSjiAj =) | 2SjA] IN@2jSjiAj=) | 3 € Vimax
@a ) 2n n @a )2
(107)

282 Notice that in discrete space we have that 1. By replacingC with 1=band simplify some terms,
283 we have that:

S
v YN 6704/ 3 jSI(NCAI =) + JA IN(L + NVimax)) . 8
Mo 3nk2(1 )6 b n@ )3
S
18ViAax JSIA] IN2JSHA] =) | 12Vmax JSJIA] IN2JSJiAT =) | 3 * *Vinax
nb?(1 )° nb(1 )3 @ )2
P P p
5QVmax  jSjiAI ( In(2jSjiAj =)+~ In(1 + NVmax)) +8
“hb(l )3
4+ 1V JSHA] IN@jSjiAT =) |, 3 € Vinax
nb(1 )3 1 )2
284 D
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D Proofs for Q Iteration Guarantees

In this section, we are going to prove the our main result foiQhteration algorithm, Algorithm 2.
First we introduce a similar completeness assumption about the Bellman optimality operator:

Assumption 5(Completeness unddr). max; o mingsr kg T fkg; F

We will rst state our main theorem here and then give a proof sketch before we start the proof
formally.
Theorem 4. Givena MDPM =< S;A;R;P; ;p >, adataseD = f(s;a;r;s%gwith n samples
that is draw i.i.d. from R P, and a nite Q-function classeB satisfying Assumption %y
from Algorithm 2 satis es that with probability at leagt ,ve® v
0s — 1
2C @ 208VfxIn o p

+2 @'+ )Vmax
@a )2 3n

1

Tt Vmax f QT Q° As
2;

for any policye 2 &'

We will rst give a proof sketch before we start the proof formally. The proof follows a similar

structural as the policy iteration case. To prove Theorem 4 we rst prove a similar version of Theo-

rem 4 but the comparator polices are in strorgpnstrained policy set (formally stated as Theorem

5 later). Then we show an upper boundwf, v,/ . where 2 2L and . is the output of

algorithm (Theorem 5, will be formally stated later). Then we are going to show that for any policy
in the -constrained policy set, after a projectiorit is in the strong -constrained policy set and

Vi V|\5| o) + Vimax  =(1 ). Then we can provide the upper bound ¥y v,/ for any in

-constrained policy set (Theorem 4).

The proof sketch of Theorem 5 goes as follow. One key step to prove this error bound is to convert
the performance difference between any pokcy g"c and  to a value function gap that is
Itered by

vt ok Q¢ fi ki ,=(1 );

where ; is some admissible distribution ov8r A . The lter allows the change of measure from

1 to without constraining the density ratio between an arbitrary distributiand . Instead for
any s;a where is one, by de nition is lower bounded and the density ratio is boundedhy
(details in Lemma 13).

The rest of the proof has a similar structure with the standard FQI analysis. In Lemma 15, we bound
the normk (Q® fi)ka. , byCk(fiy T fi)ks =(1 ) and one additional sub-optimality error

kQ¢ T Q°¢ky. . The additional sub-optimality error term comes from the fact ¢hatay not be

an optimal policy since the optimal policy may not be-aonstrained policy. The last step to nish

the proof is to bound the expected Bellman residual by concentration inequality. Lemma 16 shows
how to bound that following a similar approach as [1]. Then the main theorem is proved by combine

all those steps. After that we prove when we can bound the value gap with resepct to optimal value
in Corollary 4.

Now we start the proof. We are going to condition on the high probability bounds in Assumption 2
holds when we proof the lemmas.

Lemma 13. For = ( by) in Algorithm 2, for any policye 2 2k we have

h3
ve v "Q Q0
h=0 1L ,' e L, ot
Proof. Given a deterministic greedy polidy;, : = ( bt) is also a deterministic policy and

t(s) equalsb(s) unless (s;bi(s)) = 0, where {(s) = aans Notice b;(s) is the maximizer
of (s;)fi(s; ). If (s;bi(s)) =0 then (s;a)fi(s;a) =0 for all a. We have that (s) is also the
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320 maximizer of (s; )f¢(s; ).

X
veovi= "Eg (Q%(sie)  Q°(si 1)l (13, Lemma 6.1])

% : |

"E; « (s0)Q%(s;e) (s )Q°(si 1) (108)
h=0
X

"E; [ (s;e)Q%(sie)  (sie)fi(sie)+ (si ofilsi o) (si 0Q%(s; 1)
" (109)
X

" Q fe .+ Qo (110)
h=0 h © S h t

321 Equation (108) follows from the fact that for al a such thate(ajs) > 0, either (s;a) = 1, or
322 &= aups & = agpsindicates tha®(s;a) = 0. So for alls; a such thate(ajs) > 0, Q¢(s;a) =

23 (s;a)Q¢(s; a). The second part follows from that for amya, Q€ (s; a) (s;a)Q¢(s; a). Equa-
324 tion (109) follows from the fact that; (s) is the maximizer of (s; )f(s; ). O

Lemma 14. For any two functionfy;f, : S° A ° I R* dene +,+,(s)
argmax,,, jfi(s;a) fa(s;a)j. Thenwe hav8 :S°! ( A9,

I?Z%Xfl maxfz k f1 fzkl;p( )

f1:f20°

a2A 1P ()
Proof.
f f = E f . f i
Tz%x 1 Tz%x 2 P s P() ;nzax 1(s; ) ;ngx »(s; @)
Es p)maxjfa(s;a)  fafs;a)
=Es p()a 1,4,If1(58) Tfo(s;d)]
— 2 .
AEIREL TR
325 D

26 Lemma 15. For the data distribution and any admissible distribution overS°® A © f;f 0 :
27 S Al R" andanye2 2L, we have

f Q° . C ki T f%, + TQ® Q° , + Vinax
+ o Q¢ ;
2P() joqe
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Proof.

P, (111)
= f T f%TIOT QU 4TQ Q| (112)
COT O e TIOT e T o a1
0 € e e
CKE T+ max o maxQ 1;P()+C To R 1;b (114)
2CVmax  +Cki T %, + maxf°® max Q° +C TQ® Q (115
' a2A a2A 1P () 1
C ki T f%, + TQ® Q° +2Vmx + 0 Qe
' L LP()  fog e
(116)

328 The change of norms frotk k tok k follows from that (s;a) 6 0 iff b(s;a) band thus

320 (s;a) Db(s;a)U=b= Cb(s;a). The last step follows fromLemma14. Tf° T Q¢ 1

330 MaXaoa 0 maxaa Q€ P , follows from:
i
TfOT Q° . Esa) (s;a) TfYs;a) T Q°(s;a) (117)
’ h i
Esay TfYs;a) T Q°(s;a) (118)
=Esa)  Ew psaymax (s5a)fAs%a)  max (s%2)Q°(s% )

(119)

Esa) so psay Max (s5a)fYsha) max (s5a)Q%(s%a)

(Jensen)
— (0} 07 0. 0. e (0.
= Ewo p() max (s®a%f qs® aY max (s%a%Qe(s% a)
(120)
— 0 e
= ngax f r;}an Q o) (121)
331 O

32 Now we are going to use Berstein's inequality to bowkfid, T fik, , which mostly follows
sz from [1]'s proof for the vanilla value iteration.
s« Lemma 16. With Assumption 5 holds, Igf = argmin g,r kg T fky, ,thenkg! T k3. F.

335 The dataseD is generated i.i.d. fronM as follows:(s; a) . = R(s;a),s® P(s;a). Dene
s L (f;f9 = E[Lp (f;f9]. We have tha8f 2 F , with probability at leastlL.
208V,2,, In FL
L (Tofif) L (¢if) — T+

3n
337 WhereT p f =argmin g,r Lp(g;f).

sss  Proof. This proof is similar with the proof of Lemma 7, and we adapt it to operatorThe only
s change is the de nition of; () andX (; ; ). The de nition of L, andL would not change
a0 betweerM andM © and the right hand side is also the same constariif@andM °. So the result
341 we prove here does not change frinto M .

For the simplicity of notations, l&#; (s) = max .oa  (S;8)f (s;a). Fixf;g 2 F, and de ne
X(g:fgl)=(gsa) r Vi(s)? gsa) r Vi)
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Plugging each (s;a;r;s9 2 D into X(g;f;g/), we get iid. variables
X1(9:F:97): X2(9;f,97); 1115 X (9: f: 97). Itis easy to see that

1)@ 2 ?
o Xi(g;f;9¢7)= Lo(a:f) L o(g:f):

i=1
By the de nition of L , it is also easy to see that

L (g:f)=kg T fK:. +Esa Viso r+ max (s% a%f (s ad
! a
Notice that the second part does not dependg. drhen
L (gf) L (Tff)y=kg T fki,
sa2  Then we bound the variance Xf:
VIX(9:f;97)]  EX(9:f;97)%]

E gsa) r V2 gsa r Vi)
h i
E g(s;a) g'(s;a) % o(s;a) + g(s;a) 2r 2V¢(sH 2
h i

NZLE  gsa) g(sia)

=4V2, kg o’k3. (122)
8ViZax (EIX (i fi07)]+2 £): *)
a3 Step (*) holds because
kg ofks,
2kg T fk& +KTf g’ks ((a+ b)? 2a%+27)

2kg T fki KT f o'kl +2kTf g’ks
=2 (L (gf) L (THf) (L (g:f) L (THf)+2kTf ok
=2 (L (&) L (o:f)+2kTf glks.
=2 EX(g:fig0)]+2kT f gk},

2(E X(g:f;97) +2 ¢)

saa  Next, we apply (one-sided) Bernstein's inequality and union bound overalF andg 2 F . With
a5 probability atleasl |, we have

S
iFj 2 o
1 X VX (g:fig))ln B avz in FL2
E[X (9:f; g:)] n Xi(g;f; gf) . f + max3n
i=1

U

t3vz, EX(gifigMN+2 ¢ mF gy2 niFi
= +

n 3n

P
SinceT p f minimizesLp ( ;f), it also minimize&% i“:l Xi(;f;g7). This is because the two
objectives only differ by a constaht, (g7; f ). Hence,

1 X n 1X e
~ XMoo ffg) - Xi(g:figr)=0:
i=1 i=1
346 Then,
Y
Havz, EX(Topfifig?))+2 ¢ InEL g2 g FL
EIX (T fifig /) = - s Zmec
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347 Solving for the quadratic formula,

Vv
u

t

L 2 iEi iFi
o B 8v,2,, In L 64V Zy In - 56V, In Fh
) . . H +
EX(T.p f;f;9¢)] 48 — 3 - = an
s
(56 +32" 3V, InH . 642, In Fi
3n D n D F P -
(a+b "a+ bandin > 0
s -
112v2, In FL . 4VZ I F
3n n F
1122, In FL , 3V In F
3n n F
208v,2,, In FL
s
as  Noticing thatE[X (Tp f;f;g/)]= L (T f;f) L (g7;f), we complete the proof. O

saa  Now we could prove the main theorem about tted Q iteration.

30 Theorem 5. GivenaMDPM =< S;A;R;P; ;p> ,adataseD = f(s;a;r;s%gwith n samples
ss1 that is draw i.i.d. from R P, and a nite Q-function classeB satisfying Assumption 5,
52 ¢ = ( by) from Algorithm 2 satis es that with probability atleagt 2 ,v® vt
O s - —_ 1
2C 208v2, InFL
@ )2 3n

a1

2 thax

+2
1

Ve + QT Q° Ad
3 forany policye 2 2.

Proof. Firstly, we can lef = f; andf °= f; ; in Lemma 15. This gives us that

f @ C KT fusky + Q°T Q°  +2Vma  + ki1 Q%kup)

fk 1

ss4  Note that we can apply the same analysi$gn) f, 1:02 and expand the inequalitytimes. It
35 then sufcesto upper bounkf; T f¢ 1ka. .

Kfe T fo 1k,

=L (fe;fe 1) L (Tfe 1;fc 1) (De nition of L )
= Tt 1 ?( sfe l+[L (gf?t Sfea) L (Tfe gfe 1)l
[L (ffe 1) L (g
at kgl | T fyo1KS (Lemma 16 and de nition of. )
at F: (De nition of g('-’gk , and Assumption 5)
The inequality holds with probability at least and 4 = M + ¢. Noticing that 4

and ¢ do not depend oty and the inequality holds S|multaneously for differgnve have that

1 t

ke Qi 3

| O
C (4+ F)+Vmax + Qe T Qe 1 + thax:

21



ss6  Applying this to Lemma 13, we have that

I T
S% (11__’th (\/M+ Vinaxép + HQ* - TcQ° ) +fythax)
T 2¢ e <M+ Viaxen + | Q% = T:Q° H) + 21 ‘_/“‘”
20 208V,2,. In 121 27 Vi
§(177)2 0 8+ 2\/ex + Vinax€u + HQG—Tng » +ﬁ'
357 O]

358 Now we are going to use the fact that there is an no-value-loss projection from the (-constrained
359 policy set to the strong (-constrained policy set to prove an error bound w.r.t any 7 € Hac”.

sso Theorem 2. Givena MDP M =< S, A, R, P,~,p >, adataset D = {(s,a,r, s")} with n samples
381 that is draw ii.d. from ;i X R X P, and a finite Q-function classes F satisfying Assumption 5, Ty
2 from Algorithm 2 satisfies that with probability at least 1 — 25, v& — v®* <

2C 208V2,. In |‘ ‘ (27t + )V,
max 2 ,7 V. ax H Qe T Qe ¢ /) Vmax
(1 —7)2 3n n ¢ 1—7

oy 1
363 for any policy ™ € 113"

a4 Proof. The difference between this theorem and Theorem 5 is that 7 is in [I%! which is significantly
ses  larger than TTZ,.

3s6 This prove mimics the proof of Theorem 1 For any policy 7 € H?;”, Lemma 3 tells that v§, <
(e) Vimaxe = b, b _(e)
367 + 125 Since m = E(7), vy; = v, > o7t Then v§, — v < v ?) — 0T, +

368 Theorem 5 completes the proof.

Vo< and

se9 Remark: The first term in the theorem comes from that the best policy in the (-constrained policy
370 set is not optimal. Note that the (-constrained policy set does not requires any realizability to do
a71  with our function approximation but merely about the density ratio of a policy. When there is an
a72  optimal policy of M such in II%!, we have the same type of bound as standard approximate value
373 iteration analysis.

a4 Corollary 4. If there exists an m* on M such that Pr(pu(s, a) < 2b|7*) < e. then under the condition
375 as Theorem 4, 7, from Algorithm 2 satisfies that with probability at least 1 — 20, vX; —vyp <

20 208V,2,, In 2! Vinax (27" + € + CU«,,)

a76  Proof. The proof of 7* € TI&! is same as the proof in Corollary 1. Then proof is finished by
377 applying Theorem 4. O

ss E  Details of CartPole Experiment

s79  E.1 Full results of Discretized CartPole-v(

380 In section 6.1, we compare AVI, BCQL[2], SPIBB[4], Behavior cloning and our algorithm PQI, in
38t CartPole-v0 with discretized state space. The data is generated by a e-greedy policy (e from 0.1 to
382 0.9) and we report the resulting policies from different algorithm with the best hyper-parameter in
383 each e. In this section we show the learning curve for each e and each hyper-parameter value. We
ss4 rtun the BCQ algorithm with the threshold of fi(als) in {0, 0.05, 0.1, 0.2}, and we run the SPIBB
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Figure 1: CartPole-v0 with discretized state space. The learning curve of all algorithms with differ-
ent hyper-parameters, data generated with different e-greedy behavior policy. The hyper-parameter
of SPIBB [4] and PQI is the threshold of [i(s, a) and the hyper-parameter of BCQL [2]] is the thresh-
old of fi(als).

algorithm with the threshold of fi(s,a) in {0.01,0.005,0.001, 0.0005,0.0001} and PQI with the
threshold of 7i(s, a) in a smaller set {0.005,0.001,0.0005}. Figure [I] shows for most of the € and
threshold our algorithm tie with the best baseline (SPIBB), and the best threshold of our algorithm
outperform all baseline algorithms in 8 out of 9 cases.

In Figure |1, we observe the trend that smaller € will prefer a smaller . This is verified by more
results in the next section, and we discuss the reasons for this phenomenon there.

E.2 Ablation study of threshold b

A key aspect of our algorithm is to filter the state space by a threshold on the estimated probability
1i(s,a). This prevents the algorithm from updating using low-confidence state, action pairs when
bootstrapping values. Then the choice of threshold b is a key trade-off in our algorithm: if b is too
small it can not remove the low-confident state, action pairs effectively; if b is too large it might
remove too many state, action pairs and prevent learning from more data. In order to demonstrate
the effect of b and how should we choose b in different settings, we show the performance of PQI in
a larger range of b and several ¢ values.

In figure 2] we show the trend that smaller b works better for larger € and larger b works better for
smaller € in general. This can be explained in the following way: with a larger e the data distribution
is more exploratory and hence the probabilities on individual state, action pairs are smaller. So a the
same threshold that performs well with low exploration now censors a much larger part of the state,
action space, necessitating a smaller threshold as e is increased. In general, we find that having the
largest threshold which still retains a significant fraction of the state, action space is a good heuristic
for setting the b parameter.

23






	Definition of auxiliary MDP and policy projection
	Justification of Assumption 1
	Proofs for Policy Iteration Guarantees
	Fixed point property
	Proofs for policy evaluation step
	Proofs for policy improvement step
	Proof of main theorems
	Safe Policy Improvement Result

	Proofs for Q Iteration Guarantees
	Details of CartPole Experiment
	Full results of Discretized CartPole-v0
	Ablation study of threshold b

	Details of D4RL Experiment

