
In Appendix A we introduce some basic definitions that are needed for our theoretical results. In1

Appendix B, we provide sufficient conditions for Assumption 1 that were mentioned in the main2

text. In Appendix C and Appendix D we prove the error bounds for PPI and PQI. In Appendix E3

and Appendix F we present more details of our experimental results.4

A Definition of auxiliary MDP and policy projection5

First we introduce the definition of an auxiliary MDP M ′ based on M: each state in M has an6

absorbing action which leads to a self-looping absorbing state. All the other dynamics are preserved.7

Rewards are 0 for the absorbing action and unchanged elsewhere. More formally: The auxiliary8

MDP M ′ given M =< S,A, R, P, γ, ρ > is defined as M ′ =< S ′,A′, R′, P ′, γ, ρ >, where9

S ′ = S
⋃
{sabs}, A′ = A

⋃
{aabs}. R′ and P ′ are the same as R and P for all (s, a) ∈ S × A.10

R′(s, a) if s = sabs or a = aabs is a point mass on 0, and P ′(s, a) if s = sabs or a = aabs is a point11

mass on sabs. A data set D generated from distribution µ on M is also from the distribution µ on12

M ′, since all distributions on S ×A are the same between the two MDPs. This MDP is used only to13

perform our analysis about the error bounds on the algorithm, and is not needed at all for executing14

Algorithm 1 and 2. As some of the notations is actually a function of the MDP, we clarify the usage15

of notation w.r.t. M /M ′ in the appendix:16

1. Policy value functions V π/Qπ and Bellman operators T /T π correspond to M ′ unless they17

have additional subscripts.18

2. The definition of F , Π, Tζ , T πζ , µ̂ is independent of the change from M to M ′.19

3. µ is also a distribution over S ′ × A′. The definition of ζ will be extended to S ′ × A′ as20

follow:21

ζ(s, a) =

{
1 (µ̂(s, a) ≥ b) s ∈ S, a ∈ A
0 s = sabs or a = aabs

(That means there is only one version of µ and ζ across M and M ′, instead of like we have22

T πM ′ and T πM for M and M ′.)23

Recall the definition of semi-norm of any function of state-action pairs. For any function g : S ′ ×24

A′ → R, ν ∈ ∆(S ′×A′), and p ≥ 1, define the shorthand ‖g‖p,ν := (E(s,a)∼ν [|g(s, a)|p])1/p. With25

some abuse of notation, later we also use this norm for ν ∈ ∆(S × A) (specifically, µ) by viewing26

the probability of ν on additional (s, a) pairs as zero. Given a policy π, let ηπh(s) be the marginal27

distribution of sh under π, that is, ηπh(s) := Pr[sh = s|s0 ∼ p, π], ηπh(s, a) = ηπh(s)π(a|s),28

and ηπ(s, a) = (1 − γ)
∑∞
h=0 γ

hηπh(s, a). We also use P (s, a) and P (ν) to denote the next state29

distribution given a state action pair or given the current state action distribution.30

The norm ‖ · ‖p,ν are defined over S ′×A′. Though for the input space of function f ∈ F is S ×A,31

the norm can still be well-defined. All of the norm would not need the value of f(s, a) on s = sabs32

or a = aabs, because the distribution does not cover those (s, a), or the f inside of the norm is33

multiplied by other function that is zero for those (s, a).34

We first formally state an obvious result about policy value in M and M ′.35

Lemma 1. For any policy π that only have non-zero probability for a ∈ A, vπM ′ = vπM .36

Proof. By the definition of M ′, P and R are the same with M over S ×A.

vπM = EM

[
h∑
t=0

γtrt|s0 ∼ p, π

]
= EM ′

[
h∑
t=0

γtrt|s0 ∼ p, π

]
= vπM ′

37

For the readability we repeat the Definition 1 here38

Definition 1 (ζ-constrained policy set ). Let Πall
C be the set of policies S → ∆(A) such that39

Pr(ζ(s, a) = 0|π) ≤ εζ . That is40

(1− γ)

∞∑
h=0

γhEs,a∼ηπh [1 (ζ(s, a) = 0)] ≤ εζ (4)
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Now we introduce another constrained policy set. Different from ζ-constrained policy set which41

we introduced in Definition 1, this policy set is on M ′ instead of M and the policy is forced to take42

action aabs when ζ(s, a) = 0 for all a. The reason we introduce this is to help us formally analyze the43

(lower bound of) performance of the resulting policy. We essentially treat any action taken outside44

of the support to be aabs. Later we will define a projection to achieve that and show results about45

how the policy value changes after projection.46

Definition 2 (strong ζ-constrained policy set). Let Πall
SC be the set of all policies S ′ → ∆(A′) such47

that for ∀(s, a) π(a|s) > 0 then 1) ζ(s, a) > 0, or 2) a = aabs.48

Notice that for ζ-constrained policy set we have no requirement for π if for any action ζ(s, a) is zero.49

For strong ζ-constrained policy set we enforce π to take action aabs. The second difference is ζ-50

constrained policy set requires the condition holds for s, a that is reachable, which means ηπh(s) > 051

and π(a|s) > 0. Here we require the same condition holds for any s, a such that π(a|s) > 0. In52

general, this is a stronger definition. However, we can show that for any policy in ζ-constrained53

policy set , it can be mapped to a policy in strong ζ-constrained policy set , with changing value54

bounds. Since we only need to change the behavior of policy in the state actions such that the state55

actions that ζ = 0, the value of policy will not be much different.56

Now we define a projection that maps any policy to Πall
SC .57

Definition 3 (ζ-constrained policy projection). (Ξπ)(a|s) equals ζ(s, a)π(a|s) if a ∈ A, and equals58 ∑
a′∈A′ π(a′|s)(1− ζ(s, a′)) if a = aabs59

Next we show that the projection of policy will has an equal or smaller value than the original policy.60

Lemma 2. For any policy π : S ′ → ∆(A′), vπM ′ ≥ v
Ξ(π)
M ′ , and vπM ′ = v

Ξ(π)
M ′ if for any (s, a)61

reachable by π, ζ(s, a) = 1.62

Proof. We drop the subscription of M ′ in this proof for ease of notation. For any given s,63 ∑
a∈A′

π(a|s)QΞ(π)(s, a) =
∑
a∈A

π(a|s)QΞ(π)(s, a) (Qπ(s, aabs = 0))

≥
∑
a∈A

ζ(a|s)π(a|s)QΞ(π)(s, a) (5)

= Ξ(π)(aabs|s)QΞ(π)(s, aabs) +
∑
a∈A

Ξ(π)(a|s)QΞ(π)(s, a) (Def of Ξ)

=
∑
a∈A′

Ξ(π)(a|s)QΞ(π)(s, a) (6)

= V Ξ(π)(s) (7)

The inequality is an equality if for any a s.t. π(a|s) > 0, ζ(s, a) = 1. By the performance difference64

lemma [3, Lemma 6.1]:65

vΞ(π) − vπ =

∞∑
h=0

γhEs∼ηπh

[
V Ξ(π)(s)−

∑
a∈A′

π(a|s)QΞ(π)(s, a)

]
≤ 0 (8)

The inequality is an equality if for any (s, a) s.t. ηπh(s)π(a|s) > 0 for some h, ζ(s, a) = 1.66

In another word for any state-action reachable by π (ηπh(s) > 0 and π(a|s) > 0 for some h),67

ζ(s, a) = 1.68

The following results shows for any policy π in the ζ-constrained policy set the projection will not69

change the policy value much.70

Lemma 3. For any policy π ∈ Πall
C , vπM ≤ v

Ξ(π)
M ′ +

εζVmax

1−γ71

Proof. Since π only takes action in A, by Lemma 1, we have that vπM = vπM ′ . Since π ∈ Πall
C , we72

have that Pr (ζ(s, a) = 0|π) ≤ εζ , which means that:73

(1− γ)

∞∑
h=0

γhEs∼ηπh [1 (ζ(s, a) = 0)] ≤ εζ (9)
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Thus:74

vΞ(π) − vπ =

∞∑
h=0

γhEs∼ηπh

[
V Ξ(π)(s)−

∑
a∈A′

π(a|s)QΞ(π)(s, a)

]
(10)

=

∞∑
h=0

γhEs∼ηπh

[
V Ξ(π)(s)−

∑
a∈A′

π(a|s)ζ(s, a)QΞ(π)(s, a)

]
(11)

−
∞∑
h=0

γhEs,a∼ηπh
[
1 (ζ(s, a) = 0)QΞ(π)(s, a)

]
(12)

≥
∞∑
h=0

γhEs∼ηπh

[
V Ξ(π)(s)−

∑
a∈A′

π(a|s)ζ(s, a)QΞ(π)(s, a)

]
(13)

− Vmax

∞∑
h=0

γhEs,a∼ηπh [1 (ζ(s, a) = 0)] (14)

≥
∞∑
h=0

γhEs∼ηπh

[
V Ξ(π)(s)−

∑
a∈A′

π(a|s)ζ(s, a)QΞ(π)(s, a)

]
− Vmaxεζ

1− γ
(15)

=− Vmaxεζ
1− γ

(16)

The last step follows from the first part in the proof of Lemma 2, vπM ′ − v
Ξ(π)
M ′ ≤

Vmaxεζ
1−γ .75

B Justification of Assumption 176

In this section we prove a claim stated in Section 5 about the upper bound on density functions. We77

are going to prove Assumption 1 holds under when the transition density is bounded.78

Lemma 4. Let p(·|s, a) be the probability density function of transition distribution: ρ(s0) ≤
√
U <79

∞, p(st+1|st, at) ≤
√
U < ∞ and ∀π(at|st, h) ≤

√
U < ∞, for all s0, st, st+1 ∈ S and a ∈ A.80

Then in M ′ for any non-stationary policy π : S ′ × N → ∆(A′) and h ≥ 0, ηπh(s, a) ≤ U for any81

s ∈ S and a ∈ A.82

Proof. We first prove that ηπh(s) ≤
√
U for any non-stationary policy π. For h = 0, ηπh(s) = ρ(s) ≤83 √

U . For h ≥ 1 and s ∈ S:84

ηπh(s) =

∫
s−1∈S′

∑
a∈A′

ηπh−1(s−1)π(a−1|s−1, h− 1)p(s|s−1, a−1)ds−1 (17)

=

∫
s−1∈S

∑
a∈A

ηπh−1(s−1)π(a−1|s−1, h− 1)p(s|s−1, a−1)ds−1 (18)

≤ Eηπh−1×π(h−1) [p(s|s−1, a−1)] (19)

≤
√
U (20)

The first step follows from the inductive definition of ηπh(s). The second step follows from that sabs is85

absorbing state and aabs only leads to absorbing state. The third step follows from transition density86

p(s|s−1, a−1) is non-negative. The last step follows from that the transition density p(s|s−1, a−1)87

is the same between M and M ′ for s, s−1 ∈ S, a−1 ∈ A, and p(s|s−1, a−1) in M is upper bounded88

by U . Finally, the joint density function over s and a ηπh(s, a) = ηπh(s)π(a|s, h) is bounded by U ,89

and we finished the proof.90

For the convenience of notation later we use admissible distribution to refer to state-action distribu-91

tions introduced by non-stationary policy π in M ′. This definition is from [1]:92

Definition 4 (Admissible distributions). We say a distribution or its density function ν ∈ ∆(S ′×A′)93

is admissible in MDP M ′, if there exists h ≥ 0, and a (non-stationary) policy π : S ′×N→ ∆(A′),94

such that ν(s, a) = ηπh(s, a).95
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C Proofs for Policy Iteration Guarantees96

In this section we are going to prove the result of Theorem 1 using the definition of the strong ζ-97

constrained policy set . At a high level, the proof is done in two steps. First we prove similar result98

to Theorem 1 for any policy in the strong ζ-constrained policy set : an upper bound of vπM ′ − v
πt
M ′99

where π can be any policy in the strong ζ-constrained policy set and πt is the output of the algorithm100

(Theorem 2, formally stated in Appendix C.4). Then we are going to show that for any policy π101

in the ζ-constrained policy set after a projection Ξ it is in the strong ζ-constrained policy set and102

vπM ≤ v
Ξ(π)
M ′ +

Vmaxεζ
1−γ . Then we can provide the upper bound for vπM−v

πt
M for any π in ζ-constrained103

policy set .104

The proof of Theorem 2 (the Πall
SC version of Theorem 1, formally stated in Appendix C.4) goes as105

follow. First, we show the fixed point of T πζ is QΞ(π) for any policy π, indicating the inner loop of106

policy evaluation step is actually evaluating πt = Ξ(π̂t). We prove this result formally in Lemma 6.107

To bound the gap between πt and any policy π̃ in the ζ-constrained policy set , we use the contraction108

property of T πζ to recursively decompose it into a discounted summation over policy improvement109

gap Qπt+1 − Qπt . π̃ in the ζ-constrained policy set is needed because the operator T πζ constrains110

the backup on the support set of ζ.111

Next, we bound the policy improvement gap in Lemma 12:

Qπt+1 −Qπt ≥ −O(‖ζ(Qπt − ft,K)‖1,ν)

for some admissible distribution ν related to πt+1. The fact that we only need to measure the error112

on the support set of ζ is important. It follows from the fact that both πt+1 and πt only takes action113

on the support set of ζ except aabs which gives us a constant value. This allows us to change the114

measure from arbitrary distribution ν to data distribution µ, without needing concentratability.115

The rest of proof is to upper bound ‖ζ(Qπt−ft,K)‖1,ν using contraction and concentration inequali-116

ties. First, ‖ζ(Qπt−ft,K)‖1,ν is upper bounded byC‖ft,K−T πζ ft,K‖2,µ/(1−γ) in Lemma 9, using117

a standard contraction analysis technique. Notice that here we can change the measure to µ with118

cost C to allow us to apply concentration inequality. Then Lemma 8 bounds ‖ft,K − T πζ ft,K‖2,µ119

by a function of sample size n and completeness error εF using Bernstein’s inequality.120

While writing the proof, we will first introduce the fixed point of T πζ is QΞ(π) in section C.1. We121

prove the upper bound of the policy evaluation error ‖ζ(Qπt − ft,K)‖1,ν , in section C.2, and the122

policy improvement step in section C.3. After we proved the main theorem, we will prove when we123

can bound the value gap with the optimal value in Corollary 1, as we showed in the main text.124

C.1 Fixed point property125

In Algorithm 1, the output policy is π̂t+1. However, we will show that is actually equivalent with126

the following algorithm,

Algorithm 3 Pessimistic Policy Iteration (PPI, repeat Algorithm 1)

Input: D, F , Π, µ̂, b
Output: π̂T
Initialize π0 ∈ Π.
for t = 0 to T − 1 do

Initialize ft,0 ∈ F
for k = 0 to K do

// Policy Evaluation
ft,k+1 ← arg minf∈F LD(f, ft,k;πt)

end for
// Policy Improvement
π̂t+1 ← arg maxπ∈Π ED[Eπ [ζ(s, a)ft,K(s, a)]]
πt+1 ← Ξ(π̂t+1)

end for

127
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The output policy is still π̂t+1, and we know that vπ̂t+1 ≥ vπt+1 . So if we can lower bound vπt+1128

we immediately have the lower bound on vπ̂t+1 . The only difference in algorithm is we change the129

policy evaluation operator from T π̂tζ to T πtζ , where πt is the projection of π̂t. The following result130

shows these two operators are actually the same. For the ease of notation, we refer to Algorithm 3131

in our analysis.132

Lemma 5. For any policy π : S ′ → ∆(A′), T πζ = T Ξ(π)
ζ .133

Proof. We only need to prove for any f , T πζ f = T Ξ(π)
ζ f . For any a ∈ A,134

(T πζ f)(s, a) = r(s, a) + γE

[∑
a′∈A

π(a′|s′)ζ(s′, a′)f(s′, a′)

]
(21)

= r(s, a) + γE

[∑
a′∈A

π(a′|s′)ζ2(s′, a′)f(s′, a′)

]
(22)

= r(s, a) + γEs′
[∑
a′∈A

Ξ(πt)(a
′|s′)ζ(s′, a′)Qπ(s′, a′)

]
(23)

= (T Ξ(π)
ζ f)(s, a) (24)

For a = aabs, (T πζ f)(s, a) = 0 = (T Ξ(π)
ζ f)(s, a).135

The next result is a key insight about T πζ ’s behavior in M ′ that guide our analysis.136

Lemma 6. For any policy π : S ′ → ∆(A′), the fixed point solution of T πζ is equal to QΞ(π) on137

S ×A.138

Proof. By definition QΞ(π) is the fixed point of the standard Bellman evaluation operator on M ′:139

T Ξ(π)
M ′ . So for any (s, a) ∈ S ×A:140

QΞ(π)(s, a) (25)

= (T Ξ(π)
M ′ QΞ(π))(s, a) (26)

= r(s, a) + γEs′
[ ∑
a′∈A′

Ξ(π)(a′|s′)QΞ(π)(s′, a′)

]
(27)

= r(s, a) + γEs′
[

Ξ(π)(aabs|s′)QΞ(π)(s′, aabs) +
∑
a′∈A

Ξ(π)(a′|s′)QΞ(π)(s′, a′)

]
(28)

= r(s, a) + γEs′
[∑
a′∈A

Ξ(π)(a′|s′)QΞ(π)(s′, a′)

]
(29)

= r(s, a) + γEs′
[∑
a′∈A

π(a′|s′)ζ(s′, a′)QΞ(π)(s′, a′)

]
(30)

= (T πζ QΞ(π))(s, a) (31)

So we proved that QΞ(π) is also the fixed-point solution of T πζ constrained on S ×A.141

An obvious consequences of these two lemmas is that the fixed point solution of T πtζ = T π̂tζ equals142

Qπt on S ×A.143
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C.2 Proofs for policy evaluation step144

We start with an useful result of the expected loss of the solution from empirical loss minimization,145

by applying a concentration inequality.146

Lemma 7. Given π ∈ Ξ(Π) and Assumption 3, let g?f = arg ming∈F ‖g − T πζ f‖2,µ, then ‖g?f −147

T πζ f‖22,µ ≤ εF . The dataset D is generated i.i.d. from M as follows: (s, a) ∼ µ, r = R(s, a),148

s′ ∼ P (s, a). Define Lµ(f ; f ′, π) = ED [LD(f ; f ′, π)]. We have that ∀f ∈ F , with probability at149

least 1− δ,150

Lµ(Tζ,Df ; f, π)− Lµ(g?f ; f, π) ≤
112V 2

max ln |F||Π|δ

3n
+

√
64V 2

max ln |F||Π|δ

n
εF

where T πζ,Df = arg ming∈F LD(g; f, π).151

Proof. This proof is similar with the proof of Lemma 16 in [1], and we adapt it to the ζ-constrained152

Bellman evaluation operator T πζ . First, there is no difference in LD and Lµ between M and M ′,153

and the right hand side is also the same constant for M and M ′. The distribution of D in M and M ′154

are the same, since µ does not cover sabs and aabs. So we are going to prove the inequality for M ,155

and thus this bound holds for M ′ too.156

For the simplicity of notations, let V πf (s) =
∑
a∈A π(a|s)ζ(s, a)f(s, a). Fix any f, g ∈ F , and157

define158

X(g, f, g?f ) :=
(
g(s, a)− r − γV πf (s′)

)2 − (g?f (s, a)− r − γV πf (s′)
)2
. (32)

Plugging each (s, a, r, s′) ∈ D into X(g, f, g?f ), we get i.i.d. variables159

X1(g, f, g?f ), X2(g, f, g?f ), . . . , Xn(g, f, g?f ). It is easy to see that160

1

n

n∑
i=1

Xi(g, f, g
?
f ) = LD(g; f, π)− LD(g?f ; f, π). (33)

By the definition of Lµ, it is also easy to show that161

Lµ(g; f, π) =
∥∥g − T πζ f∥∥2

2,µ
+ Es,a∼µ

[
Vr,s′

(
r + γ

∑
a′∈A

π(a′|s′)ζ(s′, a′)f(s′, a′)

)]
, (34)

where Vr,s′ is the variance over conditional distribution of r and s′ given (s, a). Notice that the162

second part does not depends on g. Then163

Lµ(g; f, π)− Lµ(T πζ f ; f, π) = ‖g − T πζ f‖22,µ (35)

Then we bound the variance of X:164

V[X(g, f, g?f )] ≤ E[X(g, f, g?f )2]

= Eµ
[((

g(s, a)− r − γVf (s′)
)2 − (g?f (s, a)− r − γVf (s′)

)2)2
]

(Definition of X)

= Eµ
[(
g(s, a)− g?f (s, a)

)2(
g(s, a) + g?f (s, a)− 2r − 2γVf (s′)

)2]
≤ 4V 2

max Eµ
[(
g(s, a)− g?f (s, a)

)2]
= 4V 2

max ‖g − g?f‖22,µ
≤ 8V 2

max (E[X(g, f, g?f )] + 2εF ). (36)
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The last step holds because165

‖g − g?f‖22,µ
≤ 2

(
‖g − T πζ f‖22,µ + ‖T πζ f − g?f‖22,µ

)
((a+ b)2 ≤ 2a2 + 2b2)

= 2
(
‖g − T πζ f‖22,µ − ‖T πζ f − g?f‖22,µ + 2‖T πζ f − g?f‖22,µ

)
= 2

[
(Lµ(g; f, π)− Lµ(T πζ f ; f, π))− (Lµ(g?f ; f, π)− Lµ(T πζ f ; f, π)) + 2‖T πζ f − g?f‖22,µ

]
(Equation (35))

= 2
[
(Lµ(g; f, π)− Lµ(g?f ; f, π) + 2‖T πζ f − g?f‖22,µ

]
= 2

(
E[X(g, f, g?f )] + 2‖T πζ f − g?f‖22,µ

)
≤ 2(E

[
X(g, f, g?f )

]
+ 2εF )

Next, we apply (one-sided) Bernstein’s inequality and union bound over all f ∈ F , g ∈ F , and166

π ∈ Ξ(Π). With probability at least 1− δ, we have167

E[X(g, f, g?f )]− 1

n

n∑
i=1

Xi(f, f, g
?
f ) ≤

√
2V[X(g, f, g?f )] ln |F|

2|Π|
δ

n
+

4V 2
max ln |F|

2|Π|
δ

3n

=

√√√√32V 2
max

(
E[X(g, f, g?f )] + 2εF

)
ln |F||Π|δ

n
+

8V 2
max ln |F||Π|δ

3n
.

(37)

Since T πζ,Df minimizes LD( · ; f, π), it also minimizes 1
n

∑n
i=1Xi(·, f, g?f ). This is because the two

objectives only differ by a constant LD(g?f ; f, π). Hence,

1

n

n∑
i=1

Xi(T πζ,Df, f, g?f ) ≤ 1

n

n∑
i=1

Xi(g
?
f , f, g

?
f ) = 0.

Then,168

E[X(T πζ,Df, f, g?f )] ≤ 0 +

√√√√32V 2
max

(
E[X(T πζ,D, f, g?f )] + 2εF

)
ln |F||Π|δ

n
+

8V 2
max ln |F||Π|δ

3n
.

Solving for the quadratic formula,169

E[X(T πζ,Df, f, g?f )] ≤

√√√√48

(
8V 2

max ln |F||Π|δ

3n

)2

+
64V 2

max ln |F||Π|δ

n
εF +

56V 2
max ln |F||Π|δ

3n

≤
(56 + 32

√
3)V 2

max ln |F||Π|δ

3n
+

√
64V 2

max ln |F||Π|δ

n
εF

(
√
a+ b ≤

√
a+
√
b and ln |F|δ > 0)

≤
112V 2

max ln |F||Π|δ

3n
+

√
64V 2

max ln |F||Π|δ

n
εF

Noticing that E[X(Tζ,Df, f, g?f )] = Lµ(Tζ,Df ; f, π)− Lµ(g?f ; f, π), we complete the proof.170

Lemma 8 (Policy Evaluation Accuracy). For any t, k ≥ 1 and πt, ft,k and ft,k−1 from Algorithm171

1,172 ∥∥∥ft,k − T πtζ ft,k−1

∥∥∥2

2,µ
≤ ε1

where ε1 =
208V 2

max ln
|F||Π|
δ

3n + 2εF .173
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Proof.∥∥∥ft,k − T πtζ ft,k−1

∥∥∥2

2,µ

=Lµ(ft,k; ft,k−1, πt)− Lµ(T πtζ ft,k−1; ft,k−1, πt)

=
(
Lµ(ft,k; ft,k−1, πt)− Lµ(g?ft,k−1

; ft,k−1, πt)
)
−
(
Lµ(T πtζ ft,k−1; ft,k−1, πt)− Lµ(g?ft,k−1

; ft,k−1, πt)
)

≤
112V 2

max ln |F||Π|δ

3n
+

√
64V 2

max ln |F||Π|δ

n
εF +

∥∥∥g?ft,k−1
− T πtζ ft,k−1

∥∥∥
2,µ

(Equation (35) and Lemma 7)

≤
112V 2

max ln |F||Π|δ

3n
+

√
64V 2

max ln |F||Π|δ

n
εF + εF (Definition of g?ft,k−1

and Assumption 3)

≤
112V 2

max ln |F||Π|δ

3n
+

32V 2
max ln |F||Π|δ

n
+ εF + εF = ε1 (

√
2ab ≤ a+ b)

174

From this lemma to the proof of main theorem, we are going to condition on the fact that the event175

in Assumption 2 holds. In the proof of the main theorem we will impose the union bound on all176

failures.177

Lemma 9. For any admissible distribution ν on S ′ ×A′, and any πt from Algorithm 1.178

‖ζ(s, a) (ft,K(s, a)−Qπt(s, a))‖1,ν ≤
C (
√
ε1 + Vmaxεµ)

1− γ
+ γKVmax (38)

where ε1 is defined in Lemma 8.179

(Although ft,K is only defined on S × A, ζ is always zero for any other (s, a). Thus the all values180

used in the proof are well-defined. Later, when it is necessary for proof, we define the value of ft,K181

outside of S ×A to be zero. In the algorithm, we will never need to query the value of ft,K outside182

of S ×A.)183

Proof. For any k ≥ 1 and any distribution ν on S ′ ×A′:184

‖ζ (ft,k −Qπt)‖1,ν (39)

≤
∥∥∥ζ (ft,k − T πtζ ft,k−1

)∥∥∥
1,ν

+
∥∥∥ζ (T πtζ ft,k−1 − T πtζ Qπt

)∥∥∥
1,ν

(40)

≤
∥∥∥ζ (ft,k − T πtζ ft,k−1

)∥∥∥
1,ν

+
∥∥∥T πtζ ft,k−1 − T πtζ Qπt

∥∥∥
1,ν

(41)

≤ C
∥∥∥ft,k − T πtζ ft,k−1

∥∥∥
1,µ̂

+
∥∥∥T πtζ ft,k−1 − T πtζ Qπt

∥∥∥
1,ν

(42)

≤ C
(∥∥∥ft,k − T πtζ ft,k−1

∥∥∥
1,µ

+ Vmaxεµ

)
+
∥∥∥T πtζ ft,k−1 − T πtζ Qπt

∥∥∥
1,ν

(43)

≤ C
(∥∥∥ft,k − T πtζ ft,k−1

∥∥∥
2,µ

+ Vmaxεµ

)
+
∥∥∥T πtζ ft,k−1 − T πtζ Qπt

∥∥∥
1,ν

(Jensen’s inequality)

≤ C(
√
ε1 + Vmaxεµ) +

∥∥∥T πtζ ft,k−1 − T πtζ Qπt
∥∥∥

1,ν
(Lemma 8)

= C(
√
ε1 + Vmaxεµ) + Eν

∣∣∣∣∣γEP (ν)

∑
a′∈A

πt(a
′|s′)ζ(s′, a′) (ft,k−1(s′, a′)−Qπt(s′, a′))

∣∣∣∣∣ (44)

= C(
√
ε1 + Vmaxεµ) + Eν

[
γEP (ν)×πt |ζ(s′, a′) (ft,k−1(s′, a′)−Qπt(s′, a′))|

]
(45)

≤ C(
√
ε1 + Vmaxεµ) + γEP (ν)×πt |ζ(s′, a′) (ft,k−1(s′, a′)−Qπt(s′, a′))| (46)

≤ C(
√
ε1 + Vmaxεµ) + γ ‖ζ (ft,k−1 −Qπt)‖1,P (ν)×π (47)
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Equation (42) holds since for all (s, a) s.t. ζ(s, a) > 0, ν(s, a) ≤ U ≤ U
b µ̂(s, a) = Cµ̂(s, a).185

Equation (43) holds since the total variation distance between µ and µ̂ is bounded by εµ and the186

Bellman error is bounded in [−Vmax, Vmax]. Equation (44) follows from πt ∈ Πall
SC . So if ζ(s, a) =187

0, π(a|s) = 0 for all a ∈ A. Equation (45) holds since ζ(·, aabs) = 0. The next equation follows188

from that ζ = ζ2.189

Note that this holds for any admissible distribution ν on S ′ × A′ and and k, as well as ε1 does not190

depends on k. Repeating this for k from K to 1 we will have that191

‖ζ(s, a) (ft,K(s, a)−Qπt(s, a))‖1,ν ≤
1− γK

1− γ
C
(√
ε1 + Vmaxεµ

)
+ γKVmax (48)

<
C (
√
ε1 + Vmaxεµ)

1− γ
+ γKVmax (49)

192

C.3 Proofs for policy improvement step193

Lemma 10 (Concentration of Policy Improvement Loss). For any f ∈ F , with probability at least
1− δ, ∥∥∥∥Eπ̂f [ζ(s, a)f(s, a)]−max

a∈A
ζ(s, a)f(s, a)

∥∥∥∥
1,µ

≤ εΠ + 2Vmax

√
ln(|F||Π|/δ)

2n

where π̂f = arg maxπ∈Π ED [Eπ [ζ(s, a)f(s, a)]].194

Proof. Fixed f , define X(s;π) = maxa∈A ζ(s, a)f(s, a) − Eπ [ζ(s, a)f(s, a)]. Notice that by195

definition X(s;π) is always non-negative, and π̂f = arg maxπ∈Π ED [Eπ [ζ(s, a)f(s, a)]] =196

arg minπ∈Π ED[X(s;π)].197

Only in this proof, let πf be:

arg min
π∈Π

Eµ[X(s;π)] = arg min
π∈Π

∥∥∥∥Eπ [ζ(s, a)f(s, a)]−max
a∈A

ζ(s, a)f(s, a)

∥∥∥∥
1,µ

.

X(s;π) ∈ [0, Vmax]. By Hoeffding’s inequality and union bound over all π ∈ Π, f ∈ F , with198

probability at least 1− δ for any f and π 6= πf ,199

Eµ[X(s;π)]− ED[X(s;π)] ≤ Vmax

√
ln(|F||Π|/δ)

2n
(50)

for π = πf200

ED[X(s;π)]− Eµ[X(s;π)] ≤ Vmax

√
ln(|F||Π|/δ)

2n
(51)

If π̂f = πf , then Eµ[X(s; π̂f )] ≤ εΠ. Otherwise,201

Eµ[X(s; π̂f )] (52)

≤ ED[X(s; π̂f )] + Vmax

√
ln(|F||Π|/δ)

2n
(53)

≤ ED[X(s;πf )] + Vmax

√
ln(|F||Π|/δ)

2n
(54)

≤ Eµ[X(s;πf )] + 2Vmax

√
ln(|F||Π|/δ)

2n
(55)

= min
π∈Π

∥∥∥∥Eπ̂ [ζ(s, a)f(s, a)]−max
a∈A

ζ(s, a)f(s, a)

∥∥∥∥
1,µ

+ 2Vmax

√
ln(|F||Π|/δ)

2n
(56)

= εΠ + 2Vmax

√
ln(|F||Π|/δ)

2n
(57)

202
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For the following proof until the main theorem, we are going to condition on the fact that the high203

probability bound in the lemma above holds, and impose an union bound in the proof of main204

theorem.205

Lemma 11. For any admissible distribution ν on S ′, any policy π : S ′ → ∆(A′),206

Eν
[
Eπt+1 [ζ(s, a)ft,K(s, a)]− Eπ [ζ(s, a)ft,K(s, a)]

]
≥

−C

(
εΠ + Vmaxεµ + 2Vmax

√
ln(|F||Π|/δ)

2n

)

Proof. Recall that πt+1 = Ξ(π̂t+1). So πt+1(a|s) = π̂t+1(a|s) for all a such that ζ(s, a) = 1. Then207

Eπt+1 [ζ(s, a)ft,K(s, a)] = Eπ̂t+1
[ζ(s, a)ft,K(s, a)]

Eν
[
Eπt+1 [ζ(s, a)ft,K(s, a)]

]
= Eν

[
Eπ̂t+1

[ζ(s, a)ft,K(s, a)]
]

Eν
[
Eπt+1

[ζ(s, a)ft,K(s, a)]− Eπ [ζ(s, a)ft,K(s, a)]
]

(58)

= Eν
[
Eπ̂t+1

[ζ(s, a)ft,K(s, a)]− Eπ [ζ(s, a)ft,K(s, a)]
]

(59)

= Eν
[
Eπ̂t+1

[ζ(s, a)ft,K(s, a)]−max
a∈A

ζ(s, a)ft,K(s, a) + max
a∈A

ζ(s, a)ft,K(s, a)− Eπ [ζ(s, a)ft,K(s, a)]

]
(60)

≥ Eν
[
Eπ̂t+1

[ζ(s, a)ft,K(s, a)]−max
a∈A

ζ(s, a)ft,K(s, a)

]
(61)

≥ −Eν
∣∣∣∣Eπ̂t+1

[ζ(s, a)ft,K(s, a)]−max
a∈A

ζ(s, a)ft,K(s, a)

∣∣∣∣ (62)

= −
∥∥∥∥Eπ̂t+1

[ζ(s, a)ft,K(s, a)]−max
a∈A

ζ(s, a)ft,K(s, a)

∥∥∥∥
1,ν

(63)

≥ −C
∥∥∥∥Eπ̂t+1

[ζ(s, a)ft,K(s, a)]−max
a∈A

ζ(s, a)ft,K(s, a)

∥∥∥∥
1,µ̂

(64)

The last step follows from that ζ(s, a) = 1 ⇒ µ̂(s, a) ≥ b ⇒ µ̂(s) ≥ b ⇒ −ν(s) ≥ −U ≥208

−Cµ̂(s), and for all other (s, a) the term inside of norm is zero. Since the total variation distance209

between µ̂ and µ is bounded by εµ210 ∥∥∥∥Eπ̂t+1
[ζ(s, a)ft,K(s, a)]−max

a∈A
ζ(s, a)ft,K(s, a)

∥∥∥∥
1,µ̂

(65)

≤
∥∥∥∥Eπ̂t+1

[ζ(s, a)ft,K(s, a)]−max
a∈A

ζ(s, a)ft,K(s, a)

∥∥∥∥
1,µ

+ Vmaxεµ (66)

By Lemma 10:211 ∥∥∥∥Eπ̂t+1
[ζ(s, a)ft,K(s, a)]−max

a∈A
ζ(s, a)ft,K(s, a)

∥∥∥∥
1,µ

≤ εΠ + 2Vmax

√
ln(|F||Π|/δ)

2n
(67)

Then we finished the proof by plug this into the last equation.212

Lemma 12. For any (s, a) ∈ S ′ ×A′, and any πt, πt+1 in Algorithm 1,213

Qπt+1(s, a)−Qπt(s, a) ≥ −
2C
√
ε1 + 3VmaxCεµ
(1− γ)2

− ε2 + 2γKVmax

1− γ
(68)

where ε1 is defined in Lemma 8, ε2 = C

(
εΠ + 2Vmax

√
ln(|F||Π|/δ)

2n

)
.214
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Proof. For any s′, only in this proof, let ηπt+1

h be the state distribution on the hth step from initial215

state s′ following πt+1. By applying performance difference lemma [3],216

V πt+1(s′)− V πt(s′) (69)

=

∞∑
h=1

γh−1E
z∼η

πt+1
h

[∑
a∈A′

(πt+1(a|z)Qπt(z, a)− πt(a|z)Qπt(z, a))

]
(70)

=

∞∑
h=1

γh−1E
z∼η

πt+1
h

[∑
a∈A′

(1− ζ(z, a)) (πt+1(a|z)Qπt(z, a)− πt(a|z)Qπt(z, a)) (71)

+
∑
a∈A′

ζ(z, a) (πt+1(a|z)Qπt(z, a)− πt(a|z)Qπt(z, a))

]
(72)

Because πt, πt+1 ∈ Πall
SC , ζ(z, a) = 0 means either πt(a|z) = πt+1(a|z) = 0 or a = aabs. So the217

first term is zero. Then:218

V πt+1(s′)− V πt(s′) (73)

=

∞∑
h=1

γh−1E
z∼η

πt+1
h

[∑
a∈A′

ζ(z, a) (πt+1(a|z)Qπt(z, a)− πt(a|z)Qπt(z, a))

]
(74)

=

∞∑
h=1

γh−1E
z∼η

πt+1
h

[∑
a∈A

ζ(z, a) (πt+1(a|z)Qπt(z, a)− πt(a|z)Qπt(z, a))

]
(75)

=

∞∑
h=1

γh−1E
z∼η

πt+1
h

[∑
a∈A

ζ(z, a) (πt+1(a|z)Qπt(z, a)− πt+1(a|z)ft,K(z, a)) (76)

+
∑
a∈A

ζ(z, a) (πt+1(a|z)ft,K(z, a)− πt(a|z)ft,K(z, a)) (77)

+
∑
a∈A

ζ(z, a) (πt(a|z)ft,K(z, a)− πt(a|z)Qπt(z, a))

]
(78)

Equation 75 follows from Qπ(s, aabs) = 0 for any π and s. By Lemma 11, for any h,219

E
z∼η

πt+1
h

[∑
a∈A

ζ(z, a) (πt+1(a|z)ft,K(z, a)− πt(a|z)ft,K(z, a))

]
(79)

= E
z∼η

πt+1
h

[
Eπt+1 [ζ(s, a)ft,K(s, a)]− Eπt [ζ(s, a)ft,K(s, a)]

]
≥ −ε2 − CVmaxεµ (80)
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Then220

V πt+1(s′)− V πt(s′) (81)

≥
∞∑
h=1

γh−1E
z∼η

πt+1
h

[∑
a∈A

ζ(z, a) (πt+1(a|z)Qπt(z, a)− πt+1(a|z)ft,K(z, a)) (82)

+
∑
a∈A

ζ(z, a) (πt(a|z)ft,K(z, a)− πt(a|z)Qπt(z, a))

]
− ε2 + CVmaxεµ

1− γ
(83)

≥ −
∞∑
h=1

γh−1
(
‖ζ(z, a)(Qπt(z, a)− ft,K(z, a))‖

1,η
πt+1
h

(84)

+ ‖ζ(z, a)(Qπt(z, a)− ft,K(z, a))‖
1,η

πt+1
h ×πt

)
− ε2 + CVmaxεµ

1− γ
(85)

≥ −
∞∑
h=1

γh−1
(
‖ζ(z, a)(Qπt(z, a)− ft,K(z, a))‖

2,η
πt+1
h

(86)

+ ‖ζ(z, a)(Qπt(z, a)− ft,K(z, a))‖
2,η

πt+1
h ×πt

)
− ε2 + CVmaxεµ

1− γ
(87)

≥
−2C

(√
ε1 + Vmaxεµ

)
(1− γ)2

− 2γKVmax

1− γ
− ε2 + CVmaxεµ

1− γ
(Lemma 9)

Equation 87 follows from Jensen’s inequality. Since this holds for any s′, we proved that for any221

(s, a),222

[Qπt+1(s, a)−Qπt(s, a)] (88)

= γEs′ [V πt+1(s′)− V πt(s′)] (89)

≥
−2C

(√
ε1 + Vmaxεµ

)
(1− γ)2

− 2γKVmax

1− γ
− ε2 + CVmaxεµ

1− γ
(90)

≥ −
2C
√
ε1 + 3CVmaxεµ
(1− γ)2

− 2γKVmax

1− γ
− ε2

1− γ
(91)

223

C.4 Proof of main theorems224

Theorem 2. Given an MDPM =< S,A, R, P, γ, p >, a datasetD = {(s, a, r, s′)} with n samples225

that is draw i.i.d. from µ × R × P , and a finite Q-function classes F and a finite policy class Π226

satisfying Assumption 3 and 4, πt = Ξ(π̂t) from Algorithm 1 satisfies that with probability at least227

1− 3δ,228

vπ̃ − vπt ≤ 4C

(1− γ)3


√

419V 2
max ln |F||Π|δ

3n
+ 2
√
εF

+
6CVmaxεµ
(1− γ)3

+
2CεΠ + 3γK−1Vmax

(1− γ)2

for any policy π̃ ∈ Πall
SC .229

Proof. For simplicity of the notation, let ε1 =
208V 2

max ln
|F||Π|
δ

3n + 2εF , ε2 =230

C

(
εΠ + 2Vmax

√
ln(|F||Π|/δ)

2n

)
and ε3 =

2C
√
ε1+3VmaxCεµ
(1−γ)2 + ε2+2γKVmax

1−γ . We start by proving231

a stronger result. For any π̃ ∈ Πall
SC , we will upper bound Eν [V π̃ − V πt ] for any admissible232
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distribution ν over S ′ which will naturally be an upper bound for vπ̃ − vπt233

Eν [V π̃ − V πt+1 ]

= Eν

[
V π̃(s)−

∑
a∈A′

πt+1(a|s)Qπt(s, a) +
∑
a∈A′

πt+1(a|s)Qπt(s, a)− V πt+1(s)

]

= Eν

[
V π̃(s)−

∑
a∈A′

πt+1(a|s)Qπt(s, a) +
∑
a∈A′

πt+1(a|s) (Qπt(s, a)−Qπt+1(s, a))

]
≤ Eν

∑
a∈A′

[
π̃(a|s)Qπ̃(s, a)− πt+1(a|s)Qπt(s, a)

]
+ ε3 (Lemma 12)

= Eν
∑
a∈A′

ζ(s, a)[π̃(a|s)Qπ̃(s, a)− πt+1(a|s)Qπt(s, a)] + ε3

= Eν
[
Eπ̃
[
ζ(s, a)Qπ̃(s, a)

]
− Eπt+1 [ζ(s, a)ft(s, a)]

+Eπt+1
[ζ(s, a)ft(s, a)]− Eπt+1

[ζ(s, a)Qπt+1(s, a)]
]

+ ε3

≤ Eν
[
Eπ̃
[
ζ(s, a)Qπ̃(s, a)

]
− Eπt+1

[ζ(s, a)ft(s, a)]
]

+ ‖ζ(z, a)(Qπt(z, a)− ft(z, a))‖1,ν×πt+1
+ ε3

≤ Eν
[
Eπ̃
[
ζ(s, a)Qπ̃(s, a)

]
− Eπt+1

[ζ(s, a)ft(s, a)]
]

+
C
√
ε1 + CVmaxεµ

1− γ
+ γKVmax + ε3

(Lemma 9)

≤ Eν
[
Eπ̃
[
ζ(s, a)Qπ̃(s, a)

]
− Eπ̃ [ζ(s, a)ft(s, a)]

]
+ ε2 + CVmaxεµ +

C
√
ε1 + CVmaxεµ

1− γ
+ γKVmax + ε3

(Lemma 11)

≤ Eν
[
Eπ̃
[
ζ(s, a)Qπ̃(s, a)

]
− Eπ̃ [ζ(s, a)Qπt(s, a)]

]
+ ε2 +

2C
√
ε1 + 3CVmaxεµ

1− γ
+ 2γKVmax + ε3

(Lemma 9)

= Eν×π̃
[
ζ(s, a)Qπ̃(s, a)− ζ(s, a)Qπt(s, a)

]
+ ε2 +

2C
√
ε1 + 3CVmaxεµ

1− γ
+ 2γKVmax + ε3

= Eν×π̃
[
Qπ̃(s, a)−Qπt(s, a)

]
+ ε2 +

2C
√
ε1 + 3CVmaxεµ

1− γ
+ 2γKVmax + ε3 (πt ∈ Πall

SC)

≤ γ EP (ν×π̃)[V
π̃ − V πt ] + ε2 +

2C
√
ε1 + 3CVmaxεµ

1− γ
+ 2γKVmax + ε3

The second to last step follows from πt ∈ Πall
SC : for all s, a such that π̃(a|s) > 0, either ζ(s, a) = 1,234

or a = aabs. The later two indicate that Qπt(s, a) = Qπ̃(s, a) = 0. So for all s, a such that235

π̃(a|s) > 0, Qπ̃(s, a) = ζ(s, a)Qπ̃(s, a) and Qπt(s, a) = ζ(s, a)Qπt(s, a). Now we proved236

Eν [V π̃ − V πt+1 ] ≤ γ EP (ν×π̃)[V
π̃ − V πt ] + ε2 + ε3 +

2C
√
ε1 + 3CVmaxεµ

1− γ
+ 2γKVmax (92)
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holds for any distribution ν. The error terms do not depend on t and this holds for any t. We can237

repeatedly apply this for all 0 < t′ ≤ t. Assuming t ≥ K this will give us :238

Eν [V π̃ − V πt+1 ]

≤1− γt

1− γ

(
ε2 + ε3 +

2C
√
ε1 + 3CVmaxεµ

1− γ
+ 2γKVmax

)
+ γtVmax

≤ ε2
1− γ

+
ε3

1− γ
+

2C
√
ε1

(1− γ)2
+

3CVmaxεµ
(1− γ)2

+
3γKVmax

1− γ

≤ 2ε2
(1− γ)2

+
4C
√
ε1

(1− γ)3
+

6CVmaxεµ
(1− γ)3

+
3γK−1Vmax

(1− γ)2

≤ 2CεΠ
(1− γ)2

+
4C

(1− γ)2

√
V 2

max ln(|F||Π|/δ)
2n

+
4C
√
ε1

(1− γ)3
+

6CVmaxεµ
(1− γ)3

+
3γK−1Vmax

(1− γ)2

≤ 2CεΠ
(1− γ)2

+
4C

(1− γ)3

(√
V 2

max ln(|F||Π|/δ)
2n

+

√
208V 2

max ln(|F||Π|/δ)
3n

+ 2εF

)

+
6CVmaxεµ
(1− γ)3

+
3γK−1Vmax

(1− γ)2

≤ 2CεΠ
(1− γ)2

+
4C

(1− γ)3

(√
V 2

max ln(|F||Π|/δ)
2n

+

√
208V 2

max ln(|F||Π|/δ)
3n

+
√

2εF

)

+
6CVmaxεµ
(1− γ)3

+
3γK−1Vmax

(1− γ)2

≤ 2CεΠ
(1− γ)2

+
4C

(1− γ)3

(√
419V 2

max ln(|F||Π|/δ)
3n

+
√

2εF

)
+

6CVmaxεµ
(1− γ)3

+
3γK−1Vmax

(1− γ)2

The last step follows from that a+b ≤
√

2(a2 + b2). The error bound is finished by simplifying the239

expression. The failure probability 3δ is from the union bound of probability δ on which Assumption240

2 fails, probability δ on which Lemma 7 fails, and the probability δ on which Lemma 10 fails.241

Now we are going to use the fact that there is an almost no-value-loss projection from the ζ-242

constrained policy set to the strong ζ-constrained policy set in order to prove an error bound w.r.t243

any π̃ ∈ Πall
C .244

Theorem 1. Given an MDPM =< S,A, R, P, γ, p >, a datasetD = {(s, a, r, s′)} with n samples245

that is draw i.i.d. from µ × R × P , and a finite Q-function classes F and a finite policy class Π246

satisfying Assumption 3 and 4, π̂t from Algorithm 1 satisfies that with probability at least 1− 3δ,247

vπ̃M − v
π̂t
M ≤

4C

(1− γ)3


√

419V 2
max ln |F||Π|δ

3n
+ 2
√
εF

+
6CVmaxεµ
(1− γ)3

+
2CεΠ + 3γK−1Vmax

(1− γ)2
+
Vmaxεζ
1− γ

for any policy π̃ ∈ Πall
C and only take action over A.248

Proof. For any policy π̃ that only take action over A, Lemma 3 tells that vπ̃M ≤ v
Ξ(π̃)
M ′ +

Vmaxεζ
1−γ .249

Since πt = Ξ(π̂t) and π̂t only takes action in A, by Lemma 1 and Lemma 2 vπ̂tM = vπ̂tM ′ ≥ vπtM .250

Then vπ̃M − v
π̂t
M ≤ v

Ξ(π̃)
M ′ − v

πt
M ′ +

Vmaxεζ
1−γ and Theorem 2 completes the proof.251

When there exist an optimal policy that is supported well by µ. We can derive the following result252

about value gap between learned policy and optimal policy immediately from the main theorem253

about approximate policy iteration.254
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Corollary 2. If there exists an π? on M such that Pr(µ(s, a) ≤ 2b|π?) ≤ ε. then under the255

assumptions of Theorem 1, π̂t from Algorithm 1 satisfies that with probability at least 1− 3δ,256

vπ
?

M − v
πt
M ≤

4C

(1− γ)3


√

419V 2
max ln |F||Π|δ

3n
+ 2
√
εF

+
6CVmaxεµ
(1− γ)3

+
2CεΠ + 3γK−1Vmax

(1− γ)2
+
Vmax(ε+ Cεµ)

1− γ

Proof. Given the condition of π?,257

Pr
(
µ̂(s, a) ≤ b

∣∣∣π?) ≤Pr (µ(s, a) ≤ 2b|π?) + Pr (|µ(s, a)− µ̂(s, a)| ≥ b|π?) (93)

≤ε+ Pr (|µ(s, a)− µ̂(s, a)| ≥ b|π?) (94)

≤ε+
Eηπ? [|µ(s, a)− µ̂(s, a)|]

b
(95)

≤ε+
UdTV(µ(s, a), µ̂(s, a))

b
(96)

≤ε+ Cεµ (97)

Then π? ∈ Πall
C with εζ = ε+ Cεµ, and applying Theorem 1 finished the proof.258

C.5 Safe Policy Improvement Result259

In many scenarios we aim to have a policy improvement that is guaranteed to be no worse than260

the data collection policy, which is called safe policy improvement. By abusing the notation a bit,261

let µ(a|s) be a policy that generate the data set. For our algorithm, the safe policy improvement262

will hold if µ ∈ Πall
C . To show µ ∈ Πall

C , we only need that Pr(µ(s, a) ≤ b|µ) ≤ εζ . When263

the state-action space is finite, there must exist an minimum value for all non-zero µ(s, a)’s. Let264

µmin = mins,as.t.µ(s,a)>0 µ(s, a). Then we have that, if b ≤ µmin. Pr(µ(s, a) ≤ b|µ) = 0. Thus265

we have:266

Corollary 3. With finite state action space and b ≤ µmin, under the assumptions as Theorem 1, π̂t267

from Algorithm 1 satisfies that with probability at least 1− 3δ,268

vµM − v
π̂t
M ≤

52Vmax

√
|S||A|(

√
ln(2|S||A|/δ) +

√
ln(1 + nVmax)) + 8√

nb(1− γ)3

+
12Vmax|S||A| ln(2|S||A|/δ)

nb(1− γ)3
+

3γK−1Vmax

(1− γ)2

Proof. In finite state action space, the number of all deterministic policies is less than |A||S|. Thus269

we have a policy class with εΠ = 0 and |Π| ≤ |A||S|. Since the Q value is bounded in [0, Vmax],270

we can construct a ε covering set F of all value functions in [0, Vmax]|S||A| with (Vmax

ε + 1)|S||A|271

functions. Then εF ≤ maxg minf∈F ‖f − g‖µ,2 ≤ maxg minf∈F ‖f − g‖∞ ≤ ε.272

We can also bound εµ in finite state action space. For any fixed s, a, by Berstein’s inequality we273

have that with probability of 1- δ
|S||A| :274

|µ̂(s, a)− µ(s, a)| =

∣∣∣∣∣ 1n
n∑
i=1

1(s(i) = s, a(i) = a)− E[1(s(i) = s, a(i) = a)]

∣∣∣∣∣ (98)

≤
√

2V[1(s(i) = s, a(i) = a)] ln(2|S||A|/δ)
n

+
4 ln(2|S||A|/δ)

n
(99)

=

√
2µ(s, a)(1− µ(s, a)) ln(2|S||A|/δ)

n
+

4 ln(2|S||A|/δ)
n

(100)
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By taking summation of |µ̂(s, a)− µ(s, a)| and union bound over all (s, a), we can bound the total275

variation bounds between µ̂ and µ, with probability at least 1− δ,276

‖µ̂− µ‖TV =
1

2

∑
s,a

|µ̂(s, a)− µ(s, a)| (101)

≤1

2

∑
s,a

(√
2µ(s, a)(1− µ(s, a)) ln(2|S||A|/δ)

n
+

4 ln(2|S||A|/δ)
n

)
(102)

=
2|S||A| ln(2|S||A|/δ)

n
+

1

2

∑
s,a

√
2µ(s, a)(1− µ(s, a)) ln(2|S||A|/δ)

n
(103)

≤2|S||A| ln(2|S||A|/δ)
n

+
1

2

√√√√∑
s,a

2µ(s, a) ln(2|S||A|/δ)
n

∑
s,a

(1− µ(s, a))

(Cauchy-Schwartz’s inequality)

=
2|S||A| ln(2|S||A|/δ)

n
+

1

2

√
2 ln(2|S||A|/δ)

n
(|S||A| − 1) (104)

≤2|S||A| ln(2|S||A|/δ)
n

+

√
|S||A| ln(2|S||A|/δ)

2n
(105)

Now in a finite state action space we can construct the policy and Q function sets with |F| ≤277

(Vmax

ε + 1)|S||A|, |Π| ≤ |A||S|, εΠ = 0, εF ≤ ε, and bounded εµ. By plugging these terms into the278

result of Theorem 1, we have the following bound:279

vµM − v
π̂t
M ≤

4C

(1− γ)3

(√
419V 2

max(|S| ln |A|+ |S||A| ln(1 + Vmax/ε) + ln(1/δ))

3n
+ 2
√
ε

)

+
6CVmax

(1− γ)3

(√
|S||A| ln(2|S||A|/δ)

2n
+

2|S||A| ln(2|S||A|/δ)
n

)
+

3γK−1Vmax

(1− γ)2
,

(106)

for any chosen ε > 0. So we can set that ε = 1/n to upper bound the the infimum of this upper280

bound.281

vµM − v
π̂t
M ≤

4C

(1− γ)3

(√
419V 2

max(|S| ln |A|+ |S||A| ln(1 + nVmax) + ln(1/δ))

3n
+ 2

√
1

n

)

+
6CVmax

(1− γ)3

(√
|S||A| ln(2|S||A|/δ)

2n
+

2|S||A| ln(2|S||A|/δ)
n

)
+

3γK−1Vmax

(1− γ)2

(107)

Notice that in discrete space we have that U ≤ 1. By replacing C with 1/b and simplify some terms,282

we have that:283

vµM − v
π̂t
M ≤

√
6704V 2

max|S|(ln(|A|/δ) + |A| ln(1 + nVmax))

3nb2(1− γ)6
+

8

b
√
n(1− γ)3

+

√
18V 2

max|S||A| ln(2|S||A|/δ)
nb2(1− γ)6

+
12Vmax|S||A| ln(2|S||A|/δ)

nb(1− γ)3
+

3γK−1Vmax

(1− γ)2

≤
52Vmax

√
|S||A|(

√
ln(2|S||A|/δ) +

√
ln(1 + nVmax)) + 8√

nb(1− γ)3

+
12Vmax|S||A| ln(2|S||A|/δ)

nb(1− γ)3
+

3γK−1Vmax

(1− γ)2

284
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D Proofs for Q Iteration Guarantees285

In this section, we are going to prove the our main result for the Q iteration algorithm, Algorithm 2.286

First we introduce a similar completeness assumption about the Bellman optimality operator:287

Assumption 5 (Completeness under Tζ). maxf∈F ming∈F ‖g − Tζf‖22,µ ≤ εF288

We will first state our main theorem here and then give a proof sketch before we start the proof289

formally.290

Theorem 4. Given a MDP M =< S,A, R, P, γ, p >, a dataset D = {(s, a, r, s′)} with n samples291

that is draw i.i.d. from µ × R × P , and a finite Q-function classes F satisfying Assumption 5, π̂t292

from Algorithm 2 satisfies that with probability at least 1− δ, vπ̃ − vπ̂t ≤293

2C

(1− γ)2


√

208V 2
max ln |F|δ
3n

+ 2
√
εF + Vmaxεµ +

∥∥∥Qπ̃ − TζQπ̃∥∥∥
2,µ

+
(2γt + εζ)Vmax

1− γ

for any policy π̃ ∈ Πall
C .294

We will first give a proof sketch before we start the proof formally. The proof follows a similar295

structural as the policy iteration case. To prove Theorem 4 we first prove a similar version of Theo-296

rem 4 but the comparator polices are in strong ζ-constrained policy set (formally stated as Theorem297

5 later). Then we show an upper bound of vπM ′ − vπtM ′ where π ∈ Πall
SC and πt is the output of298

algorithm (Theorem 5, will be formally stated later). Then we are going to show that for any policy299

π in the ζ-constrained policy set , after a projection Ξ it is in the strong ζ-constrained policy set and300

vπM ≤ v
Ξ(π)
M ′ + Vmaxεζ/(1 − γ). Then we can provide the upper bound for vπM − v

πt
M for any π in301

ζ-constrained policy set (Theorem 4).302

The proof sketch of Theorem 5 goes as follow. One key step to prove this error bound is to convert
the performance difference between any policy π̃ ∈ Πall

SC and πt to a value function gap that is
filtered by ζ:

vπ̃ − vπt ≤ ‖ζ
(
Qπ̃ − ft

)
‖1,ν1

/(1− γ),

where ν1 is some admissible distribution over S×A. The filter ζ allows the change of measure from303

ν1 to µ without constraining the density ratio between an arbitrary distribution ν and µ. Instead for304

any s, a where ζ is one, by definition µ is lower bounded and the density ratio is bounded by C305

(details in Lemma 13).306

The rest of the proof has a similar structure with the standard FQI analysis. In Lemma 15, we bound307

the norm ‖ζ(Qπ̃ − ft)‖2,ν1
by C‖(ft − Tζft)‖2,µ/(1− γ) and one additional sub-optimality error308

‖Qπ̃ − TζQπ̃‖2,µ. The additional sub-optimality error term comes from the fact that π̃ may not be309

an optimal policy since the optimal policy may not be a ζ-constrained policy. The last step to finish310

the proof is to bound the expected Bellman residual by concentration inequality. Lemma 16 shows311

how to bound that following a similar approach as [1]. Then the main theorem is proved by combine312

all those steps. After that we prove when we can bound the value gap with resepct to optimal value313

in Corollary 4.314

Now we start the proof. We are going to condition on the high probability bounds in Assumption 2315

holds when we proof the lemmas.316

Lemma 13. For πt = Ξ(π̂t) in Algorithm 2, for any policy π̃ ∈ Πall
SC we have

vπ̃ − vπt ≤
∞∑
h=0

γh
(∥∥∥ζ (Qπ̃ − ft)∥∥∥

1,η
πt
h ×π̃

+
∥∥∥ζ (Qπ̃ − ft)∥∥∥

1,ηπh×πt

)
.

Proof. Given a deterministic greedy policy π̂t, πt = Ξ(π̂t) is also a deterministic policy and317

πt(s) equals π̂t(s) unless ζ(s, π̂t(s)) = 0, where πt(s) = aabs. Notice π̂t(s) is the maximizer318

of ζ(s, ·)ft(s, ·). If ζ(s, π̂t(s)) = 0 then ζ(s, a)ft(s, a) = 0 for all a. We have that πt(s) is also the319

17



maximizer of ζ(s, ·)ft(s, ·).320

vπ̃ − vπt =

∞∑
h=0

γhEs∼ηπth [Qπ̃(s, π̃)−Qπ̃(s, πt)] ([3, Lemma 6.1])

≤
∞∑
h=0

γhEs∼ηπth
[
ζ(s, π̃)Qπ̃(s, π̃)− ζ(s, πt)Q

π̃(s, πt)
]

(108)

≤
∞∑
h=0

γhEs∼ηπth [ζ(s, π̃)Qπ̃(s, π̃)− ζ(s, π̃)ft(s, π̃) + ζ(s, πt)ft(s, πt)− ζ(s, πt)Q
π̃(s, πt)]

(109)

≤
∞∑
h=0

γh
(∥∥∥ζ (Qπ̃ − ft)∥∥∥

1,η
πt
h ×π̃

+
∥∥∥ζ (Qπ̃ − ft)∥∥∥

1,η
πt
h ×πt

)
(110)

Equation (108) follows from the fact that for all s, a such that π̃(a|s) > 0, either ζ(s, a) = 1, or321

a = aabs. a = aabs indicates that Qπ̃(s, a) = 0. So for all s, a such that π̃(a|s) > 0, Qπ̃(s, a) =322

ζ(s, a)Qπ̃(s, a). The second part follows from that for any s, a, Qπ̃(s, a) ≥ ζ(s, a)Qπ̃(s, a). Equa-323

tion (109) follows from the fact that πt(s) is the maximizer of ζ(s, ·)ft(s, ·).324

Lemma 14. For any two function f1, f2 : S ′ × A′ → R+, define πf1,f2(s) =
arg maxa∈A |f1(s, a)− f2(s, a)|. Then we have ∀ν : S ′ → ∆(A′),

∥∥∥∥max
a∈A

f1 −max
a∈A

f2

∥∥∥∥
1,P (ν)

≤ ‖f1 − f2‖1,P (ν)×πf1,f2 .

Proof.

∥∥∥∥max
a∈A

f1 −max
a∈A

f2

∥∥∥∥
1,P (ν)

= Es∼P (ν)

∣∣∣∣max
a∈A

f1(s, a)−max
a∈A

f2(s, a)

∣∣∣∣
≤ Es∼P (ν) max

a∈A
|f1(s, a)− f2(s, a)|

= Es∼P (ν),a∼πf1,f2 |f1(s, a)− f2(s, a)|
= ‖f1 − f2‖21,P (ν)×πf1,f2

.

325

Lemma 15. For the data distribution µ and any admissible distribution ν over S ′ × A′, f, f ′ :326

S ×A → R+ and any π̃ ∈ Πall
SC , we have327

∥∥∥ζ (f −Qπ̃)∥∥∥
1,ν
≤ C

(
‖f − Tζf ′‖2,µ +

∥∥∥TζQπ̃ −Qπ̃∥∥∥
2,µ

+ Vmaxεµ

)
+ γ

∥∥∥ζ (f ′ −Qπ̃)∥∥∥
2,P (ν)×π

ζf′,ζQπ̃
.
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Proof.∥∥∥ζ (f −Qπ̃)∥∥∥
1,ν

(111)

=
∥∥∥ζ (f − Tζf ′ + Tζf ′ − TζQπ̃ + TζQπ̃ −Qπ̃

)∥∥∥
1,ν

(112)

≤‖ζ (f − Tζf ′)‖1,ν +
∥∥∥ζ (Tζf ′ − TζQπ̃)∥∥∥

1,ν
+
∥∥∥ζ (TζQπ̃ −Qπ̃)∥∥∥

1,ν
(113)

≤C ‖f − Tζf ′‖1,µ̂ + γ

∥∥∥∥max
a∈A

ζf ′ −max
a∈A

ζQπ̃
∥∥∥∥

1,P (ν)

+ C
∥∥∥TζQπ̃ −Qπ̃∥∥∥

1,µ̂
(114)

≤2CVmaxεµ + C ‖f − Tζf ′‖1,µ + γ

∥∥∥∥max
a∈A

ζf ′ −max
a∈A

ζQπ̃
∥∥∥∥

1,P (ν)

+ C
∥∥∥TζQπ̃ −Qπ̃∥∥∥

1,µ
(115)

≤C
(
‖f − Tζf ′‖2,µ +

∥∥∥TζQπ̃ −Qπ̃∥∥∥
1,µ

+ 2Vmaxεµ

)
+ γ

∥∥∥ζ (f ′ −Qπ̃)∥∥∥
1,P (ν)×π

ζf′,ζQπ̃

(116)

The change of norms from ‖ · ‖ν to ‖ · ‖µ follows from that ζ(s, a) 6= 0 iff µ̂(s, a) ≥ b and thus328

ν(s, a) ≤ µ̂(s, a)U/b = Cµ̂(s, a). The last step follows from Lemma 14.
∥∥ζ (Tζf ′ − TζQπ̃)∥∥1,ν

≤329

γ
∥∥maxa∈A ζf

′ −maxa∈A ζQ
π̃
∥∥

1,P (ν)
follows from:330 ∥∥∥ζ (Tζf ′ − TζQπ̃)∥∥∥

1,ν
=E(s,a)∼ν

[
ζ(s, a)

∣∣∣Tζf ′(s, a)− TζQπ̃(s, a)
∣∣∣] (117)

≤E(s,a)∼ν

[∣∣∣Tζf ′(s, a)− TζQπ̃(s, a)
∣∣∣] (118)

=E(s,a)∼ν

[∣∣∣∣γEs′∼P (s,a) max
a′∈A

ζ(s′, a′)f ′(s′, a′)−max
a′∈A

ζ(s′, a′)Qπ̃(s′, a′)

∣∣∣∣]
(119)

≤γ E(s,a)∼ν,s′∼P (s,a)

[∣∣∣∣max
a′∈A

ζ(s′, a′)f ′(s′, a′)−max
a′∈A

ζ(s′, a′)Qπ̃(s′, a′)

∣∣∣∣]
(Jensen)

= γ Es′∼P (ν)

[∣∣∣∣max
a′∈A

ζ(s′, a′)f ′(s′, a′)−max
a′∈A

ζ(s′, a′)Qπ̃(s′, a′)

∣∣∣∣]
(120)

=γ

∥∥∥∥max
a∈A

ζf ′ −max
a∈A

ζQπ̃
∥∥∥∥

1,P (ν)

(121)

331

Now we are going to use Berstein’s inequality to bound ‖ft+1 − Tζft‖2,µ, which mostly follows332

from [1]’s proof for the vanilla value iteration.333

Lemma 16. With Assumption 5 holds, let g?f = arg ming∈F ‖g−Tζf‖2,µ, then ‖g?f−Tζf‖22,µ ≤ εF .334

The dataset D is generated i.i.d. from M as follows: (s, a) ∼ µ, r = R(s, a), s′ ∼ P (s, a). Define335

Lµ(f ; f ′) = E[LD(f ; f ′)]. We have that ∀f ∈ F , with probability at least 1− δ,336

Lµ(Tζ,Df ; f)− Lµ(g?f ; f) ≤
208V 2

max ln |F|δ
3n

+ εF

where Tζ,Df = arg ming∈F LD(g, f).337

Proof. This proof is similar with the proof of Lemma 7, and we adapt it to operator Tζ . The only338

change is the definition of Vf (·) and X(·, ·, ·). The definition of LD and Lµ would not change339

between M and M ′, and the right hand side is also the same constant for M and M ′. So the result340

we prove here does not change from M to M ′.341

For the simplicity of notations, let Vf (s) = maxa∈A ζ(s, a)f(s, a). Fix f, g ∈ F , and define

X(g, f, g?f ) := (g(s, a)− r − γVf (s′))
2 −

(
g?f (s, a)− r − γVf (s′)

)2
.
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Plugging each (s, a, r, s′) ∈ D into X(g, f, g?f ), we get i.i.d. variables
X1(g, f, g?f ), X2(g, f, g?f ), . . . , Xn(g, f, g?f ). It is easy to see that

1

n

n∑
i=1

Xi(g, f, g
?
f ) = LD(g; f)− LD(g?f ; f).

By the definition of Lµ, it is also easy to see that

Lµ(g; f) = ‖g − Tζf‖22,µ + Es,a∼µ
[
Vr,s′

(
r + γ max

a′∈A
ζ(s′, a′)f(s′, a′)

)]
Notice that the second part does not depends on g. Then

Lµ(g; f)− Lµ(Tζf ; f) = ‖g − Tζf‖22,µ
Then we bound the variance of X:342

V[X(g, f, g?f )] ≤ E[X(g, f, g?f )2]

= Eµ
[((

g(s, a)− r − γVf (s′)
)2 − (g?f (s, a)− r − γVf (s′)

)2)2
]

= Eµ
[(
g(s, a)− g?f (s, a)

)2(
g(s, a) + g?f (s, a)− 2r − 2γVf (s′)

)2]
≤ 4V 2

max Eµ
[(
g(s, a)− g?f (s, a)

)2]
= 4V 2

max ‖g − g?f‖22,µ (122)

≤ 8V 2
max (E[X(g, f, g?f )] + 2εF ). (*)

Step (*) holds because343

‖g − g?f‖22,µ
≤ 2

(
‖g − Tζf‖22,µ + ‖Tζf − g?f‖22,µ

)
((a+ b)2 ≤ 2a2 + 2b2)

≤ 2
(
‖g − Tζf‖22,µ − ‖Tζf − g?f‖22,µ + 2‖Tζf − g?f‖22,µ

)
= 2

[
(Lµ(g; f)− Lµ(Tζf ; f))− (Lµ(g?f ; f)− Lµ(Tζf ; f)) + 2‖Tζf − g?f‖22,µ

]
= 2

[
(Lµ(g; f)− Lµ(g?f ; f) + 2‖Tζf − g?f‖22,µ

]
= 2

(
E[X(g, f, g?f )] + 2‖Tζf − g?f‖22,µ

)
≤ 2(E

[
X(g, f, g?f )

]
+ 2εF )

Next, we apply (one-sided) Bernstein’s inequality and union bound over all f ∈ F and g ∈ F . With344

probability at least 1− δ, we have345

E[X(g, f, g?f )]− 1

n

n∑
i=1

Xi(g, f, g
?
f ) ≤

√
2V[X(g, f, g?f )] ln |F|

2

δ

n
+

4V 2
max ln |F|

2

δ

3n

=

√√√√32V 2
max

(
E[X(g, f, g?f )] + 2εF

)
ln |F|δ

n
+

8V 2
max ln |F|δ

3n

Since Tζ,Df minimizes LD( · ; f), it also minimizes 1
n

∑n
i=1Xi(·, f, g?f ). This is because the two

objectives only differ by a constant LD(g?f ; f). Hence,

1

n

n∑
i=1

Xi(Tζ,Df, f, g?f ) ≤ 1

n

n∑
i=1

Xi(g
?
f , f, g

?
f ) = 0.

Then,346

E[X(Tζ,Df, f, g?f )] ≤

√√√√32V 2
max

(
E[X(Tζ,Df, f, g?f )] + 2εF

)
ln |F|δ

n
+

8V 2
max ln |F|δ

3n
.
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Solving for the quadratic formula,347

E[X(Tζ,Df, f, g?f )] ≤

√√√√48

(
8V 2

max ln |F|δ
3n

)2

+
64V 2

max ln |F|δ
n

εF +
56V 2

max ln |F|δ
3n

≤
(56 + 32

√
3)V 2

max ln |F|δ
3n

+

√
64V 2

max ln |F|δ
n

εF

(
√
a+ b ≤

√
a+
√
b and ln |F|δ > 0)

≤
112V 2

max ln |F|δ
3n

+

√
64V 2

max ln |F|δ
n

εF

≤
112V 2

max ln |F|δ
3n

+
32V 2

max ln |F|δ
n

+ εF

≤
208V 2

max ln |F|δ
3n

+ εF

Noticing that E[X(Tζ,Df ; f, g?f )] = Lµ(Tζ,Df ; f)− Lµ(g?f ; f), we complete the proof.348

Now we could prove the main theorem about fitted Q iteration.349

Theorem 5. Given a MDP M =< S,A, R, P, γ, p >, a dataset D = {(s, a, r, s′)} with n samples350

that is draw i.i.d. from µ × R × P , and a finite Q-function classes F satisfying Assumption 5,351

πt = Ξ(π̂t) from Algorithm 2 satisfies that with probability at least 1− 2δ, vπ̃ − vπt ≤352

2C

(1− γ)2


√

208V 2
max ln |F|δ
3n

+ 2
√
εF + Vmaxεµ +

∥∥∥Qπ̃ − TζQπ̃∥∥∥
1,µ

+
2γtVmax

1− γ

for any policy π̃ ∈ Πall
SC .353

Proof. Firstly, we can let f = ft and f ′ = ft−1 in Lemma 15. This gives us that∥∥∥ft −Qπ̃∥∥∥
1,ν
≤ C

(
‖ft − Tζft−1‖2,µ +

∥∥∥Qπ̃ − TζQπ̃∥∥∥
1,µ

+ 2Vmaxεµ

)
+γ‖ft−1−Qπ̃‖1,P (ν)×π

fk−1,Q
π̃

Note that we can apply the same analysis on P (ν)× πfk−1,Q? and expand the inequality t times. It354

then suffices to upper bound ‖ft − Tζft−1‖2,µ.355

‖ft − Tζft−1‖22,µ
= Lµ(ft; ft−1)− Lµ(Tζft−1; ft−1) (Definition of Lµ)
= [Lµ(ft; ft−1)− Lµ(g?ft−1

; ft−1)] + [Lµ(g?ft−1
; ft−1)− Lµ(Tζft−1; ft−1)]

≤ ε4 + ‖g?ft−1
− Tζft−1‖22,µ (Lemma 16 and definition of Lµ)

≤ ε4 + εF . (Definition of g?Qk−1
and Assumption 5)

The inequality holds with probability at least 1 − δ and ε4 =
208V 2

max ln
|F|
δ

3n + εF . Noticing that ε4
and εF do not depend on t, and the inequality holds simultaneously for different t, we have that

‖ft −Qπ̃‖1,ν ≤
1− γt

1− γ
C

(√
(ε4 + εF ) + Vmaxεµ +

∥∥∥Qπ̃ − TζQπ̃∥∥∥
1,µ

)
+ γtVmax.
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Applying this to Lemma 13, we have that356

vπ̃ − vπt

≤ 2

1− γ

(
1− γt

1− γ
C

(√
(ε4 + εF ) + Vmaxεµ +

∥∥∥Qπ̃ − TζQπ̃∥∥∥
1,µ

)
+ γtVmax

)
≤ 2C

(1− γ)2

(√
ε4 + εF + Vmaxεµ +

∥∥∥Qπ̃ − TζQπ̃∥∥∥
1,µ

)
+

2γtVmax

1− γ

≤ 2C

(1− γ)2


√

208V 2
max ln |F|δ
3n

+ 2
√
εF + Vmaxεµ +

∥∥∥Qπ̃ − TζQπ̃∥∥∥
1,µ

+
2γtVmax

1− γ
.

357

Now we are going to use the fact that there is an no-value-loss projection from the ζ-constrained358

policy set to the strong ζ-constrained policy set to prove an error bound w.r.t any π̃ ∈ Πall
C .359

Theorem 2. Given a MDP M =< S,A, R, P, γ, p >, a dataset D = {(s, a, r, s′)} with n samples360

that is draw i.i.d. from µ × R × P , and a finite Q-function classes F satisfying Assumption 5, π̂t361

from Algorithm 2 satisfies that with probability at least 1− 2δ, vπ̃ − vπ̂t ≤362

2C

(1− γ)2


√

208V 2
max ln |F|δ
3n

+ 2
√
εF + Vmaxεµ +

∥∥∥Qπ̃ − TζQπ̃∥∥∥
2,µ

+
(2γt + εζ)Vmax

1− γ

for any policy π̃ ∈ Πall
C .363

Proof. The difference between this theorem and Theorem 5 is that π̃ is in Πall
C which is significantly364

larger than Πall
SC .365

This prove mimics the proof of Theorem 1. For any policy π̃ ∈ Πall
C , Lemma 3 tells that vπ̃M ≤366

v
Ξ(π̃)
M ′ +

Vmaxεζ
1−γ . Since πt = Ξ(π̂t), vπ̂tM = vπ̂tM ′ ≥ v

πt
M . Then vπ̃M − v

π̂t
M ≤ v

Ξ(π̃)
M ′ − v

πt
M ′ +

Vmaxεζ
1−γ and367

Theorem 5 completes the proof.368

Remark: The first term in the theorem comes from that the best policy in the ζ-constrained policy369

set is not optimal. Note that the ζ-constrained policy set does not requires any realizability to do370

with our function approximation but merely about the density ratio of a policy. When there is an371

optimal policy of M such in Πall
C , we have the same type of bound as standard approximate value372

iteration analysis.373

Corollary 4. If there exists an π? onM such that Pr(µ(s, a) ≤ 2b|π?) ≤ ε. then under the condition374

as Theorem 4, π̂t from Algorithm 2 satisfies that with probability at least 1− 2δ, vπ
?

M − v
πt
M ≤375

2C

(1− γ)2


√

208V 2
max ln |F|δ
3n

+ 2
√
εF + Vmaxεµ +

∥∥∥Qπ? − TζQπ?∥∥∥
2,µ

+
Vmax(2γt + ε+ CUεµ)

1− γ

Proof. The proof of π? ∈ Πall
C is same as the proof in Corollary 1. Then proof is finished by376

applying Theorem 4.377

E Details of CartPole Experiment378

E.1 Full results of Discretized CartPole-v0379

In section 6.1, we compare AVI, BCQL[2], SPIBB[4], Behavior cloning and our algorithm PQI, in380

CartPole-v0 with discretized state space. The data is generated by a ε-greedy policy (ε from 0.1 to381

0.9) and we report the resulting policies from different algorithm with the best hyper-parameter in382

each ε. In this section we show the learning curve for each ε and each hyper-parameter value. We383

run the BCQ algorithm with the threshold of µ̂(a|s) in {0, 0.05, 0.1, 0.2}, and we run the SPIBB384
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Figure 1: CartPole-v0 with discretized state space. The learning curve of all algorithms with differ-
ent hyper-parameters, data generated with different ε-greedy behavior policy. The hyper-parameter
of SPIBB [4] and PQI is the threshold of µ̂(s, a) and the hyper-parameter of BCQL [2] is the thresh-
old of µ̂(a|s).

algorithm with the threshold of µ̂(s, a) in {0.01, 0.005, 0.001, 0.0005, 0.0001} and PQI with the385

threshold of µ̂(s, a) in a smaller set {0.005, 0.001, 0.0005}. Figure 1 shows for most of the ε and386

threshold our algorithm tie with the best baseline (SPIBB), and the best threshold of our algorithm387

outperform all baseline algorithms in 8 out of 9 cases.388

In Figure 1, we observe the trend that smaller ε will prefer a smaller b. This is verified by more389

results in the next section, and we discuss the reasons for this phenomenon there.390

E.2 Ablation study of threshold b391

A key aspect of our algorithm is to filter the state space by a threshold on the estimated probability392

µ̂(s, a). This prevents the algorithm from updating using low-confidence state, action pairs when393

bootstrapping values. Then the choice of threshold b is a key trade-off in our algorithm: if b is too394

small it can not remove the low-confident state, action pairs effectively; if b is too large it might395

remove too many state, action pairs and prevent learning from more data. In order to demonstrate396

the effect of b and how should we choose b in different settings, we show the performance of PQI in397

a larger range of b and several ε values.398

In figure 2 we show the trend that smaller b works better for larger ε and larger b works better for399

smaller ε in general. This can be explained in the following way: with a larger ε the data distribution400

is more exploratory and hence the probabilities on individual state, action pairs are smaller. So a the401

same threshold that performs well with low exploration now censors a much larger part of the state,402

action space, necessitating a smaller threshold as ε is increased. In general, we find that having the403

largest threshold which still retains a significant fraction of the state, action space is a good heuristic404

for setting the b parameter.405
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Figure 2: Performance of PQI with different values of threshold b

F Details of D4RL Experiment406

In this section we introduce some missing details about the PQL algorithm and the experimental407

details in D4RL tasks. Our code is available at https://github.com/yaoliucs/PQL.408

PQL algorithm is implemented based on the architecture of Batch-Constrained deep Q-learning409

(BCQ) [2] algorithm. More specifically, we use the similar Clipped Double Q-Learning (CDQ) up-410

date rule for the Q learning part, and employ a similar variational auto-encoder to fit the conditional411

action distribution in the batch. We use an additional variational auto-encoder to fit the marginalized412

state distribution of the batch. To implement an actualQ learning algorithm instead of an actor-critic413

algorithm, we did not sample from the actor in the Bellman backup but sample a larger batch from414

the fitted conditional action distribution. Algorithm 4 shows the pseudo-code of PQL to provide415

more details. We highlight the difference with the BCQ algorithm in red.416

Algorithm 4 Pessimistic Q-learning (PQL)

Input: Batch D, ELBO threshold b, maximum perturbation Φ, target update rate τ , mini-batch
size N , max number of iteration T . Number of actions k.
Initialize two Q network Qθ1 and Qθ2 , policy (perturbation) model: ξφ. (ξφ ∈ [−Φ,Φ]), action
VAE Gaω1

and state VAE Gsω2
.

Pretrain Gsω2
: ω2 ← arg minω2

ELBO(B;Gsω2
).

for t = 1 to T do
Sample a minibatch B with N samples from D.
ω1 ← arg minω2

ELBO(B;Gaω1
).

Sample k actions a′i from Gaω1
(s′) for each s′.

Compute the target y for each (s, a, r, s′) pair:

y = r + γ1(ELBO(s′;Gsω2
) ≥ b)

[
max
a′i

(
0.75 ∗ min

j=1,2
Qθ′j + 0.25 ∗ max

j=1,2
Qθ′j

)]
θ ← arg minθ

∑
(y −Qθ(s, a))2

Sample k actions ai from Gaω1
(s) for each s.

φ← arg maxφ
∑

maxai Qθ1(s, ai + ξφ(s, ai))
Update target network: θ′ = (1− τ)θ′ + τθ, φ′ = (1− τ)φ′ + τφ

end for
When evaluate the resulting policy: select action a = arg maxai Qθ1(s, ai + ξφ(s, ai)) where
ai are k actions sampled from Gaω1

(s) given s.

In practice, the indicator function 1(ELBO(s′;Gsω2
) ≥ b) is implemented by417

sigmoid(100(ELBO(s′;Gsω2
) − b)) to provide a slightly more smooth target. The evidence418

lower bound (ELBO) in VAE is:419

ELBO(s;Gsω2
) =

∑
(s− s̃)2 +DKL(N(µ, σ)||N(0, 1)) (123)

where µ and σ is sampled from the encoder of VAE with input s and s̃ is sampled from the de-420

coder with the hidden state generated from N(µ, σ). ELBO(B;Gsω2
) is the averaged ELBO on the421

minibatch B. So does Gaω1
. Note that this ELBO objective make the implicit assumption that the422

decoder’s distribution is a Gaussian distribution with mean equals to the output of decoder network.423
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So when we generate the sample a′ for computing y, we add a Gaussian noise to recover a sample424

from the full posterior distribution.425

For most of the hyper-parameters in Algorithm 4, we use the same value with the BCQ algorithm.426

We run all algorithms with T = 5× 105 gradient steps as other reported results in D4RL tasks, and427

the minibatch size N = 100 at each step. The number of sampled action when running the policy is428

k = 100. Target network update rate is 0.005. The threshold b of ELBO is selected as 2-percentile429

of the ELBO(s) in the whole dataset after pretrain the VAE.430
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