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In Appendix [A] we introduce some basic definitions that are needed for our theoretical results. In
Appendix [B] we provide sufficient conditions for Assumption [I] that were mentioned in the main
text. In Appendix [C|and Appendix [D] we prove the error bounds for PPI and PQI. In Appendix [E]
and Appendix [F] we present more details of our experimental results.

A Definition of auxiliary MDP and policy projection

First we introduce the definition of an auxiliary MDP M’ based on M: each state in M has an
absorbing action which leads to a self-looping absorbing state. All the other dynamics are preserved.
Rewards are O for the absorbing action and unchanged elsewhere. More formally: The auxiliary
MDP M’ given M =< S, A, R, P,v,p > is defined as M/ =< S’ A", R, P’,~,p >, where
S = SU{sas}, A" = AU{auws}. R and P’ are the same as R and P for all (s,a) € § x A.
R'(s,a) if s = Syps OF @ = ayps is a point mass on 0, and P’(s,a) if s = Sups OF @ = g is a point
mass on Sups. A data set D generated from distribution p on M is also from the distribution y on
M, since all distributions on S x A are the same between the two MDPs. This MDP is used only to
perform our analysis about the error bounds on the algorithm, and is not needed at all for executing
Algorithm|[T|and[2] As some of the notations is actually a function of the MDP, we clarify the usage
of notation w.r.t. M/M’ in the appendix:

1. Policy value functions V™/Q™ and Bellman operators 7/7 ™ correspond to M’ unless they
have additional subscripts.

2. The definition of F, IL, 7¢, ’TC’T, 1t is independent of the change from M to M.

3. p is also a distribution over S’ x A’. The definition of ¢ will be extended to S’ x A’ as
follow:

[ 1(i(s,a) >b) s€S,acA
C(S,a)—{ 0 § = Sabs OF 4 = Qb

(That means there is only one version of y and ¢ across M and M’, instead of like we have
T and T for M and M'.)

Recall the definition of semi-norm of any function of state-action pairs. For any function g : 8" x
A = R, v € A(S'xA'),and p > 1, define the shorthand ||g||,., := (E(s,a)~u[|9(s, a)[P])!/P. With
some abuse of notation, later we also use this norm for v € A(S x A) (specifically, ) by viewing
the probability of v on additional (s, a) pairs as zero. Given a policy 7, let 17 (s) be the marginal
distribution of s, under =, that is, nf(s) = Pr[s, = s|sg ~ p,7], ni(s,a) = nf(s)n(als),
and 0™ (s,a) = (1 — ) Y p= v "nF (s,a). We also use P(s,a) and P(v) to denote the next state
distribution given a state action pair or given the current state action distribution.

The norm || - || ,,,,, are defined over S8’ x A’. Though for the input space of function f € Fis S X A,
the norm can still be well-defined. All of the norm would not need the value of f(s,a) on s = Sups
Or @ = ayups, because the distribution does not cover those (s, a), or the f inside of the norm is
multiplied by other function that is zero for those (s, a).

We first formally state an obvious result about policy value in M and M’.
Lemma 1. For any policy w that only have non-zero probability for a € A, vi; = v},.

Proof. By the definition of M’, P and R are the same with M over S x A.

h h
> y'relso ~p, W] =Ewm lz V'rilso ~ p, 77] = v}y

t=0 t=0

’UJT{4 = E]y[

For the readability we repeat the Definition [T here

Definition 1 ({-constrained policy set ). Let Hacll be the set of policies S — A(A) such that
Pr(¢(s,a) =0|m) < ec. That is

(1=9) > Y"Eaamnz [1({(s.a) =0)] < & )
h=0
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Now we introduce another constrained policy set. Different from (-constrained policy set which
we introduced in Deﬁnition this policy set is on M’ instead of M and the policy is forced to take
action au,s when ((s, a) = 0 for all a. The reason we introduce this is to help us formally analyze the
(lower bound of) performance of the resulting policy. We essentially treat any action taken outside
of the support to be aaps. Later we will define a projection to achieve that and show results about
how the policy value changes after projection.

Definition 2 (strong (-constrained policy set). Let TI%L be the set of all policies S' — A(A') such
that forV(s,a) w(a|s) > 0 then 1) ((s,a) > 0, or 2) a = agps.

Notice that for (-constrained policy set we have no requirement for 7 if for any action (s, a) is zero.
For strong (-constrained policy set we enforce 7 to take action a,,s. The second difference is (-
constrained policy set requires the condition holds for s, a that is reachable, which means 17 (s) > 0
and w(als) > 0. Here we require the same condition holds for any s, a such that w(als) > 0. In
general, this is a stronger definition. However, we can show that for any policy in (-constrained
policy set , it can be mapped to a policy in strong (-constrained policy set , with changing value
bounds. Since we only need to change the behavior of policy in the state actions such that the state
actions that ¢ = 0, the value of policy will not be much different.

Now we define a projection that maps any policy to IT%.

Definition 3 (¢-constrained policy projection). (E7)(a|s) equals ((s,a)n(a|s) if a € A, and equals
ZLVEA’ 7T(a/|s)(1 - C(Sa CL/)) l:fa = Qaps

Next we show that the projection of policy will has an equal or smaller value than the original policy.

Lemma 2. For any policy 7 : §' — A(A'), vf, > vi},ﬂ, and vy, = UJEV[(,TF) if for any (s, a)
reachable by T, ((s,a) = 1.

Proof. We drop the subscription of M’ in this proof for ease of notation. For any given s,

> w(als)@(s,a) = Y w(als) Q=M (s, a) (Q™ (5, aaps = 0))
ac A’ acA
> ((als)r(als)Q=™ (s,a) )
acA
= () (aus|$) Q% (5, aaps) + > E()(als)Q=™ (s,a)  (Def of =)
acA
=Y E(m)(als)Q* (s, a) 6)
acA’
= V= (s) (7)

The inequality is an equality if for any a s.t. w(a|s) > 0, (s, a) = 1. By the performance difference
lemma [3, Lemma 6.1]:

vE™ T = Z’thsw,;: VEM(5) — Z m(als)QZ™ (s,a)| <0 (8)
h=0 ac A’

The inequality is an equality if for any (s,a) s.t. nf(s)m(als) > 0 for some h, {(s,a) = 1.
In another word for any state-action reachable by w (nf(s) > 0 and w(a|s) > 0 for some h),
¢(s,a) = 1. O

The following results shows for any policy 7 in the (-constrained policy set the projection will not
change the policy value much.

Lemma 3. For any policy = € TI&!, v7, < UAE/[(T) + 641‘1%

Proof. Since 7 only takes action in A, by Lemma we have that v]; = v7,,. Since 7 € TIZ!, we
have that Pr ({(s,a) = O|7) < €¢, which means that:

(1= D A Bomy [1(¢(s,0) = 0)] < e )

h=0
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Thus:

=) T = thEswn;{ VE(”)(S) - Z W(G‘S)QE(W)(«S’ a)] (10)
h=0 ac A’
= A Bz |[VEO(s) = > w(as)é(&a)QE(”)(s,a)] (11)
h=0 ac A’
= A By [1(C(5,0) = 0) Q) (s,a)] (12)
h=0
(o9}
> AV By |[VED(s) = W(aS)C(s,a)Q:(”)(s,a)] (13)
h=0 ac A’
- Vmax Z ’YhE&aNn,’; [1 (C(Sa a) = O)] (14)
h=0
> =(r =(7 vaax6
> V' Eany [VEP(s) = > 7(als)¢(s,a)Q% ™ (s,a) | — T—- Sas)
h=0 ac A’/ K
_ Vmaxeg (16)
L—n
The last step follows from the first part in the proof of Lemma Vi — vf}/ﬂ ) < VI{%’;EC 0

B Justification of Assumption I]

In this section we prove a claim stated in Section [5|about the upper bound on density functions. We
are going to prove Assumption [T|holds under when the transition density is bounded.

Lemma 4. Let p(-|s, a) be the probability density function of transition distribution: p(so) < VU <
00, p(Sty1lse, ar) < VU < oo and Vr(ag|se, h) < VU < oo, forall sg, s, 5141 € S and a € A.
Then in M’ for any non-stationary policy m : 8’ x N — A(A") and h > 0, nf (s,a) < U for any
se€Sanda € A

Proof. We first prove that 17 (s) < +/U for any non-stationary policy 7. For b = 0, nff (s) = p(s) <
VU.Forh>1lands € S:

nr(s) = / Z nh_1(s—1)m(a—1|s—1,h — Dp(s|s—1,a—1)ds_1 (17)
S_1€8" jcar
= / Z nr_q(s—1)m(a—1]s—1,h — 1)p(s]s—1,a_1)ds_1 (18)
5-1€5 ge
<Ejr  xxn-1) [p(s]s-1,a-1)] (19)
<VU (20)

The first step follows from the inductive definition of 17 (s). The second step follows from that s,ps is
absorbing state and a,ps only leads to absorbing state. The third step follows from transition density
p(s|s—1,a_1) is non-negative. The last step follows from that the transition density p(s|s_1,a_1)
is the same between M and M’ for s,s_1 € S,a_1 € A, and p(s|s_1,a_1) in M is upper bounded
by U. Finally, the joint density function over s and a 1] (s, a) = nf (s)m(als, h) is bounded by U,
and we finished the proof. O

For the convenience of notation later we use admissible distribution to refer to state-action distribu-
tions introduced by non-stationary policy 7 in M. This definition is from [1]:

Definition 4 (Admissible distributions). We say a distribution or its density functionv € A(S'x A’)
is admissible in MDP M, if there exists h > 0, and a (non-stationary) policy m : 8’ x N — A(A’),
such that v(s,a) = 07 (s, a).
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C Proofs for Policy Iteration Guarantees

In this section we are going to prove the result of Theorem |1|using the definition of the strong (-
constrained policy set . At a high level, the proof is done in two steps. First we prove similar result
to Theorem |1{for any policy in the strong {-constrained policy set : an upper bound of v§,;, — v}/,
where 7 can be any policy in the strong (-constrained policy set and 7, is the output of the algorithm
(Theorem [2] formally stated in Appendix [C.4). Then we are going to show that for any policy 7
in the (-constrained policy set after a projection = it is in the strong (-constrained policy set and
vy < v:},w) + V%";C Then we can provide the upper bound for vj; —v}; for any 7 in {-constrained

1
policy set .

The proof of Theorem (the Hf‘glé version of Theorem formally stated in Appendix b goes as
follow. First, we show the fixed point of 7" is Q=) for any policy 7, indicating the inner loop of
policy evaluation step is actually evaluating 7, = Z(7;). We prove this result formally in Lemmal6]
To bound the gap between 7; and any policy 7 in the {-constrained policy set , we use the contraction
property of ’TC“ to recursively decompose it into a discounted summation over policy improvement
gap Q™+ — Q™. 7 in the (-constrained policy set is needed because the operator 7" constrains
the backup on the support set of (.

Next, we bound the policy improvement gap in Lemma

QT+t — Q™ > —0(IK(@Q™ = fox)lhw)

for some admissible distribution v related to ;1. The fact that we only need to measure the error
on the support set of ¢ is important. It follows from the fact that both 74,1 and 7, only takes action
on the support set of ( except a,ps Which gives us a constant value. This allows us to change the
measure from arbitrary distribution v to data distribution i, without needing concentratability.

The rest of proof is to upper bound ||{(Q™* — fi. k) ||1,, using contraction and concentration inequali-
ties. First, [|C(Q™ — fi, i) ||1,» is upper bounded by C'|| f¢, k =T f1, K ||2,u/(1—7) in Lemmal?l, using
a standard contraction analysis technique. Notice that here we can change the measure to p with
cost C' to allow us to apply concentration inequality. Then Lemmabounds | fe.c — T I, K2,
by a function of sample size n and completeness error € r using Bernstein’s inequality.

While writing the proof, we will first introduce the fixed point of 7" is Q=™ in section We
prove the upper bound of the policy evaluation error ||((Q™ — fi k)|]1,,, in section|C.2} and the
policy improvement step in section|C.3] After we proved the main theorem, we will prove when we
can bound the value gap with the optimal value in Corollary[I} as we showed in the main text.

C.1 Fixed point property

In Algorithm [I} the output policy is 7¢11. However, we will show that is actually equivalent with
the following algorithm,

Algorithm 3 Pessimistic Policy Iteration (PPI, repeat Algorithm|I)

Input: D, 7,11, 11, b
Output: 7
Initialize my € II.
fort =0toT — 1do
Initialize fi o € F
for k = 0to K do
/I Policy Evaluation
fekt1 < argminge = Lp(f, for; )
end for
/l Policy Improvement
Frr < argmax,en Ep[Ex [C(s,a) fix (5, 0)]
M1 < ZE(Tet1)
end for
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The output policy is still 7,41, and we know that v™*+1 > v™+1, So if we can lower bound v™t+!
we immediately have the lower bound on v™¢+!. The only difference in algorithm is we change the
policy evaluation operator from ’Tg” to TCT“ , where 7, is the projection of 7;. The following result

shows these two operators are actually the same. For the ease of notation, we refer to Algorithm 3]
in our analysis.

Lemma 5. For any policy 7 : 8" — A(A'), T = 725(”).

Proof. We only need to prove for any f, 77 f = ,7-45(”) f.Forany a € A,

(T8 F)(s,a) = r(s,a) +7E | D W(a/|3/)C(SI’a’)f(5/7a/)] 2D

a’eA
=r(s,a) +~E Z m(d'|s")¢3 (s, a) (s, a’)} (22)

a’€ A
=r(s,a) +vEy Z E(m)(d'|s")¢(s,a)Q™ (5, a’)} (23)

a’'€A

= (TE7 f)(s,0) (24)
For a = ags, (77 f)(s,a) =0 = (T(E(W)f)(s, a). O

The next result is a key insight about 7."’s behavior in M " that guide our analysis.

Lemma 6. For any policy w : 8" — A(A'), the fixed point solution of T is equal to Q%™ on
S x A

Proof. By definition Q=(™) is the fixed point of the standard Bellman evaluation operator on M':
T™) . So for any (s,a) € S x A:

Q=™ (s,a) (25)

— (T Q™) (s, a) (26)

=r(s,a) + 1By | Y E(m)(d|)Q= (s, a’) 27)
La’ € A’

=1(s,a) + By |E(m)(aus|s)QZ (s aaps) + Y E(m)(a'|s) QM (s, d) (28)

a’€A
=r(s,a) + By | Y E(m)(d|s)Q (s, a) (29)
La’€A
=r(s,a) + 7By | Y w(a'|s")((s',a)QF (S, a’)] (30)
La’€ A
= (T7Q™)(s,0) (31)
So we proved that Q=(™) is also the fixed-point solution of 72“ constrained on § x A. O

An obvious consequences of these two lemmas is that the fixed point solution of 7" = 7'? equals
Q™ onS x A
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C.2 Proofs for policy evaluation step

We start with an useful result of the expected loss of the solution from empirical loss minimization,
by applying a concentration inequality.

Lemma 7. Given n € E(II) and Assumption[3] let g} = argminger [|g — T fll2, then ||gF —
TC”fH%# < er. The dataset D is generated i.i.d. from M as follows: (s,a) ~ p, r = R(s,a),
s' ~ P(s,a). Define L,,(f; f',m) = Ep [Lp(f; f',7)]. We have that V' f € F, with probability at
least 1 — 0,

64V;2, In FIMI

112v2, In M 2
‘CH(,Y-C,Df;f77r)_£u(g?§f,7T) S n B + - €

where T f = argminge z Lp(g; f, 7).

Proof. This proof is similar with the proof of Lemma 16 in [[1], and we adapt it to the (-constrained
Bellman evaluation operator ’TC’T. First, there is no difference in £Lp and £,, between M and M ’

and the right hand side is also the same constant for M and M’. The distribution of D in M and M’
are the same, since p does not cover s, and a,ps. SO we are going to prove the inequality for M,
and thus this bound holds for M’ too.

For the simplicity of notations, let Vi (s) = >_ . 4 m(a|s)((s,a)f(s,a). Fix any f,g € F, and
define '

X(g.f.95) = (9(s.a) = —4VF(s")" = (g5(s.a) = —4VF(s)". (32)

Plugging each (s,a,r,s’) € D into  X(g,f,97), we get iid. variables

1 . * *
~>_Xi9,f.97) = Lp(g: f7) = L(g}; f.7). (33)
i=1
By the definition of £,,, it is also easy to show that

Lu(g; fim) = |lg— Tgwa;# +Esamp

VT73/ <T+’y Z Tr(a'|3/)<(5/’a/)f(5/’a’))] , (34)

a’€A

where V. s is the variance over conditional distribution of r and s’ given (s,a). Notice that the
second part does not depends on g. Then

Lu(gs fom) = Lu(TEfi o) = Nlg = TS5 (35)
Then we bound the variance of X:
VIX(g, f,67)] <EX(g, f, 05"
— &, | ((oto0) = r = V5 )" = (g50) — =W (s)") ]
(Definition of X)
—E, [(9(5,) — g5(s,0)) (9(5.0) + g} (s5,) = 21 = 29Vy())”]
< V2, B, [(9(5,) - g7 (s, )]

= 4Vrr21ax Hg - g;H%,,u
<8Vix (BIX (g, f,97)] + 2¢5). (36)



165 The last step holds because
lg — 97113,

<2(lg = TEFI3, + 1T = 9513,) ((a +b)? < 2a% + 26?)

=2 (Hg - 7—Cﬂf||§,p, - ||7—Cﬂ-f - g;‘”%,u + 2||727Tf - g?H%,p)

=2 (L9 £m) = Lu(TEF1£,7)) = (Ll £.7) = Lu(TEf3 £,7) + 21T = 5113,
(Equation (33))

[(Lyu(g; f,m0) = LolgFs £,m) + 20T f = g713,,.]
=2 (E[X (g, f,97)] + 21T f = g713.,.)
<2(E[X(g, f.9})] +2¢F)

166 Next, we apply (one-sided) Bernstein’s inequality and union bound over all f € F, g € F, and
167w € Z(II). With probability at least 1 — ¢, we have

\/W[ (6. £.99) 0 25 gz, i 7
n 3n

BIX(9, /.07)] ~ > Xilf. f.9) <
=1

max

* |F 1]
32V1121ax< [ (g,f,gf)}—&-Ze}-) th +8V2 ‘]:|6|H|

n 3n
37

Since 7, f minimizes Lp(-; f, ), it also minimizes - Ly X g})- This is because the two
objectives only differ by a constant Lp(g¥; f, 7). Hence

1 = * 1 . * *
ﬁZXi(T{T,era f,9%) < gZXi(gfvagf) =0.
i=1 =1

168 Then,
32V (BIX(T7p, £o07)] + 267 ) 2L gy 1 17m)
E[X(TF )] <0 ’ max
(X(Tpf f97)] <0+ - + ™
169 Solving for the quadratic formula,
8v2, In F | 64V n Z0m 56V2 I 1FI0L
E X (s * < 4 max 5 max 5 max 5
[ (E,Dfafagf)]_ 8< n n 6]: 3n

€F

(56 + 32v/3) Vi In 51 OV o
3n +
(\/a—i—bg Va+ \/Bandlnké| > 0)

112V2,, In FIH \/64V,gaxl n
+

< €
= 3n F

170 Noticing that E[X (7¢,p f, f, 97)] = L.(T¢,p f; f.7) — L, (gF; f, 7). we complete the proof. [

n

171 Lemma 8 (Policy Evaluation Accuracy). For any t,k > 1 and m, fy and fi 1 from Algorithm

72 [1

2
fee — 7?"ft,k71H2 <€
I

)

208V;2,, In 2L

173 where €1 = % + 2¢ex.



Proof.
2

Hft,k - Ewtft,k—leu
=Ly (fers frao—1,m) — Lu(TT frp—15 fre—1,T)
= (Eu(ft,kQ fee—1,m) = L(97, ft,k—lﬂrt)) - (ﬁu(T(mft,k—U fek—1,7mt) — Eu(g;t,k,ﬁft,k—laﬂt))

112V2, I FI - fgqy2, o I
< max max
+ n

* t
< 3n €r + ‘ Ifik—1 — 727T ft’k_lHlu
(Equation (33) and Lemma 7))
12v2, I L gy gy ZH g ,
< 3 + €r + €r (Definition of g]*c ., and AssumptlonE[)
n o
112V2,, In FIHL - goy72 1y 71T
< max 5 + max ) ‘erter=¢€ (mSCL‘Fb)
3n n
174 O

175 From this lemma to the proof of main theorem, we are going to condition on the fact that the event
176 in Assumption 2] holds. In the proof of the main theorem we will impose the union bound on all
177 failures.

178 Lemma 9. For any admissible distribution v on 8’ x A’, and any 7, from Algorithm

C (Vei + Vimaxey)

- + 7" Vinax (38)

HC(Sv a) (ft,K(Sv a) - Qm (37 a))”LV <
179 where €1 is defined in LemmalS}

180 (Although f; i is only defined on S x A, ( is always zero for any other (s, a). Thus the all values
181 used in the proof are well-defined. Later, when it is necessary for proof, we define the value of f; i
182 outside of S x A to be zero. In the algorithm, we will never need to query the value of f; x outside
183 of S x A.)

184 Proof. For any k > 1 and any distribution » on &’ x A’:

IC ok — @™, (39)

< ¢ (ur =72 fuar) |, + |6 (7T fena = 77| (40)

< ¢ (fra =78 i) |, + |7 i - @ (4D

< C||fur =TT forr |+ ||TE finr =TT Q™ “2)

1, 1,v

<c (\ for =T fuea|| + Vmaxe#) + |7 frer = T (43)
1, 1,v

<C (Hft,k - Tcm ft,k—l‘ + Vmaxelu) + H’Tcﬂtft,kq — ’TCMQM (Jensen’s inequality)
2,0 1,v

< C(Vey + Vinaxeu) + H'Tcmft,kq = T77Q™ . (Lemmalg)

= C(\El + Vmaxﬁ,u) + ]El/ ’YEP(V) Z Wt(a/|s/)<(3,7 a,) (ft,kfl(slv al) - Qﬂ—t (S/, a/))‘ (44)

a’'€eA

= C(\/El + Vmaxe,u,) + ]Eu I:’YEP(U)Xﬂt |C(SI7 al) (ft,k71(3/7 a/) - Qﬂ—t (S/a 0/))” (45)

< C(Ver + Vimaxeu) + VEpyxr, [C(8'sa") (frr-1(s',a") = Q™ (s, a))| (46)

< C(Ver + Vimaxeu) + 7 1€ (-1 = Q™)1 p(yxn (47)
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Equation (42) holds since for all (s,a) s.t. ((s,a) > 0, v(s,a) < U < ¥Y[i(s,a) = Cl(s,a).
Equation (43) holds since the total variation distance between  and [ is bounded by ¢,, and the
Bellman error is bounded in [—Viyax, Vm% Equation follows from 7, € TI%%. Soif ((s,a) =
0, m(als) = 0 for all ¢ € A. Equation (45) holds since ((-, amps) = 0. The next equation follows
from that ¢ = ¢2.

Note that this holds for any admissible distribution v on &’ x A’ and and k, as well as ¢; does not
depends on k. Repeating this for k£ from K to 1 we will have that

1— K
||C(S, a) (ft,K(sa a) — Qﬂ—t (S, a))||1’y §ﬁC (\El + Vmaxﬁu) + 'VKVmax (48)

<C (\/El + ‘/maxe;t) +
L—n

Y Vinax (49)
O

C.3 Proofs for policy improvement step

Lemma 10 (Concentration of Policy Improvement Loss). For any f € F, with probability at least
1-46,

where Ty = argmax, oy Ep [Ex [((s,a)f(s,a)]].

In(|F|1T]/9)

S €11 + 2Vmax
2n

1p

E%f [C(Sa a)f(sa a)] - glea_,i{ C(87 a)f(s, a)

Proof. Fixed f, define X (s;7) = maxaea((s,a)f(s,a) — E;[((s,a)f(s,a)]. Notice that by
definition X (s;7) is always non-negative, and 7y = argmax cEp [Ex[((s,a)f(s,a)]] =
argmin . Ep[X (s;7)].

Only in this proof, let 7 be:

argminE,[X (s; 7)) = arg min
mell mell

Eﬂ- [C(‘S, a)f(s7 a)] - Igleaj( C(sv a)f(sv a)

1

X(s;m) € [0, Vinax). By Hoeffding’s inequality and union bound over all 7 € II, f € F, with
probability at least 1 — 6 for any f and m # 7y,

In(|F[|TT]/6)

E,[X(s;m)] —Ep[X(s;7)] < Vinax o (50)
for m = my
1 IIl /6
Ep[X(s;7)] — E[X (5;7)] < Vinax %ﬂ'” (51)
If 7 = 7y, then E,[X (s;7¢)] < err. Otherwise,
E,[X(s;7y)] (52)
S ED[X<5a %f)] + Vmax w (53)
S ED[X<31 7Tf)] + Vmax w (54)
< EL[X(s37¢)] + 2Vinax w (55)
N i In(|F[I1}/6)
- Ernellr_ll ]Eﬂ' [C(S, a)f(57 Cl)} gleaij(Sv Cl)f(S, Cl) » + 2Vmax 2n (56)
Py o (| LLLTE)) 57)
2n
O



203 For the following proof until the main theorem, we are going to condition on the fact that the high
204 probability bound in the lemma above holds, and impose an union bound in the proof of main
205 theorem.

206 Lemma 11. For any admissible distribution v on S’, any policy w : 8" — A(A’),

]Eu I:Eﬂ't+1 [C(Sa a)ft,K(57 a)] - ETF [((87 a)ft,K(Sa a)]:l Z
In( f|n|/6>>
2n

-C (61'[ + Vmax€u + 2Vmax

207 Proof. Recall that w1 = E(T41). So my1(als) = Trr1(als) for all a such that (s, a) = 1. Then

Eﬂt+l [C(Sv a)ft,K(s’ a)} = E%url K(sa a)fth(s, a)}
E, [Eﬂ'tJrl [C('S? a)ft,K(Sa a)” =E, [E%t+1 [C(Sv a)ft,K(Sa a)]]

EV [Emﬂ [C(S, a)ft,K(sv a’)] - ]Eﬂ [C(& a)ft,K(57 a)H (58)
=E, []E%wrl [C(Sv a)ft,K(Sv (l)] —Ex [C(S’ a)ftK(Sv CL)]] (59)
=B, [, [0 o 51~ g (s, 0) (5 + (s, a(5:0) — B (o) e 5,0

(60)
> By (B [0 e (5,0)] - g (5, ) o (5,0)| )
> —E, |Ez,,, [C(s,a)fi,k(s,a)] — I(?Eaj(C(s,a)ftyK(s,a) (62)
= - ’ E%Hrl [C(sv a)ft,K(sv a)} - Igleaj( C(Sa a)ft,K(Sa a’) (63)

1,v
> = Br (s (0)] ~ g (s, (5,0) o9
1.1z

208 The last step follows from that ((s,a) = 1 = [(s,a) > b = [(s) > b = —v(s) > -U >
200 —C7i(s), and for all other (s, a) the term inside of norm is zero. Since the total variation distance
210 between [ and 4 is bounded by €,

[Be 60500 oelsv0] — g ) (5.0 65
a La
< ’ E%tﬂ [C(S, a)ft,K(sa a)} - Hleaj‘;C(Sv a)ft,K(Sa a) + Vinax€p (66)
a 1y
211 By Lemmal[I0}
In(|F||II]/d
’ E%Hrl [C(S7 a)ft,K(s> 0,)] - maXC(Sa a)ft,K(S7 a) S €11 + 2Vmax M (67)
acA Ly 2n
212 Then we finished the proof by plug this into the last equation. O
213 Lemma 12. For any (s,a) € 8’ x A’, and any 7y, w11 in Algorithm
20 3Vmaxc 2 K max
Q™ (s,0) - Q7 (s.a) > — VAT w_ethh (68)

TR T
214 where € is defined in LemmaH e =C (en + 2Vinaxt/ m(|]-‘2|nr[/5))

10



215 Proof. For any s', only in this proof, let ;™" be the state distribution on the hth step from initial

216 state s’ following 7;y1. By applying performance difference lemma [3]],

Vel (S/) T (S')

>
Il
-

M

>
[
—

+ ) ((za) (ms1(al2)Q (2,0) — mi(al2)Q™ (2, a))

ac A’

= Z’Yhil]EZNn;tH [Z (me41(al2)Q™ (2, a) — m(alz)Q™ (2, a))

acA’

VE, [Z (1= ((24)) (mes1(al2)Q™ (2, @) — mi(a]2)Q™ (=, a))

acA’

(69)

(70)

(71)

(72)

217 Because 1y, 1 € %L, ((2,a) = 0 means either 7¢(alz) = m11(alz) = 0 0r @ = aus. So the

218 first term is zero. Then:

oo
=S YR
— ~ ]EZNT]htJrl

+ > (=) (melal2) fr ke (2,0) = m(a]2)Q™ (2,a))

acA

219 Equationfollows from Q7 (s, aups) = 0 for any 7 and s. By Lemma for any h,

B, et > ¢z a) (mera(al2) frx (2,0) = mialz) fox (2, a))

acA

=K, mn [Er, ., [C(s,0) fix(s,a)] = Ex, [((s,a) fr,x (s,a)]] = —€2 — CVinaxey

Lac A’

Y ((za) (mes1(al2)Q™ (2, 0) — me(a]2)Q™ (2, a))

Lac A

> ¢z 0) (mi4a(al2)Q7 (2, 0) — iy (al2) fr ke (2, a))

Lac A

1
+ Y C(z,0) (mera(al2) frx (2,0) — milalz) fo.x (2, a))
acA

11

> C(z0a) (mes1(al2)Q™ (2,a) — me(al2)Q™ (2, a))]

|

(73)

(74)

(75)

(76)

(77)

(78)

(79)

(80)



220

221
222

223

224

225
226
227
228

229

230

231

232

Then

VT (sh) = V(s (81)

> Y"E, e lz ((2,a) (Te41(al2)Q (2, a) — w1 (al2) frx (2,0))  (82)
h=1

acA

- X;lazm (mo(al2) (2, 0) = mi(al2) Q7 (=, a>>] Selfhet )
N
Z LG @)@ (21 a) = fure(z )l e (84)
G )@ (210) = ue (s e, ) — 5)
f} 116Gz )@ (2, 0) = i (2, ) oo (86)
IO Q (210) = fuk (2 )y ) = )
=20 (Ve + Vimax€u) 27" Vimax €2+ CVinax€n (LemmaP)

> —
B (1—7)? 1—vy 1—vy

Equation (87 follows from Jensen’s inequality. Since this holds for any s’, we proved that for any

(s,a),

[Q’”“(s a) — Q™ (s,a)] (88)
= By [VTH1(s") = VT (s')] (89)
_QC (\/a + Vmaxeu) o 27Kvmax o 62 + CVmaxe,u (90)
- (1—7)? 11—~ 1—n
2 max K max
> C\/a+3012/ eu_Q'y V; e 1)
(1=7) -y  1-v
O

C.4 Proof of main theorems

Theorem 2. Givenan MDP M =< S, A, R, P,~,p >, adataset D = {(s, a,r, s')} with n samples
that is draw i.i.d. from p X R x P, and a finite Q-function classes F and a finite policy class 11
satisfying Assumption |3|and 4| . = Z(7y) from Algorithm|l|satisfies that with probability at least
1 -39,

- 4C 419V2 n 2l 6CViax 20 3y K-y
< \/ max S + 2\/; + Zp, e + 3y 5
3n (1-7) (1-7)

for any policy T € H“”

208V2 In ZUTL

Proof. For simplicity of the notation, let e; = %‘5 4+ 26er, € =
C (en + 2Vimaxy/ ln(lelf/é)) and €3 = zcﬁﬁx‘;‘“‘ce” + Ez”ﬂ;‘/‘"“"‘. We start by proving
a stronger result. For any 7 € Haslé, we will upper bound E,[V* — V7] for any admissible

12



233 distribution v over S’ which will naturally be an upper bound for v™ — v

E,[VT — V7]

=3 mlals)Q (s,0) + 3 maalals)Q (5,a) - V”M(s)]

ac A’ ac A’
- 3 malals)Q (s, a) + Y miralals) (Q7(s,a) — QW(s,a»]
ac A’ ac A’
<E, Y [ $)Q7 (s, a) — mep (als )Q”t(s,a)} Y (Lemma[T2)
ac A’
=E, Y ((s,0)[F(als)Q (s,a) — mis1(als)Q™ (s, )] + e
ac A’

=E, [Ex [((5:)Q7(5,0)] — Er,,, [((5,0)fi(5,0)]
Er, ., [C(5,0) (s, @)] = Er, (5, 0)Q7 (5,0)]] + e

<E, [Ex [((5,0)Q7 (5,0)| = Er,.., [C(s, ) fu(s, )]
16 @)@ (2 0) = Fulzs 0D mss + s
[ Cy/e + CVinaxep
< B, [ [€(5:00Q7(5:0)] ~ By 605, 0)ulss )] + ST Ky
(Lemma[9)
7 Cy/e1 + CVipax
<E, |:E77 [C(S’ a)Q (s, a)} —Ex [C(s,a) fe(s, a)]} + €2 + CVinax€y + \/al - Cu A Vo + €3
(Lemmal|TT)
7 2C /€1 + 3CVinax
<E, {E% {C(& a)Q" (s, a)} —Ex [¢(s,a)Q™ (s, a)]} + e+ \/al - U oKV e
(Lemma[9)
™ 2C + 3C(‘/max
=E, x5 {C(&G)Qﬂ(s,a) —C(s,a)Q”t(s,a)} +eo+ \/al—v Cu T N 7NN
7 2C /€1 + 3CViax
=E, x5 [Qw(sv a) — Q™ (s, a)} + e+ \/al - I S VAP (m, € TI%L)
<YEpuxm VT =V +e + va S 9K Vi + €3

1—v

234 The second to last step follows from 7; € I1%%: for all s, a such that 7(als) > 0, either ((s,a) = 1,
235 OF @ = @ The later two indicate that Q™ (s,a) = Q7 (s,a) = 0. So for all s,a such that
236 7(als) >0, Q7(s,a) = ((s,a)Q7(s,a) and Q™ (s,a) = ((s,a)Q™ (s, a). Now we proved

20 /€1 + 3CVinaxéy
1—v

E, VT =V 1] < yEpxm[VF = V™) + €2 + €3 + + 295 Vax  (92)

13



237
238

240
241

242
243
244

245
246
247

248

249

250

251

252
253
254

holds for any distribution v. The error terms do not depend on ¢ and this holds for any . We can

repeatedly apply this for all 0 < ¢’ < ¢t. Assuming ¢ > K this will give us :

E,[VT — V™|
1—~t 2C /€1 + 3CVimax
< 1 _:/ <€2 + €3+ \/al —y “n + QVKVmax) + ’Yt‘/max
S €2 n €3 I 20\/€>12 3CVmax€2p 37KVmaX
l—y 1-v (1-9) (1=7) -~
K—-1
< 2¢5 - 40\/6713 L 6C’Vmax§H 3y Vﬂ;&X
(I=72 Q-9 (1—=7) (=)
2Cen__4C \/ V2, In(|F||T1|/5) L ACVE | 6CVmae, 375 Wax
(=) Q=92 2n (I=7)?  (A-=9)° (1—9)2
2Cen 4C \/Vn%ax In(|F|[11]/4) \/208Vrﬁax In(|F|[11]/9)
< + + 2er
(I—7)2 (@1-9)? 2n 3n

60Vmax6,u 3’7K_1vaax
(1) (1—-9)?

2Cen 4C \/ V2, In(|F||II|/6) \/208V§1ax In(|F|I]/6)
_(1—7)2+(1—7)3< I 3n vz

GCVmaxey 3’YK71VII]&X

(1—=7)? (1—=7)?
2Cen aC \/419V£ax In(|F[TT]/9) 6CVimaxen 375 Winax
= + +2r | +
(=7 —’Y>‘°’< 3n 7)==y

The last step follows from that a4+ b < y/2(a? + b?). The error bound is finished by simplifying the
expression. The failure probability 3¢ is from the union bound of probability § on which Assumption

fails, probability 6 on which Lemma [7fails, and the probability § on which Lemma|[I0|fails.

O

Now we are going to use the fact that there is an almost no-value-loss projection from the (-

constrained policy set to the strong (-constrained policy set in order to prove an error bound w.r.t

any 7 € IT¢.

Theorem 1. Givenan MDP M =< S, A, R, P,~,p >, adataset D = {(s,a,r, s')} withn samples

that is draw i.i.d. from p X R x P, and a finite Q-function classes F and a finite policy class 11
satisfying Assumption[3|and [ 7, from Algorithml(l|satisfies that with probability at least 1 — 34,
= - 4C 419v2,  In ZIM 6C Vinax€ 2Cer + 37KV, Vinax€
N max 5 92 max©p max max€¢
M= ) \/ 3n Bl I (R (1-7)? 1—~

for any policy T € H“C” and only take action over A.

11—y

Proof. For any policy 7 that only take action over A, Lemm tells that vf\} < vif(,% ) 4 Vimaxec

Since m; = Z(7;) and 7, only takes action in A, by Lemma

Then v}, — vt < v;[(,ﬂ ) v+ V‘i%",:c and Theorem [2{completes the proof.

%t . Tt Tt
and LemmavM = Upp = Upfe

O

When there exist an optimal policy that is supported well by . We can derive the following result
about value gap between learned policy and optimal policy immediately from the main theorem

about approximate policy iteration.

14
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256

257

260
261
262
263
264
265

267
268

269
270

271
272

273
274

Corollary 2. If there exists an 7™ on M such that Pr(u(s,a) < 2b|7*) < e. then under the
assumptions of Theorem([l} 7, from Algorithm[l|satisfies that with probability at least 1 — 35,

. iC 419V2, I 21 6C Vinaxe
Tt < max 2 m x‘p
Vi — Uaf e \/ an + 2\/er +7(1—’y)3
2C e + 3’}/K—1Vmax n Vrnax(f + Cﬁu)
(1—7)? 1—vy

Proof. Given the condition of 7*,

Pr (ji(s,a) < b7 ) <Pr(u(s,0) < 2b[7*) + Pr (Ju(s,a) = fi(s, )| 2 bl7*")  (93)
<e+Pr(|u(s,a) — (s, a)| = bl7") ©4)

ey B o) o) 5)

et UdTv(M(S,ba)vﬂ(&a)) 96)

<e+Ce, 7

Then 7* € TI&! with ¢; = € + Ce,,, and applying Theoremﬁnished the proof. O

C.5 Safe Policy Improvement Result

In many scenarios we aim to have a policy improvement that is guaranteed to be no worse than
the data collection policy, which is called safe policy improvement. By abusing the notation a bit,
let p(als) be a policy that generate the data set. For our algorithm, the safe policy improvement
will hold if 1 € TIZ!. To show pu € II4!, we only need that Pr(u(s,a) < blp) < e;. When
the state-action space is finite, there must exist an minimum value for all non-zero (s, a)’s. Let
Pmin = MiNg g4 (s,a)>0 (S, a). Then we have that, if b < pmin. Pr(pu(s,a) < bjp) = 0. Thus
we have:

Corollary 3. With finite state action space and b < iy, under the assumptions as Theorem[l] 7,
from Algorithm|[I|satisfies that with probability at least 1 — 34,

iy < 52Vmax/ISTIAI(V/IISIIAT/S) + /In(1 + nVinax)) +8
Mo M= Vnb(1 —7)3
12Vinax | SIA M ISIAI/S) 37 Vinax

nb(1 —~)? (1—79)?

Proof. In finite state action space, the number of all deterministic policies is less than | A|lS!. Thus
we have a policy class with e;; = 0 and |TT| < |.A|/S]. Since the Q value is bounded in [0, Viyax],

we can construct a e covering set J of all value functions in [0, Viyax]/S!MI with (Ymex 4 1)ISII4]
functions. Then e < max,mingcr ||f — g||u2 < maxgminger || f — gl < e

We can also bound ¢,, in finite state action space. For any fixed s, a, by Berstein’s inequality we

have that with probability of 1- i 5\5\ -
~ 1 ¢ i i
lii(s,a) — E;ﬂ =s,aV =a) —E[1(s? = 5,0 = a)] (98)
— < () —
- \/wn = 5,00 = )] n(2IS||Al/6) _ 4In(2|S]|A1/9) ©9)
n n
_ [0 o N RISTAT | 4m@SIAS g
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275 By taking summation of |fi(s,a) — p(s, a)| and union bound over all (s, a), we can bound the total
276  variation bounds between /i and i, with probability at least 1 — §,

_ L
I = pllrv =5 D [i(s, a) = u(s, a)] (101)

-2 n n
s,a

Iy qu(s,am ~ (s, ) mRIS[IA/5) 41n<2|8||A|/6>) 102

(103)

_ 2|S[|AlIn(2|S]|Al/0) +1Z\/2u(8,a)(1 — (s, @) In(2|S||-A[/9)
2

n n

— (s, a))

n

28|14/ n(2(8]14)/5) | ;J Z 201(s, a) 1n7(12|5|\v4|/5) ;;(1

(Cauchy-Schwartz’s inequality)

2|S|| Al In(2|S 0 1 /2In(2|S o
L2slAl 1DSISI\AI/5) +\/|SIIA| ln(22718\|¢4|/5) (105)

277 Now in a finite state action space we can construct the policy and @ function sets with |F| <
27s (Yamax 4 1)ISIAITI < |A[1S], e = 0, e < €, and bounded ¢,,. By plugging these terms into the
270 result of Theorem|I] we have the following bound:

e (\/419V£dx(8|1n|.A|—|—|3|A|ln(1+Vmax/6)+1n(1/5)) +2\/E>

e
UM UM_(lf'y)S 3n

6CVimax \/ISIAI n(2S|IAl/9) |, 2AS[IA[InIS|IAI/G) | | 37" Vinax
(1- 1=9)2 "
(106)

2n n

280 for any chosen ¢ > 0. So we can set that ¢ = 1/n to upper bound the the infimum of this upper
281 bound.

4C 419v2, (|S]1 S In(1 Vinax) +In(1/6 1
s s W Rux (110 [A] + S[A[I(L + nViw) + (1/8) )

3n n
6C Vinax (\/ISIIAI In(2[S|[A[/9) 2ISHAI ln(2|S|A|/5)> N 375 'Winax

(1- 2n n (I—7)2
(107)

282 Notice that in discrete space we have that U < 1. By replacing C with 1/b and simplify some terms,
283 we have that:

oo <[ 6704ViEa[S[(n(lAl/6) + |AlTn(1 + nVinax)) N 8
MM 3nb2(1 — )0 by/n(l —7)?

N 18V2,.IS|| Al In(2|S[|A|/0) N 12Vinax| S| Al In(2|S|| A /0) N 37 Winax

nb?(1 — )¢ nb(1 —~)3 (1—7)?
52Vmax\/|5||A| vIn(2|S[[A[/8) + /In(1 + nVinax)) + 8
Vnb(1 — )3
12Vinax |S||A| In(2|S||A]/8)  3vE " Wiax
nb(1 — )3 (1—7)?
284 O
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295
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299
300

301

303
304
305
306

307
308
309
310
311
312
313
314

315

317
318
319

D Proofs for () Iteration Guarantees

In this section, we are going to prove the our main result for the () iteration algorithm, Algorithm[2]
First we introduce a similar completeness assumption about the Bellman optimality operator:

Assumption 5 (Completeness under 7¢). maxyser minger ||g — 7¢ f ||§7 u S €F

We will first state our main theorem here and then give a proof sketch before we start the proof
formally.

Theorem 4. Givena MDP M =< S, A, R, P,~,p >, adataset D = {(s,a,r, s")} with n samples
that is draw i.i.d. from . X R x P, and a finite Q-function classes F satisfying Assumption |5 T
from Algorithmsatisﬁes that with probability at least 1 — §, v™ — v™ <

20 208V,2,, In 121 _ _ 27! + eV,
max 9 Vmax H T T max
(e s OV Vme QT TR, )T

for any policy @ € TI4L

We will first give a proof sketch before we start the proof formally. The proof follows a similar
structural as the policy iteration case. To prove Theorem [ we first prove a similar version of Theo-
rem [4 but the comparator polices are in strong ¢-constrained policy set (formally stated as Theorem
later). Then we show an upper bound of v}, — v}:, where 7 € 1%L and 7 is the output of
algorithm (Theorem 5} will be formally stated later). Then we are going to show that for any policy
m in the (-constrained policy set , after a projection = it is in the strong (-constrained policy set and
0T, < 05T 4 Vinaxée/(1 — 7). Then we can provide the upper bound for v7, — vt for any 7 in

¢-constrained policy set (Theorem [4).
The proof sketch of Theorem [5] goes as follow. One key step to prove this error bound is to convert
the performance difference between any policy 7 € H“Sl(l) and 7, to a value function gap that is

filtered by (:
’U% — Tt < ||C (Q% — ft) ||1,V1/(]‘ - /y)’

where v; is some admissible distribution over S x A. The filter ¢ allows the change of measure from
v1 to pu without constraining the density ratio between an arbitrary distribution v and y. Instead for
any s,a where ( is one, by definition x is lower bounded and the density ratio is bounded by C
(details in Lemma [13]).

The rest of the proof has a similar structure with the standard FQI analysis. In Lemmal[I5] we bound
the norm ||((Q™ — fi)ll2,0, by C||(ft — T¢ fe)|l2,n/(1 — 7v) and one additional sub-optimality error
Q™ — T¢Q™ ||2,,.- The additional sub-optimality error term comes from the fact that 7 may not be
an optimal policy since the optimal policy may not be a (-constrained policy. The last step to finish
the proof is to bound the expected Bellman residual by concentration inequality. Lemma 6] shows
how to bound that following a similar approach as [[1]. Then the main theorem is proved by combine
all those steps. After that we prove when we can bound the value gap with resepct to optimal value
in Corollary ]

Now we start the proof. We are going to condition on the high probability bounds in Assumption 2]
holds when we proof the lemmas.

Lemma 13. For m, = Z(7y) in Algorithmfor any policy 7 € 114 we have
vt ™ <Y AN (HC (Q%_ft) ‘ >
h—0 1mp Xt

Proof. Given a deterministic greedy policy 7y, m; = Z(7;) is also a deterministic policy and
m¢(s) equals 7¢(s) unless ((s,7:(s)) = 0, where m(s) = aus. Notice 7(s) is the maximizer
of (s, ) fe(s,-). If {(s,7:(s)) = O then {(s, a) ft(s,a) = 0 for all a. We have that 7 (s) is also the

+ ¢ (@ - 1)

T~
‘l,nh X
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s20  maximizer of {(s,-) fi(s,-).

VT — ™t = i thESNert Q7 (s,7) — Q™ (s,m¢)] (3} Lemma 6.1])

h=0

<Y Ao [ DR (5, 7) = (s, m) Q7 (5.m0)| (108)
h=0

S Z thIESNT];;t’ [4(87 %)Q%(S, %) - <(87 %)ft(& 7’?) + C(S, ﬂ-t)ft(sa Trt) - <(37 Wt)Q%(& Trt)]
" (109)

< (Je@ -t o @ -5, ) 110
h=0 "h U

321 Equation (108) follows from the fact that for all s, a such that 7(als) > 0, either ((s,a) = 1, or
322 4 = Qgps. G = aqps indicates that Q7 (s,a) = 0. So for all s, a such that 7(als) > 0, Q™(s,a) =

a3 ((s,a)Q7(s,a). The second part follows from that for any s, a, Q (s,a) > ((s,a)Q7 (s, a). Equa-
s24  tion (109) follows from the fact that 7+ (s) is the maximizer of {(s, ) f¢(s,-). O

Lemma 14. For any two function fi,fo : S8 x A — R, define g, p,(s) =
argmax,¢c 4 |fi(s,a) — fa(s,a)|. Then we have Vv : S — A(A'),

max — max
H acA fl acA f2

<|fi— f2||1,P(V)><7Tf1,f2'
1,P(v)

Proof.
- =B fpapste ) - mag e
< ]ESNP(V) gneaj\( |f1 (87 CL) - f2(87 a)|
= ]ESNP(V),awﬂ’fl,f2 |f1(87 Cl) - f2(3a Cl)|
= v = £l pwyxs, 5, -
325 O

s2e Lemma 15. For the data distribution p and any admissible distribution v over S’ x A’, f, f' :
227 8 x A— RT and any 7 € YL, we have

¢ (s -e7)

= (U= Tefl, + |70 - @

+)¢ (r-a7)

+ Vmaxﬁ,u)
2,p

‘Q,P(V)Xﬂ'cf,qu;
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328
329

330

334

335
336

337

338
339
340
341

Proof.

Jo(r-@)]., (111)
=|c(r-ms +Tp - @+ Q" - Q)| (112)
<l =T + ¢ (7er = 7eQ7)|| | +[c (@™ @), (113)
<C||f—ch'|1,ﬁ+7Hgleaf>‘<Cf’—gleajcCQ% R A (114)
<20Vimaxeu + C|f = Tef Iy, +7 ’ max ( f' — max (Q" o C HTcQ% —Q7|, a1
SC (”f a 7Zf/||2’” + H’TCQ% B Q% 1,p + QMnaX€#> +7 HC (f/ B Q%) ‘1 PW)XT,. . -5

’ ’ cfheQm (116)

The change of norms from || - ||, to || - ||, follows from that ((s,a) # 0 iff fi(s,a) > b and thus
v(s,a) < fi(s,a)U/b = Cp(s,a). The last step follows from Lemma ¢ (Tef = 7eQT) H1 v S

7 ||maxae 4 Cf — maxae s CQ%HLP(D) follows from:
le (e = 7Q7)|| =By [¢(50) | Tef (5,0) - TeQ7 (5,0 (117)

Tef (s.0) = TeQ(5,0)|| (18)

‘1,1/

SE(S,CL)NI/ |:

|

:E(s,a)wu H’Y]ES/NP(s,a) g}gﬁ C(Sla al)f/<s/a a/) - glgﬁ C(S/7 GI)Q% (Sl7 a’/>

(119)
< , AN AN N Y A I NOT (A
_ryE(s,a)Nu,s ~P(s,a) [?gﬁ((s @ ).f (8 70') g}gﬁ((s , @ )Q (8 , @ ) :|
(Jensen)
_ PN LY I NOT (A
_VES ~P(v) Hg}g‘ﬁC(s ,Cl)f (S ,CL) ?gﬁC(s ,G)Q (S ,Cl)
(120)
_ r 7
’Y‘Igleaj(Cf gleaXCQ o) (121)
O

Now we are going to use Berstein’s inequality to bound || fi+1 — 7¢ fil, ,» which mostly follows
from [[1]’s proof for the vanilla value iteration.

Lemma 16. WithAssumptionholds, let g5 = argminge z [[g—Tc f |2, then ||g}—72f\|%u < er.
The dataset D is generated i.i.d. from M as follows: (s,a) ~ p, r = R(s,a), s’ ~ P(s,a). Define
L.(f; ") =E[Lp(f; f")]. We have thatV f € F, with probability at least 1 — §,

208V;2,, In 21
Lu(Tenfs f) = Lulgys f) < 3—n5 +er

where T¢ p f = argmin e » Lp (g, f).

Proof. This proof is similar with the proof of Lemma and we adapt it to operator 7;. The only
change is the definition of Vy(-) and X(-,-,-). The definition of Lp and £,, would not change
between M and M’, and the right hand side is also the same constant for M and M’. So the result
we prove here does not change from M to M.

For the simplicity of notations, let V;(s) = max,ec 4 ((s,a)f(s,a). Fix f,g € F, and define

X(g, f,97) = (9(s,0) =7 = 1Vs(s)* = (gj(5,0) =1 = 4Vj (")
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342

344

346

Plugging each (s,a,r,s’) € D into X(g,f,g97), we get iid. variables
Xi(g, f,9%), Xo(g, £,9F)s---» Xn(g, f, g}). It is easy to see that

S Xilg. £,67) = £0(g: ) ~ Lol ).

=1

By the definition of £,,, it is also easy to see that

£ul050) = 9 = Tef s+ Brams [Vt (7 e (81501 )|
Notice that the second part does not depends on g. Then

Lo(g; ) = Lu(Tef: ) = llg = Tefll3,

Then we bound the variance of X:

VIX(g, f,97)] < E[X(g, [, 07"
=E, [(<g<s, a) =1 = Vi(s")" = (g}(s,0) =1 = wf-(s'))zﬂ
=B, [(9(s.0) = g7(s.0))*(g(s.) + g} (s.0) = 2r =29V} (s)))’|

<4V2, E, [(g(s, a) — g3 (s, a))z]

=4V2

(122)
< 8Vimax (E[X (g, f,97)] + 2¢5). ()
Step (*) holds because

lg — 95115,
<2 (Ilg - +17ef = 933, ((a+0)* < 2a® +2b°)
2(llg - —17ef = g5ll5.,. + 207 f = g5115.,.)
(Lu(g; £) = Lu(Tef5 1)) = (LoulgFs ) = Lu(Tef: ) + 2T f — 95113,
(Lu(g; ) = LulgF; 1) +201Tc f = g5115,,.]
E[X (g, f,97)) + 2 Tcf — g53,.)
(E[X(g, f,97)] + 2¢5)

Next, we apply (one-sided) Bernstein’s inequality and union bound over all f € F and g € F. With
probability at least 1 — §, we have

P N e

=2
2
2
2

IA

A

2
\/ 2V[X (g, f,g7)) n - . 4v2, 2
n 3n

BIX(9.£,9)] — D Xilg F.7) <
i=1

max 5

32V 20 (EIX (0. £, 9p)) + 27 ) I 5L gy 1171
+
n 3n
Since T¢,p f minimizes Lp(-; f), it also minimizes = " | X;(-, f, g7)- This is because the two
objectives only differ by a constant Lp(g7; f). Hence

n

*ZX 72Df fagf %Z gfvagf =0.

1=1 =1
Then,

“

32Vior (EX(Ten fugp) + 265 ) G vz, 12

max

%\

E[X(%,Dfa fa g})] S

n 3n
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347

348

349

350

352

353

354
355

Solving for the quadratic formula,

€F
3n

2
812 1nf'> 64V2 1n 2! 56V2 In 21
—max 4 ) 4 +
n 3n

E[X(7—C,Df) f) g})] S 48 ( max 9 max J max S

F F
_ (56 +32V3)V2, In 1] LA In 171

max max
- 3n

€F

112V2, In Z1 64V2, In 21
< + F
3n n

112V2,, 2L 3912 1 21
< +

max max

n
(Va+b<ya++vbandnZl > 0)

€

€F

- 3n n +
208V,2,, In 2!
<—— —— ter
3n
Noticing that E[X (7¢,p f; f, 97)] = Lu(T¢,p f3 f) — L,(gF; f), we complete the proof. O

Now we could prove the main theorem about fitted Q iteration.

Theorem 5. Givena MDP M =< S, A, R, P,~,p >, adataset D = {(s,a,r, s')} with n samples
that is draw i.i.d. from X R x P, and a finite Q-function classes F satisfying Assumption [3
m = Z(7t) from Algorithmsatisﬁes that with probability at least 1 — 25, v™ — v™ <

20 208V2,, In 121 - _ IV,
max 2 " ax H T T max
(g TS L VY R

for any policy 7 € 1%L,

Proof. Firstly, we canlet f = f; and f' = f;_1 in Lemma This gives us that

Note that we can apply the same analysis on P(v) x 7y, , o and expand the inequality ¢ times. It
then suffices to upper bound || f; — 7¢ fr—1]|2, -

fi = Q7

=0 (M= Tl + |07 - e

+ 2Vmax€,u> +7Hft—17Q%||17P(l/)><T(
1,u Tk

I fe — Tefr1ll3,,

=L,(fe;: fie1) = Lu(Te fr=1s fi—1) (Definition of £,,)

= [Eu(ftQ fi—1) — /:u(g}t,l;ft—l)] + [ﬁu(g}t,1§ft—1) - Cu(TCft—ﬁ ft—l)]

<e+lg}, , — 7Z~ft,1||§’# (Lemma|T6and definition of £,,)

<e4+e€r. (Definition of gékil and AssumptionE[)

. . . . 208V2, In 21 ..
The inequality holds with probability at least 1 — ¢ and ¢4 = —=4*——— + ¢x. Noticing that ¢4
and ex do not depend on ¢, and the inequality holds simultaneously for different ¢, we have that
- 1 —~t - -
Hft - Qﬂ— 1,v S ﬁc (\/ (64 + 6]—') + Vmaxeu + HQﬁ - 7—CQ7‘— 1 ) + ’thmax-
- oz

21

_1.QT



a6 Applying this to Lemma[T3] we have that

v — T
2 1—~t ~ ~
<2 (Tho (VEFer s o+ [0 -7, ) 410
- - s
2C P o 2 thaX
VY] V€4+€F+Vmax6u+HQw_7—CQﬂ +77
(1-7) Lu L=
20 208V2,, In Z1 _ _ ot
< max 5 2 Vmax H T ™ max.
ST—ap an oV T Vet |[QT T, )T
357 O

358 Now we are going to use the fact that there is an no-value-loss projection from the (-constrained
359 policy set to the strong (-constrained policy set to prove an error bound w.r.t any 7 € Hac”.

sso Theorem 2. Givena MDP M =< S, A, R, P,~,p >, adataset D = {(s,a,r, s")} with n samples
a1 that is draw i.i.d. from p x R x P, and a finite Q-function classes F satisfying Assumption 5] 7,
362 from Algorithmsatisﬁes that with probability at least 1 — 2§, v™ — vt <

20 208V,2,. In 121 _ _ 27! + eV,
max 9 Vmax H T T max
a7 S A A VS R e

oy 1
363 for any policy ™ € 113"

s64 Proof. The difference between this theorem and Theorem [3)is that 7 is in IT#! which is significantly

ses  larger than TTZ,.

366 Tklig prove mimics the proof of Theorem|l} For any policy 7 € H?;”, Lfinlma tells that v, <
367 v;[(?) + L{‘j"ic. Since my = Z(7;), vy = vy) > vy Thenvf, — v < vf\/[(,ﬂ) —uyh +

a8 Theorem [5|completes the proof.

Vimax €¢

== and

se9 Remark: The first term in the theorem comes from that the best policy in the (-constrained policy
370 set is not optimal. Note that the (-constrained policy set does not requires any realizability to do
a71  with our function approximation but merely about the density ratio of a policy. When there is an
a72  optimal policy of M such in II%!, we have the same type of bound as standard approximate value
373 iteration analysis.

a4 Corollary 4. If there exists an m* on M such that Pr(pu(s, a) < 2b|7*) < e. then under the condition
375 as Theorem ™ from Algorithmsatisﬁes that with probability at least 1 — 20, vX; —vyp <

20 208V;2,, In 21 Vinax (29! + € + CUe,,)

) * m*
2 Vmax H -
=) an +2er + €+ [|@ TeQ » + =

376 Proof. The proof of 7 € II¢! is same as the proof in Corollary [I} Then proof is finished by
a7z applying Theorem 4] O

ss E  Details of CartPole Experiment

s79  E.1 Full results of Discretized CartPole-v(

ass0 In section[6.1] we compare AVI, BCQL[2], SPIBB[4], Behavior cloning and our algorithm PQI, in
38t CartPole-v0 with discretized state space. The data is generated by a e-greedy policy (e from 0.1 to
382 0.9) and we report the resulting policies from different algorithm with the best hyper-parameter in
383 each e. In this section we show the learning curve for each e and each hyper-parameter value. We
ss4 rtun the BCQ algorithm with the threshold of fi(als) in {0, 0.05, 0.1, 0.2}, and we run the SPIBB
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Figure 1: CartPole-v0 with discretized state space. The learning curve of all algorithms with differ-
ent hyper-parameters, data generated with different e-greedy behavior policy. The hyper-parameter
of SPIBB [4] and PQI is the threshold of [i(s, a) and the hyper-parameter of BCQL [2]] is the thresh-
old of fi(als).

algorithm with the threshold of fi(s,a) in {0.01,0.005,0.001, 0.0005,0.0001} and PQI with the
threshold of 7i(s, a) in a smaller set {0.005,0.001,0.0005}. Figure [I] shows for most of the € and
threshold our algorithm tie with the best baseline (SPIBB), and the best threshold of our algorithm
outperform all baseline algorithms in 8 out of 9 cases.

In Figure |1, we observe the trend that smaller € will prefer a smaller . This is verified by more
results in the next section, and we discuss the reasons for this phenomenon there.

E.2 Ablation study of threshold b

A key aspect of our algorithm is to filter the state space by a threshold on the estimated probability
1i(s,a). This prevents the algorithm from updating using low-confidence state, action pairs when
bootstrapping values. Then the choice of threshold b is a key trade-off in our algorithm: if b is too
small it can not remove the low-confident state, action pairs effectively; if b is too large it might
remove too many state, action pairs and prevent learning from more data. In order to demonstrate
the effect of b and how should we choose b in different settings, we show the performance of PQI in
a larger range of b and several ¢ values.

In figure 2] we show the trend that smaller b works better for larger € and larger b works better for
smaller € in general. This can be explained in the following way: with a larger e the data distribution
is more exploratory and hence the probabilities on individual state, action pairs are smaller. So a the
same threshold that performs well with low exploration now censors a much larger part of the state,
action space, necessitating a smaller threshold as e is increased. In general, we find that having the
largest threshold which still retains a significant fraction of the state, action space is a good heuristic
for setting the b parameter.
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Figure 2: Performance of PQI with different values of threshold b

F Details of D4RL Experiment

In this section we introduce some missing details about the PQL algorithm and the experimental
details in D4RL tasks. Our code is available at https://github.com/yaoliucs/PQL.

PQL algorithm is implemented based on the architecture of Batch-Constrained deep ()-learning
(BCQ) [2]] algorithm. More specifically, we use the similar Clipped Double Q-Learning (CDQ) up-
date rule for the @ learning part, and employ a similar variational auto-encoder to fit the conditional
action distribution in the batch. We use an additional variational auto-encoder to fit the marginalized
state distribution of the batch. To implement an actual () learning algorithm instead of an actor-critic
algorithm, we did not sample from the actor in the Bellman backup but sample a larger batch from
the fitted conditional action distribution. Algorithm [ shows the pseudo-code of PQL to provide
more details. We highlight the difference with the BCQ algorithm in red.

Algorithm 4 Pessimistic ()-learning (PQL)

Input: Batch D, ELBO threshold b, maximum perturbation ®, target update rate 7, mini-batch
size N, max number of iteration 7. Number of actions k.
Initialize two Q network Qg, and Qg,, policy (perturbation) model: £4. (§, € [—®, ®]), action
VAE G¢,, and state VAE G, .
Pretrain G : wp < argmin,,, ELBO(B;G5,,).
fort =1toT do

Sample a minibatch B with N samples from D.

wiy + argmin,, FELBO(B;GY)).

Sample k actions a; from G, (s’) for each s'.

Compute the target y for each (s, a,r, s’) pair:

y=r+~1L(ELBO(s';G,) > b) {mz}x <O.75 * min2 Qo; +0.25 % max Qe;)]
! j=1, i=1,
0 argming X(y — Qu(s, 0))
Sample k actions a; from G, (s) for each s.
¢ < argmax, »  max,, Qs, (s, a; +E4(s, a;))
Update target network: ¢/ = (1 —7)0' + 76, ¢ = (1 — )¢/ + 7¢
end for
When evaluate the resulting policy: select action a = arg max,, Qo, (s, a; + £4(s, a;)) where
a; are k actions sampled from G, (s) given s.

In practice, the indicator function 1(ELBO(s';G;,) > b) is implemented by

sigmoid(100(ELBO(s";G,,) — b)) to provide a slightly more smooth target. The evidence
lower bound (ELBO) in VAE is:

ELBO(s;G,) = » (s —8)” + DxL(N(p,0)|IN(0,1)) (123)

where © and o is sampled from the encoder of VAE with input s and S is sampled from the de-
coder with the hidden state generated from N (u1,0). ELBO(B; G3,,) is the averaged ELBO on the
minibatch B. So does G, . Note that this ELBO objective make the implicit assumption that the
decoder’s distribution is a Gaussian distribution with mean equals to the output of decoder network.
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So when we generate the sample o’ for computing y, we add a Gaussian noise to recover a sample
from the full posterior distribution.

For most of the hyper-parameters in Algorithm |4} we use the same value with the BCQ algorithm.
We run all algorithms with 7" = 5 x 10° gradient steps as other reported results in D4RL tasks, and
the minibatch size N = 100 at each step. The number of sampled action when running the policy is
k = 100. Target network update rate is 0.005. The threshold b of ELBO is selected as 2-percentile
of the ELBO(s) in the whole dataset after pretrain the VAE.
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