
In Appendix A we introduce some basic definitions that are needed for our theoretical results. In1

Appendix B, we provide sufficient conditions for Assumption 1 that were mentioned in the main2

text. In Appendix C and Appendix D we prove the error bounds for PPI and PQI. In Appendix E3

and Appendix F we present more details of our experimental results.4

A Definition of auxiliary MDP and policy projection5

First we introduce the definition of an auxiliary MDP M ′ based on M: each state in M has an6

absorbing action which leads to a self-looping absorbing state. All the other dynamics are preserved.7

Rewards are 0 for the absorbing action and unchanged elsewhere. More formally: The auxiliary8

MDP M ′ given M =< S,A, R, P, γ, ρ > is defined as M ′ =< S ′,A′, R′, P ′, γ, ρ >, where9

S ′ = S
⋃
{sabs}, A′ = A

⋃
{aabs}. R′ and P ′ are the same as R and P for all (s, a) ∈ S × A.10

R′(s, a) if s = sabs or a = aabs is a point mass on 0, and P ′(s, a) if s = sabs or a = aabs is a point11

mass on sabs. A data set D generated from distribution µ on M is also from the distribution µ on12

M ′, since all distributions on S ×A are the same between the two MDPs. This MDP is used only to13

perform our analysis about the error bounds on the algorithm, and is not needed at all for executing14

Algorithm 1 and 2. As some of the notations is actually a function of the MDP, we clarify the usage15

of notation w.r.t. M /M ′ in the appendix:16

1. Policy value functions V π/Qπ and Bellman operators T /T π correspond to M ′ unless they17

have additional subscripts.18

2. The definition of F , Π, Tζ , T πζ , µ̂ is independent of the change from M to M ′.19

3. µ is also a distribution over S ′ × A′. The definition of ζ will be extended to S ′ × A′ as20

follow:21

ζ(s, a) =

{
1 (µ̂(s, a) ≥ b) s ∈ S, a ∈ A
0 s = sabs or a = aabs

(That means there is only one version of µ and ζ across M and M ′, instead of like we have22

T πM ′ and T πM for M and M ′.)23

Recall the definition of semi-norm of any function of state-action pairs. For any function g : S ′ ×24

A′ → R, ν ∈ ∆(S ′×A′), and p ≥ 1, define the shorthand ‖g‖p,ν := (E(s,a)∼ν [|g(s, a)|p])1/p. With25

some abuse of notation, later we also use this norm for ν ∈ ∆(S × A) (specifically, µ) by viewing26

the probability of ν on additional (s, a) pairs as zero. Given a policy π, let ηπh(s) be the marginal27

distribution of sh under π, that is, ηπh(s) := Pr[sh = s|s0 ∼ p, π], ηπh(s, a) = ηπh(s)π(a|s),28

and ηπ(s, a) = (1 − γ)
∑∞
h=0 γ

hηπh(s, a). We also use P (s, a) and P (ν) to denote the next state29

distribution given a state action pair or given the current state action distribution.30

The norm ‖ · ‖p,ν are defined over S ′×A′. Though for the input space of function f ∈ F is S ×A,31

the norm can still be well-defined. All of the norm would not need the value of f(s, a) on s = sabs32

or a = aabs, because the distribution does not cover those (s, a), or the f inside of the norm is33

multiplied by other function that is zero for those (s, a).34

We first formally state an obvious result about policy value in M and M ′.35

Lemma 1. For any policy π that only have non-zero probability for a ∈ A, vπM ′ = vπM .36

Proof. By the definition of M ′, P and R are the same with M over S ×A.

vπM = EM

[
h∑
t=0

γtrt|s0 ∼ p, π

]
= EM ′

[
h∑
t=0

γtrt|s0 ∼ p, π

]
= vπM ′

37

For the readability we repeat the Definition 1 here38

Definition 1 (ζ-constrained policy set ). Let Πall
C be the set of policies S → ∆(A) such that39

Pr(ζ(s, a) = 0|π) ≤ εζ . That is40

(1− γ)

∞∑
h=0

γhEs,a∼ηπh [1 (ζ(s, a) = 0)] ≤ εζ (4)
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Now we introduce another constrained policy set. Different from ζ-constrained policy set which41

we introduced in Definition 1, this policy set is on M ′ instead of M and the policy is forced to take42

action aabs when ζ(s, a) = 0 for all a. The reason we introduce this is to help us formally analyze the43

(lower bound of) performance of the resulting policy. We essentially treat any action taken outside44

of the support to be aabs. Later we will define a projection to achieve that and show results about45

how the policy value changes after projection.46

Definition 2 (strong ζ-constrained policy set). Let Πall
SC be the set of all policies S ′ → ∆(A′) such47

that for ∀(s, a) π(a|s) > 0 then 1) ζ(s, a) > 0, or 2) a = aabs.48

Notice that for ζ-constrained policy set we have no requirement for π if for any action ζ(s, a) is zero.49

For strong ζ-constrained policy set we enforce π to take action aabs. The second difference is ζ-50

constrained policy set requires the condition holds for s, a that is reachable, which means ηπh(s) > 051

and π(a|s) > 0. Here we require the same condition holds for any s, a such that π(a|s) > 0. In52

general, this is a stronger definition. However, we can show that for any policy in ζ-constrained53

policy set , it can be mapped to a policy in strong ζ-constrained policy set , with changing value54

bounds. Since we only need to change the behavior of policy in the state actions such that the state55

actions that ζ = 0, the value of policy will not be much different.56

Now we define a projection that maps any policy to Πall
SC .57

Definition 3 (ζ-constrained policy projection). (Ξπ)(a|s) equals ζ(s, a)π(a|s) if a ∈ A, and equals58 ∑
a′∈A′ π(a′|s)(1− ζ(s, a′)) if a = aabs59

Next we show that the projection of policy will has an equal or smaller value than the original policy.60

Lemma 2. For any policy π : S ′ → ∆(A′), vπM ′ ≥ v
Ξ(π)
M ′ , and vπM ′ = v

Ξ(π)
M ′ if for any (s, a)61

reachable by π, ζ(s, a) = 1.62

Proof. We drop the subscription of M ′ in this proof for ease of notation. For any given s,63 ∑
a∈A′

π(a|s)QΞ(π)(s, a) =
∑
a∈A

π(a|s)QΞ(π)(s, a) (Qπ(s, aabs = 0))

≥
∑
a∈A

ζ(a|s)π(a|s)QΞ(π)(s, a) (5)

= Ξ(π)(aabs|s)QΞ(π)(s, aabs) +
∑
a∈A

Ξ(π)(a|s)QΞ(π)(s, a) (Def of Ξ)

=
∑
a∈A′

Ξ(π)(a|s)QΞ(π)(s, a) (6)

= V Ξ(π)(s) (7)

The inequality is an equality if for any a s.t. π(a|s) > 0, ζ(s, a) = 1. By the performance difference64

lemma [3, Lemma 6.1]:65

vΞ(π) − vπ =

∞∑
h=0

γhEs∼ηπh

[
V Ξ(π)(s)−

∑
a∈A′

π(a|s)QΞ(π)(s, a)

]
≤ 0 (8)

The inequality is an equality if for any (s, a) s.t. ηπh(s)π(a|s) > 0 for some h, ζ(s, a) = 1.66

In another word for any state-action reachable by π (ηπh(s) > 0 and π(a|s) > 0 for some h),67

ζ(s, a) = 1.68

The following results shows for any policy π in the ζ-constrained policy set the projection will not69

change the policy value much.70

Lemma 3. For any policy π ∈ Πall
C , vπM ≤ v

Ξ(π)
M ′ +

εζVmax

1−γ71

Proof. Since π only takes action in A, by Lemma 1, we have that vπM = vπM ′ . Since π ∈ Πall
C , we72

have that Pr (ζ(s, a) = 0|π) ≤ εζ , which means that:73

(1− γ)

∞∑
h=0

γhEs∼ηπh [1 (ζ(s, a) = 0)] ≤ εζ (9)
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Thus:74

vΞ(π) − vπ =

∞∑
h=0

γhEs∼ηπh

[
V Ξ(π)(s)−

∑
a∈A′

π(a|s)QΞ(π)(s, a)

]
(10)

=

∞∑
h=0

γhEs∼ηπh

[
V Ξ(π)(s)−

∑
a∈A′

π(a|s)ζ(s, a)QΞ(π)(s, a)

]
(11)

−
∞∑
h=0

γhEs,a∼ηπh
[
1 (ζ(s, a) = 0)QΞ(π)(s, a)

]
(12)

≥
∞∑
h=0

γhEs∼ηπh

[
V Ξ(π)(s)−

∑
a∈A′

π(a|s)ζ(s, a)QΞ(π)(s, a)

]
(13)

− Vmax

∞∑
h=0

γhEs,a∼ηπh [1 (ζ(s, a) = 0)] (14)

≥
∞∑
h=0

γhEs∼ηπh

[
V Ξ(π)(s)−

∑
a∈A′

π(a|s)ζ(s, a)QΞ(π)(s, a)

]
− Vmaxεζ

1− γ
(15)

=− Vmaxεζ
1− γ

(16)

The last step follows from the first part in the proof of Lemma 2, vπM ′ − v
Ξ(π)
M ′ ≤

Vmaxεζ
1−γ .75

B Justification of Assumption 176

In this section we prove a claim stated in Section 5 about the upper bound on density functions. We77

are going to prove Assumption 1 holds under when the transition density is bounded.78

Lemma 4. Let p(·|s, a) be the probability density function of transition distribution: ρ(s0) ≤
√
U <79

∞, p(st+1|st, at) ≤
√
U < ∞ and ∀π(at|st, h) ≤

√
U < ∞, for all s0, st, st+1 ∈ S and a ∈ A.80

Then in M ′ for any non-stationary policy π : S ′ × N → ∆(A′) and h ≥ 0, ηπh(s, a) ≤ U for any81

s ∈ S and a ∈ A.82

Proof. We first prove that ηπh(s) ≤
√
U for any non-stationary policy π. For h = 0, ηπh(s) = ρ(s) ≤83 √

U . For h ≥ 1 and s ∈ S:84

ηπh(s) =

∫
s−1∈S′

∑
a∈A′

ηπh−1(s−1)π(a−1|s−1, h− 1)p(s|s−1, a−1)ds−1 (17)

=

∫
s−1∈S

∑
a∈A

ηπh−1(s−1)π(a−1|s−1, h− 1)p(s|s−1, a−1)ds−1 (18)

≤ Eηπh−1×π(h−1) [p(s|s−1, a−1)] (19)

≤
√
U (20)

The first step follows from the inductive definition of ηπh(s). The second step follows from that sabs is85

absorbing state and aabs only leads to absorbing state. The third step follows from transition density86

p(s|s−1, a−1) is non-negative. The last step follows from that the transition density p(s|s−1, a−1)87

is the same between M and M ′ for s, s−1 ∈ S, a−1 ∈ A, and p(s|s−1, a−1) in M is upper bounded88

by U . Finally, the joint density function over s and a ηπh(s, a) = ηπh(s)π(a|s, h) is bounded by U ,89

and we finished the proof.90

For the convenience of notation later we use admissible distribution to refer to state-action distribu-91

tions introduced by non-stationary policy π in M ′. This definition is from [1]:92

Definition 4 (Admissible distributions). We say a distribution or its density function ν ∈ ∆(S ′×A′)93

is admissible in MDP M ′, if there exists h ≥ 0, and a (non-stationary) policy π : S ′×N→ ∆(A′),94

such that ν(s, a) = ηπh(s, a).95
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C Proofs for Policy Iteration Guarantees96

In this section we are going to prove the result of Theorem 1 using the de�nition of the strong� -97

constrained policy set . At a high level, the proof is done in two steps. First we prove similar result98

to Theorem 1 for any policy in the strong� -constrained policy set : an upper bound ofv�
M 0 � v� t

M 099

where� can be any policy in the strong� -constrained policy set and� t is the output of the algorithm100

(Theorem 2, formally stated in Appendix C.4). Then we are going to show that for any policy�101

in the � -constrained policy set after a projection� it is in the strong� -constrained policy set and102

v�
M � v�( � )

M 0 + Vmax � �

1� 
 . Then we can provide the upper bound forv�
M � v� t

M for any� in � -constrained103

policy set .104

The proof of Theorem 2 (the� all
SC version of Theorem 1, formally stated in Appendix C.4) goes as105

follow. First, we show the �xed point ofT �
� is Q�( � ) for any policy� , indicating the inner loop of106

policy evaluation step is actually evaluating� t = �( b� t ). We prove this result formally in Lemma 6.107

To bound the gap between� t and any policye� in the� -constrained policy set , we use the contraction108

property ofT �
� to recursively decompose it into a discounted summation over policy improvement109

gapQ� t +1 � Q� t . e� in the � -constrained policy set is needed because the operatorT �
� constrains110

the backup on the support set of� .111

Next, we bound the policy improvement gap in Lemma 12:

Q� t +1 � Q� t � �O (k� (Q� t � f t;K )k1;� )

for some admissible distribution� related to� t +1 . The fact that we only need to measure the error112

on the support set of� is important. It follows from the fact that both� t +1 and� t only takes action113

on the support set of� exceptaabs which gives us a constant value. This allows us to change the114

measure from arbitrary distribution� to data distribution� , without needing concentratability.115

The rest of proof is to upper boundk� (Q� t � f t;K )k1;� using contraction and concentration inequali-116

ties. First,k� (Q� t � f t;K )k1;� is upper bounded byCkf t;K �T �
� f t;K k2;� =(1� 
 ) in Lemma 9, using117

a standard contraction analysis technique. Notice that here we can change the measure to� with118

costC to allow us to apply concentration inequality. Then Lemma 8 boundskf t;K � T �
� f t;K k2;�119

by a function of sample sizen and completeness error� F using Bernstein's inequality.120

While writing the proof, we will �rst introduce the �xed point ofT �
� is Q�( � ) in section C.1. We121

prove the upper bound of the policy evaluation errork� (Q� t � f t;K )k1;� , in section C.2, and the122

policy improvement step in section C.3. After we proved the main theorem, we will prove when we123

can bound the value gap with the optimal value in Corollary 1, as we showed in the main text.124

C.1 Fixed point property125

In Algorithm 1, the output policy isb� t +1 . However, we will show that is actually equivalent with126

the following algorithm,

Algorithm 3 Pessimistic Policy Iteration (PPI, repeat Algorithm 1)

Input: D , F , � , b� , b
Output: b� T
Initialize � 0 2 � .
for t = 0 to T � 1 do

Initialize f t; 0 2 F
for k = 0 to K do

// Policy Evaluation
f t;k +1  arg minf 2F L D (f; f t;k ; � t )

end for
// Policy Improvement
b� t +1  arg max� 2 � ED [E� [� (s; a)f t;K (s; a)]]
� t +1  �( b� t +1 )

end for

127
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The output policy is stillb� t +1 , and we know thatvb� t +1 � v� t +1 . So if we can lower boundv� t +1128

we immediately have the lower bound onvb� t +1 . The only difference in algorithm is we change the129

policy evaluation operator fromT b� t
� to T � t

� , where� t is the projection ofb� t . The following result130

shows these two operators are actually the same. For the ease of notation, we refer to Algorithm 3131

in our analysis.132

Lemma 5. For any policy� : S0 ! �( A 0), T �
� = T �( � )

� .133

Proof. We only need to prove for anyf , T �
� f = T �( � )

� f . For anya 2 A ,134

(T �
� f )(s; a) = r (s; a) + 
 E

"
X

a02A

� (a0js0)� (s0; a0)f (s0; a0)

#

(21)

= r (s; a) + 
 E

"
X

a02A

� (a0js0)� 2(s0; a0)f (s0; a0)

#

(22)

= r (s; a) + 
 Es0

"
X

a02A

�( � t )(a0js0)� (s0; a0)Q� (s0; a0)

#

(23)

= ( T �( � )
� f )(s; a) (24)

Fora = aabs, (T �
� f )(s; a) = 0 = ( T �( � )

� f )(s; a).135

The next result is a key insight aboutT �
� 's behavior inM 0 that guide our analysis.136

Lemma 6. For any policy� : S0 ! �( A 0), the �xed point solution ofT �
� is equal toQ�( � ) on137

S � A .138

Proof. By de�nition Q�( � ) is the �xed point of the standard Bellman evaluation operator onM 0:139

T �( � )
M 0 . So for any(s; a) 2 S � A :140

Q�( � ) (s; a) (25)

= ( T �( � )
M 0 Q�( � ) )(s; a) (26)

= r (s; a) + 
 Es0

"
X

a02A 0

�( � )(a0js0)Q�( � ) (s0; a0)

#

(27)

= r (s; a) + 
 Es0

"

�( � )(aabsjs0)Q�( � ) (s0; aabs) +
X

a02A

�( � )(a0js0)Q�( � ) (s0; a0)

#

(28)

= r (s; a) + 
 Es0

"
X

a02A

�( � )(a0js0)Q�( � ) (s0; a0)

#

(29)

= r (s; a) + 
 Es0

"
X

a02A

� (a0js0)� (s0; a0)Q�( � ) (s0; a0)

#

(30)

= ( T �
� Q�( � ) )(s; a) (31)

So we proved thatQ�( � ) is also the �xed-point solution ofT �
� constrained onS � A .141

An obvious consequences of these two lemmas is that the �xed point solution ofT � t
� = T b� t

� equals142

Q� t onS � A .143
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C.2 Proofs for policy evaluation step144

We start with an useful result of the expected loss of the solution from empirical loss minimization,145

by applying a concentration inequality.146

Lemma 7. Given� 2 �(�) and Assumption 3, letg?
f = arg min g2F kg � T �

� f k2;� , thenkg?
f �147

T �
� f k2

2;� � � F . The datasetD is generated i.i.d. fromM as follows: (s; a) � � , r = R(s; a),148

s0 � P(s; a). De�ne L � (f ; f 0; � ) = ED [L D (f ; f 0; � )]. We have that8f 2 F , with probability at149

least1 � � ,150

L � (T�;D f ; f; � ) � L � (g?
f ; f; � ) �

112V 2
max ln jF jj � j

�

3n
+

s
64V 2

max ln jF jj � j
�

n
� F

whereT �
�;D f = arg min g2F L D (g; f; � ).151

Proof. This proof is similar with the proof of Lemma 16 in [1], and we adapt it to the� -constrained152

Bellman evaluation operatorT �
� . First, there is no difference inL D andL � betweenM andM 0,153

and the right hand side is also the same constant forM andM 0. The distribution ofD in M andM 0
154

are the same, since� does not coversabs andaabs. So we are going to prove the inequality forM ,155

and thus this bound holds forM 0 too.156

For the simplicity of notations, letV �
f (s) =

P
a2A � (ajs)� (s; a)f (s; a). Fix any f; g 2 F , and157

de�ne158

X (g; f; g?
f ) :=

�
g(s; a) � r � 
V �

f (s0)
� 2

�
�
g?

f (s; a) � r � 
V �
f (s0)

� 2
: (32)

Plugging each (s; a; r; s0) 2 D into X (g; f; g?
f ), we get i.i.d. variables159

X 1(g; f; g?
f ); X 2(g; f; g?

f ); : : : ; X n (g; f; g?
f ). It is easy to see that160

1
n

nX

i =1

X i (g; f; g?
f ) = L D (g; f; � ) � L D (g?

f ; f; � ): (33)

By the de�nition of L � , it is also easy to show that161

L � (g; f; � ) =



 g � T �

� f



 2

2;�
+ Es;a � �

"

Vr;s 0

 

r + 

X

a02A

� (a0js0)� (s0; a0)f (s0; a0)

!#

; (34)

whereVr;s 0 is the variance over conditional distribution ofr ands0 given (s; a). Notice that the162

second part does not depends ong. Then163

L � (g; f; � ) � L � (T �
� f ; f; � ) = kg � T �

� f k2
2;� (35)

Then we bound the variance ofX :164

V[X (g; f; g?
f )] � E[X (g; f; g?

f )2]

= E�

� � �
g(s; a) � r � 
V f (s0)

� 2
�

�
g?

f (s; a) � r � 
V f (s0)
� 2

� 2
�

(De�nition of X )

= E�

h�
g(s; a) � g?

f (s; a)
� 2�

g(s; a) + g?
f (s; a) � 2r � 2
V f (s0)

� 2
i

� 4V 2
max E�

h�
g(s; a) � g?

f (s; a)
� 2

i

= 4V 2
max kg � g?

f k2
2;�

� 8V 2
max (E[X (g; f; g?

f )] + 2 � F ): (36)
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The last step holds because165

kg � g?
f k2

2;�

� 2
�
kg � T �

� f k2
2;� + kT �

� f � g?
f k2

2;�

�
((a + b)2 � 2a2 + 2b2)

= 2
�
kg � T �

� f k2
2;� � kT �

� f � g?
f k2

2;� + 2kT �
� f � g?

f k2
2;�

�

= 2
�
(L � (g; f; � ) � L � (T �

� f ; f; � )) � (L � (g?
f ; f; � ) � L � (T �

� f ; f; � )) + 2 kT �
� f � g?

f k2
2;�

�

(Equation (35))

= 2
�
(L � (g; f; � ) � L � (g?

f ; f; � ) + 2 kT �
� f � g?

f k2
2;�

�

= 2
�
E[X (g; f; g?

f )] + 2 kT �
� f � g?

f k2
2;�

�

� 2(E
�
X (g; f; g?

f )
�

+ 2 � F )

Next, we apply (one-sided) Bernstein's inequality and union bound over allf 2 F , g 2 F , and166

� 2 �(�) . With probability at least1 � � , we have167

E[X (g; f; g?
f )] �

1
n

nX

i =1

X i (f; f; g ?
f ) �

s
2V[X (g; f; g?

f )] ln jF j 2 j � j
�

n
+

4V 2
max ln jF j 2 j � j

�

3n

=

vu
u
t 32V 2

max

�
E[X (g; f; g?

f )] + 2 � F

�
ln jF jj � j

�

n
+

8V 2
max ln jF jj � j

�

3n
:

(37)

SinceT �
�;D f minimizesL D ( � ; f; � ), it also minimizes1

n

P n
i =1 X i (�; f; g ?

f ). This is because the two
objectives only differ by a constantL D (g?

f ; f; � ). Hence,

1
n

nX

i =1

X i (T �
�;D f; f; g ?

f ) �
1
n

nX

i =1

X i (g?
f ; f; g ?

f ) = 0 :

Then,168

E[X (T �
�;D f; f; g ?

f )] � 0 +

vu
u
t 32V 2

max

�
E[X (T �

�;D ; f; g ?
f )] + 2 � F

�
ln jF jj � j

�

n
+

8V 2
max ln jF jj � j

�

3n
:

Solving for the quadratic formula,169

E[X (T �
�;D f; f; g ?

f )] �

vu
u
t 48

 
8V 2

max ln jF jj � j
�

3n

! 2

+
64V 2

max ln jF jj � j
�

n
� F +

56V 2
max ln jF jj � j

�

3n

�
(56 + 32

p
3)V 2

max ln jF jj � j
�

3n
+

s
64V 2

max ln jF jj � j
�

n
� F

(
p

a + b �
p

a +
p

bandln jF j
� > 0)

�
112V 2

max ln jF jj � j
�

3n
+

s
64V 2

max ln jF jj � j
�

n
� F

Noticing thatE[X (T�;D f; f; g ?
f )] = L � (T�;D f ; f; � ) � L � (g?

f ; f; � ), we complete the proof.170

Lemma 8 (Policy Evaluation Accuracy). For anyt; k � 1 and� t , f t;k andf t;k � 1 from Algorithm171

1,172






 f t;k � T � t

� f t;k � 1








2

2;�
� � 1

where� 1 = 208V 2
max ln jF jj � j

�
3n + 2 � F .173
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Proof.





 f t;k � T � t

� f t;k � 1








2

2;�

= L � (f t;k ; f t;k � 1; � t ) � L � (T � t
� f t;k � 1; f t;k � 1; � t )

=
�

L � (f t;k ; f t;k � 1; � t ) � L � (g?
f t;k � 1

; f t;k � 1; � t )
�

�
�

L � (T � t
� f t;k � 1; f t;k � 1; � t ) � L � (g?

f t;k � 1
; f t;k � 1; � t )

�

�
112V 2

max ln jF jj � j
�

3n
+

s
64V 2

max ln jF jj � j
�

n
� F +






 g?

f t;k � 1
� T � t

� f t;k � 1








2;�

(Equation (35) and Lemma 7)

�
112V 2

max ln jF jj � j
�

3n
+

s
64V 2

max ln jF jj � j
�

n
� F + � F (De�nition of g?

f t;k � 1
and Assumption 3)

�
112V 2

max ln jF jj � j
�

3n
+

32V 2
max ln jF jj � j

�

n
+ � F + � F = � 1 (

p
2ab � a + b)

174

From this lemma to the proof of main theorem, we are going to condition on the fact that the event175

in Assumption 2 holds. In the proof of the main theorem we will impose the union bound on all176

failures.177

Lemma 9. For any admissible distribution� onS0 � A 0, and any� t from Algorithm 1.178

k� (s; a) ( f t;K (s; a) � Q� t (s; a))k1;� �
C (

p
� 1 + Vmax � � )
1 � 


+ 
 K Vmax (38)

where� 1 is de�ned in Lemma 8.179

(Althoughf t;K is only de�ned onS � A , � is always zero for any other(s; a). Thus the all values180

used in the proof are well-de�ned. Later, when it is necessary for proof, we de�ne the value off t;K181

outside ofS � A to be zero. In the algorithm, we will never need to query the value off t;K outside182

of S � A .)183

Proof. For anyk � 1 and any distribution� onS0 � A 0:184

k� (f t;k � Q� t )k1;� (39)

�





 �

�
f t;k � T � t

� f t;k � 1

� 






1;�
+






 �

�
T � t

� f t;k � 1 � T � t
� Q� t

� 






1;�
(40)

�





 �

�
f t;k � T � t

� f t;k � 1

� 






1;�
+






 T � t

� f t;k � 1 � T � t
� Q� t








1;�
(41)

� C





 f t;k � T � t

� f t;k � 1








1;b�
+






 T � t

� f t;k � 1 � T � t
� Q� t








1;�
(42)

� C
� 





 f t;k � T � t

� f t;k � 1








1;�
+ Vmax � �

�
+






 T � t

� f t;k � 1 � T � t
� Q� t








1;�
(43)

� C
� 





 f t;k � T � t

� f t;k � 1








2;�
+ Vmax � �

�
+






 T � t

� f t;k � 1 � T � t
� Q� t








1;�
(Jensen's inequality)

� C(
p

� 1 + Vmax � � ) +





 T � t

� f t;k � 1 � T � t
� Q� t








1;�
(Lemma 8)

= C(
p

� 1 + Vmax � � ) + E�

�
�
�
�
�

 EP ( � )

X

a02A

� t (a0js0)� (s0; a0) ( f t;k � 1(s0; a0) � Q� t (s0; a0))

�
�
�
�
�

(44)

= C(
p

� 1 + Vmax � � ) + E�
�

 EP ( � ) � � t j� (s0; a0) ( f t;k � 1(s0; a0) � Q� t (s0; a0)) j

�
(45)

� C(
p

� 1 + Vmax � � ) + 
 EP ( � ) � � t j� (s0; a0) ( f t;k � 1(s0; a0) � Q� t (s0; a0)) j (46)

� C(
p

� 1 + Vmax � � ) + 
 k� (f t;k � 1 � Q� t )k1;P ( � ) � � (47)
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Equation (42) holds since for all(s; a) s.t. � (s; a) > 0, � (s; a) � U � U
b b� (s; a) = Cb� (s; a).185

Equation (43) holds since the total variation distance between� and b� is bounded by� � and the186

Bellman error is bounded in[� Vmax ; Vmax ]. Equation (44) follows from� t 2 � all
SC . So if � (s; a) =187

0, � (ajs) = 0 for all a 2 A . Equation (45) holds since� (�; aabs) = 0 . The next equation follows188

from that� = � 2.189

Note that this holds for any admissible distribution� on S0 � A 0 and andk, as well as� 1 does not190

depends onk. Repeating this fork from K to 1 we will have that191

k� (s; a) ( f t;K (s; a) � Q� t (s; a))k1;� �
1 � 
 K

1 � 

C

� p
� 1 + Vmax � �

�
+ 
 K Vmax (48)

<
C (

p
� 1 + Vmax � � )
1 � 


+ 
 K Vmax (49)

192

C.3 Proofs for policy improvement step193

Lemma 10(Concentration of Policy Improvement Loss). For anyf 2 F , with probability at least
1 � � ,








 Eb� f [� (s; a)f (s; a)] � max

a2A
� (s; a)f (s; a)










1;�
� � � + 2Vmax

r
ln( jFjj � j=� )

2n

whereb� f = arg max � 2 � ED [E� [� (s; a)f (s; a)]].194

Proof. Fixed f , de�ne X (s; � ) = max a2A � (s; a)f (s; a) � E� [� (s; a)f (s; a)]. Notice that by195

de�nition X (s; � ) is always non-negative, andb� f = arg max � 2 � ED [E� [� (s; a)f (s; a)]] =196

arg min� 2 � ED [X (s; � )]:197

Only in this proof, let� f be:

arg min
� 2 �

E� [X (s; � )] = arg min
� 2 �








 E� [� (s; a)f (s; a)] � max

a2A
� (s; a)f (s; a)










1;�
:

X (s; � ) 2 [0; Vmax ]. By Hoeffding's inequality and union bound over all� 2 � , f 2 F , with198

probability at least1 � � for anyf and� 6= � f ,199

E� [X (s; � )] � ED [X (s; � )] � Vmax

r
ln( jFjj � j=� )

2n
(50)

for � = � f200

ED [X (s; � )] � E� [X (s; � )] � Vmax

r
ln( jFjj � j=� )

2n
(51)

If b� f = � f , thenE� [X (s; b� f )] � � � . Otherwise,201

E� [X (s; b� f )] (52)

� ED [X (s; b� f )] + Vmax

r
ln( jFjj � j=� )

2n
(53)

� ED [X (s; � f )] + Vmax

r
ln( jFjj � j=� )

2n
(54)

� E� [X (s; � f )] + 2 Vmax

r
ln( jFjj � j=� )

2n
(55)

= min
� 2 �








 Eb� [� (s; a)f (s; a)] � max

a2A
� (s; a)f (s; a)










1;�
+ 2Vmax

r
ln( jFjj � j=� )

2n
(56)

= � � + 2Vmax

r
ln( jFjj � j=� )

2n
(57)

202
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For the following proof until the main theorem, we are going to condition on the fact that the high203

probability bound in the lemma above holds, and impose an union bound in the proof of main204

theorem.205

Lemma 11. For any admissible distribution� onS0, any policy� : S0 ! �( A 0),206

E�
�
E� t +1 [� (s; a)f t;K (s; a)] � E� [� (s; a)f t;K (s; a)]

�
�

� C

 

� � + Vmax � � + 2Vmax

r
ln( jFjj � j=� )

2n

!

Proof. Recall that� t +1 = �( b� t +1 ). So� t +1 (ajs) = b� t +1 (ajs) for all a such that� (s; a) = 1 . Then207

E� t +1 [� (s; a)f t;K (s; a)] = Eb� t +1 [� (s; a)f t;K (s; a)]

E�
�
E� t +1 [� (s; a)f t;K (s; a)]

�
= E�

�
Eb� t +1 [� (s; a)f t;K (s; a)]

�

E�
�
E� t +1 [� (s; a)f t;K (s; a)] � E� [� (s; a)f t;K (s; a)]

�
(58)

= E�
�
Eb� t +1 [� (s; a)f t;K (s; a)] � E� [� (s; a)f t;K (s; a)]

�
(59)

= E�

�
Eb� t +1 [� (s; a)f t;K (s; a)] � max

a2A
� (s; a)f t;K (s; a) + max

a2A
� (s; a)f t;K (s; a) � E� [� (s; a)f t;K (s; a)]

�

(60)

� E�

�
Eb� t +1 [� (s; a)f t;K (s; a)] � max

a2A
� (s; a)f t;K (s; a)

�
(61)

� � E�

�
�
�
�Eb� t +1 [� (s; a)f t;K (s; a)] � max

a2A
� (s; a)f t;K (s; a)

�
�
�
� (62)

= �








 Eb� t +1 [� (s; a)f t;K (s; a)] � max

a2A
� (s; a)f t;K (s; a)










1;�
(63)

� � C








 Eb� t +1 [� (s; a)f t;K (s; a)] � max

a2A
� (s; a)f t;K (s; a)










1;b�
(64)

The last step follows from that� (s; a) = 1 ) b� (s; a) � b ) b� (s) � b ) � � (s) � � U �208

� Cb� (s), and for all other(s; a) the term inside of norm is zero. Since the total variation distance209

betweenb� and� is bounded by� �210








 Eb� t +1 [� (s; a)f t;K (s; a)] � max

a2A
� (s; a)f t;K (s; a)










1;b�
(65)

�








 Eb� t +1 [� (s; a)f t;K (s; a)] � max

a2A
� (s; a)f t;K (s; a)










1;�
+ Vmax � � (66)

By Lemma 10:211








 Eb� t +1 [� (s; a)f t;K (s; a)] � max

a2A
� (s; a)f t;K (s; a)










1;�
� � � + 2Vmax

r
ln( jFjj � j=� )

2n
(67)

Then we �nished the proof by plug this into the last equation.212

Lemma 12. For any(s; a) 2 S 0 � A 0, and any� t , � t +1 in Algorithm 1,213

Q� t +1 (s; a) � Q� t (s; a) � �
2C

p
� 1 + 3Vmax C� �

(1 � 
 )2 �
� 2 + 2 
 K Vmax

1 � 

(68)

where� 1 is de�ned in Lemma 8,� 2 = C
�

� � + 2Vmax

q
ln( jF jj � j=� )

2n

�
.214
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Proof. For anys0, only in this proof, let� � t +1

h be the state distribution on thehth step from initial215

states0 following � t +1 . By applying performance difference lemma [3],216

V � t +1 (s0) � V � t (s0) (69)

=
1X

h=1


 h� 1Ez� �
� t +1
h

"
X

a2A 0

(� t +1 (ajz)Q� t (z; a) � � t (ajz)Q� t (z; a))

#

(70)

=
1X

h=1


 h� 1Ez� �
� t +1
h

"
X

a2A 0

(1 � � (z; a)) ( � t +1 (ajz)Q� t (z; a) � � t (ajz)Q� t (z; a)) (71)

+
X

a2A 0

� (z; a) ( � t +1 (ajz)Q� t (z; a) � � t (ajz)Q� t (z; a))

#

(72)

Because� t ; � t +1 2 � all
SC , � (z; a) = 0 means either� t (ajz) = � t +1 (ajz) = 0 or a = aabs. So the217

�rst term is zero. Then:218

V � t +1 (s0) � V � t (s0) (73)

=
1X

h=1


 h� 1Ez� �
� t +1
h

"
X

a2A 0

� (z; a) ( � t +1 (ajz)Q� t (z; a) � � t (ajz)Q� t (z; a))

#

(74)

=
1X

h=1


 h� 1Ez� �
� t +1
h

"
X

a2A

� (z; a) ( � t +1 (ajz)Q� t (z; a) � � t (ajz)Q� t (z; a))

#

(75)

=
1X

h=1


 h� 1Ez� �
� t +1
h

"
X

a2A

� (z; a) ( � t +1 (ajz)Q� t (z; a) � � t +1 (ajz)f t;K (z; a)) (76)

+
X

a2A

� (z; a) ( � t +1 (ajz)f t;K (z; a) � � t (ajz)f t;K (z; a)) (77)

+
X

a2A

� (z; a) ( � t (ajz)f t;K (z; a) � � t (ajz)Q� t (z; a))

#

(78)

Equation 75 follows fromQ� (s; aabs) = 0 for any� ands. By Lemma 11, for anyh,219

Ez� �
� t +1
h

"
X

a2A

� (z; a) ( � t +1 (ajz)f t;K (z; a) � � t (ajz)f t;K (z; a))

#

(79)

= Ez� �
� t +1
h

�
E� t +1 [� (s; a)f t;K (s; a)] � E� t [� (s; a)f t;K (s; a)]

�
� � � 2 � CVmax � � (80)
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Then220

V � t +1 (s0) � V � t (s0) (81)

�
1X

h=1


 h� 1Ez� �
� t +1
h

"
X

a2A

� (z; a) ( � t +1 (ajz)Q� t (z; a) � � t +1 (ajz)f t;K (z; a)) (82)

+
X

a2A

� (z; a) ( � t (ajz)f t;K (z; a) � � t (ajz)Q� t (z; a))

#

�
� 2 + CVmax � �

1 � 

(83)

� �
1X

h=1


 h� 1
�

k� (z; a)(Q� t (z; a) � f t;K (z; a))k1;�
� t +1
h

(84)

+ k� (z; a)(Q� t (z; a) � f t;K (z; a))k1;�
� t +1
h � � t

�
�

� 2 + CVmax � �

1 � 

(85)

� �
1X

h=1


 h� 1
�

k� (z; a)(Q� t (z; a) � f t;K (z; a))k2;�
� t +1
h

(86)

+ k� (z; a)(Q� t (z; a) � f t;K (z; a))k2;�
� t +1
h � � t

�
�

� 2 + CVmax � �

1 � 

(87)

�
� 2C

� p
� 1 + Vmax � �

�

(1 � 
 )2 �
2
 K Vmax

1 � 

�

� 2 + CVmax � �

1 � 

(Lemma 9)

Equation 87 follows from Jensen's inequality. Since this holds for anys0, we proved that for any221

(s; a),222

[Q� t +1 (s; a) � Q� t (s; a)] (88)

= 
 Es0 [V � t +1 (s0) � V � t (s0)] (89)

�
� 2C

� p
� 1 + Vmax � �

�

(1 � 
 )2 �
2
 K Vmax

1 � 

�

� 2 + CVmax � �

1 � 

(90)

� �
2C

p
� 1 + 3CVmax � �

(1 � 
 )2 �
2
 K Vmax

1 � 

�

� 2

1 � 

(91)

223

C.4 Proof of main theorems224

Theorem 2. Given an MDPM = < S; A ; R; P; 
; p > , a datasetD = f (s; a; r; s0)g with n samples225

that is draw i.i.d. from� � R � P, and a �nite Q-function classesF and a �nite policy class�226

satisfying Assumption 3 and 4,� t = �( b� t ) from Algorithm 1 satis�es that with probability at least227

1 � 3� ,228

ve� � v� t �
4C

(1 � 
 )3

0

@

s
419V 2

max ln jF jj � j
�

3n
+ 2

p
� F

1

A +
6CVmax � �

(1 � 
 )3 +
2C� � + 3 
 K � 1Vmax

(1 � 
 )2

for any policye� 2 � all
SC .229

Proof. For simplicity of the notation, let � 1 = 208V 2
max ln jF jj � j

�
3n + 2 � F , � 2 =230

C
�

� � + 2Vmax

q
ln( jF jj � j=� )

2n

�
and � 3 = 2C

p
� 1 +3 Vmax C� �

(1 � 
 )2 + � 2 +2 
 K Vmax
1� 
 . We start by proving231

a stronger result. For anye� 2 � all
SC , we will upper boundE� [V e� � V � t ] for any admissible232
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distribution� overS0 which will naturally be an upper bound forve� � v� t233

E� [V e� � V � t +1 ]

= E�

"

V e� (s) �
X

a2A 0

� t +1 (ajs)Q� t (s; a) +
X

a2A 0

� t +1 (ajs)Q� t (s; a) � V � t +1 (s)

#

= E�

"

V e� (s) �
X

a2A 0

� t +1 (ajs)Q� t (s; a) +
X

a2A 0

� t +1 (ajs) (Q� t (s; a) � Q� t +1 (s; a))

#

� E�

X

a2A 0

h
e� (ajs)Qe� (s; a) � � t +1 (ajs)Q� t (s; a)

i
+ � 3 (Lemma 12)

= E�

X

a2A 0

� (s; a)[e� (ajs)Qe� (s; a) � � t +1 (ajs)Q� t (s; a)] + � 3

= E�

h
Ee�

h
� (s; a)Qe� (s; a)

i
� E� t +1 [� (s; a)f t (s; a)]

+ E� t +1 [� (s; a)f t (s; a)] � E� t +1 [� (s; a)Q� t +1 (s; a)]
�

+ � 3

� E�

h
Ee�

h
� (s; a)Qe� (s; a)

i
� E� t +1 [� (s; a)f t (s; a)]

i

+ k� (z; a)(Q� t (z; a) � f t (z; a))k1;� � � t +1
+ � 3

� E�

h
Ee�

h
� (s; a)Qe� (s; a)

i
� E� t +1 [� (s; a)f t (s; a)]

i
+

C
p

� 1 + CVmax � �

1 � 

+ 
 K Vmax + � 3

(Lemma 9)

� E�

h
Ee�

h
� (s; a)Qe� (s; a)

i
� Ee� [� (s; a)f t (s; a)]

i
+ � 2 + CVmax � � +

C
p

� 1 + CVmax � �

1 � 

+ 
 K Vmax + � 3

(Lemma 11)

� E�

h
Ee�

h
� (s; a)Qe� (s; a)

i
� Ee� [� (s; a)Q� t (s; a)]

i
+ � 2 +

2C
p

� 1 + 3CVmax � �

1 � 

+ 2 
 K Vmax + � 3

(Lemma 9)

= E� � e�

h
� (s; a)Qe� (s; a) � � (s; a)Q� t (s; a)

i
+ � 2 +

2C
p

� 1 + 3CVmax � �

1 � 

+ 2 
 K Vmax + � 3

= E� � e�

h
Qe� (s; a) � Q� t (s; a)

i
+ � 2 +

2C
p

� 1 + 3CVmax � �

1 � 

+ 2 
 K Vmax + � 3 (� t 2 � all

SC )

� 
 EP ( � � e� ) [V
e� � V � t ] + � 2 +

2C
p

� 1 + 3CVmax � �

1 � 

+ 2 
 K Vmax + � 3

The second to last step follows from� t 2 � all
SC : for all s; a such thate� (ajs) > 0, either� (s; a) = 1 ,234

or a = aabs. The later two indicate thatQ� t (s; a) = Qe� (s; a) = 0 . So for all s; a such that235

e� (ajs) > 0, Qe� (s; a) = � (s; a)Qe� (s; a) andQ� t (s; a) = � (s; a)Q� t (s; a). Now we proved236

E� [V e� � V � t +1 ] � 
 EP ( � � e� ) [V
e� � V � t ] + � 2 + � 3 +

2C
p

� 1 + 3CVmax � �

1 � 

+ 2 
 K Vmax (92)
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holds for any distribution� . The error terms do not depend ont and this holds for anyt. We can237

repeatedly apply this for all0 < t 0 � t . Assumingt � K this will give us :238

E� [V e� � V � t +1 ]

�
1 � 
 t

1 � 


�
� 2 + � 3 +

2C
p

� 1 + 3CVmax � �

1 � 

+ 2 
 K Vmax

�
+ 
 t Vmax

�
� 2

1 � 

+

� 3

1 � 

+

2C
p

� 1

(1 � 
 )2 +
3CVmax � �

(1 � 
 )2 +
3
 K Vmax

1 � 


�
2� 2

(1 � 
 )2 +
4C

p
� 1

(1 � 
 )3 +
6CVmax � �

(1 � 
 )3 +
3
 K � 1Vmax

(1 � 
 )2

�
2C� �

(1 � 
 )2 +
4C

(1 � 
 )2

r
V 2

max ln( jFjj � j=� )
2n

+
4C

p
� 1

(1 � 
 )3 +
6CVmax � �

(1 � 
 )3 +
3
 K � 1Vmax

(1 � 
 )2

�
2C� �

(1 � 
 )2 +
4C

(1 � 
 )3

 r
V 2

max ln( jFjj � j=� )
2n

+

r
208V 2

max ln( jFjj � j=� )
3n

+ 2 � F

!

+
6CVmax � �

(1 � 
 )3 +
3
 K � 1Vmax

(1 � 
 )2

�
2C� �

(1 � 
 )2 +
4C

(1 � 
 )3

 r
V 2

max ln( jFjj � j=� )
2n

+

r
208V 2

max ln( jFjj � j=� )
3n

+
p

2� F

!

+
6CVmax � �

(1 � 
 )3 +
3
 K � 1Vmax

(1 � 
 )2

�
2C� �

(1 � 
 )2 +
4C

(1 � 
 )3

 r
419V 2

max ln( jFjj � j=� )
3n

+
p

2� F

!

+
6CVmax � �

(1 � 
 )3 +
3
 K � 1Vmax

(1 � 
 )2

The last step follows from thata+ b �
p

2(a2 + b2). The error bound is �nished by simplifying the239

expression. The failure probability3� is from the union bound of probability� on which Assumption240

2 fails, probability� on which Lemma 7 fails, and the probability� on which Lemma 10 fails.241

Now we are going to use the fact that there is an almost no-value-loss projection from the� -242

constrained policy set to the strong� -constrained policy set in order to prove an error bound w.r.t243

anye� 2 � all
C .244

Theorem 1. Given an MDPM = < S; A ; R; P; 
; p > , a datasetD = f (s; a; r; s0)g with n samples245

that is draw i.i.d. from� � R � P, and a �nite Q-function classesF and a �nite policy class�246

satisfying Assumption 3 and 4,b� t from Algorithm 1 satis�es that with probability at least1 � 3� ,247

ve�
M � vb� t

M �
4C

(1 � 
 )3

0

@

s
419V 2

max ln jF jj � j
�

3n
+ 2

p
� F

1

A +
6CVmax � �

(1 � 
 )3 +
2C� � + 3 
 K � 1Vmax

(1 � 
 )2 +
Vmax � �

1 � 


for any policye� 2 � all
C and only take action overA .248

Proof. For any policye� that only take action overA , Lemma 3 tells thatve�
M � v�( e� )

M 0 + Vmax � �

1� 
 .249

Since� t = �( b� t ) andb� t only takes action inA , by Lemma 1 and Lemma 2vb� t
M = vb� t

M 0 � v� t
M .250

Thenve�
M � vb� t

M � v�( e� )
M 0 � v� t

M 0 + Vmax � �

1� 
 and Theorem 2 completes the proof.251

When there exist an optimal policy that is supported well by� . We can derive the following result252

about value gap between learned policy and optimal policy immediately from the main theorem253

about approximate policy iteration.254
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Corollary 2. If there exists an� ? on M such thatPr( � (s; a) � 2bj� ?) � � . then under the255

assumptions of Theorem 1,b� t from Algorithm 1 satis�es that with probability at least1 � 3� ,256

v� ?

M � v� t
M �

4C
(1 � 
 )3

0

@

s
419V 2

max ln jF jj � j
�

3n
+ 2

p
� F

1

A +
6CVmax � �

(1 � 
 )3

+
2C� � + 3 
 K � 1Vmax

(1 � 
 )2 +
Vmax (� + C� � )

1 � 


Proof. Given the condition of� ?,257

Pr
�

b� (s; a) � b
�
�
� � ?

�
� Pr ( � (s; a) � 2bj� ?) + Pr ( j� (s; a) � b� (s; a)j � bj� ?) (93)

� � + Pr ( j� (s; a) � b� (s; a)j � bj� ?) (94)

� � +
E� � ? [j� (s; a) � b� (s; a)j]

b
(95)

� � +
UdTV(� (s; a); b� (s; a))

b
(96)

� � + C� � (97)

Then� ? 2 � all
C with � � = � + C� � , and applying Theorem 1 �nished the proof.258

C.5 Safe Policy Improvement Result259

In many scenarios we aim to have a policy improvement that is guaranteed to be no worse than260

the data collection policy, which is called safe policy improvement. By abusing the notation a bit,261

let � (ajs) be a policy that generate the data set. For our algorithm, the safe policy improvement262

will hold if � 2 � all
C . To show� 2 � all

C , we only need thatPr( � (s; a) � bj� ) � � � . When263

the state-action space is �nite, there must exist an minimum value for all non-zero� (s; a)'s. Let264

� min = min s;as:t:� (s;a )> 0 � (s; a). Then we have that, ifb � � min . Pr( � (s; a) � bj� ) = 0 . Thus265

we have:266

Corollary 3. With �nite state action space andb � � min , under the assumptions as Theorem 1,b� t267

from Algorithm 1 satis�es that with probability at least1 � 3� ,268

v�
M � v�̂ t

M �
52Vmax

p
jSjjAj (

p
ln(2jSjjAj =� ) +

p
ln(1 + nVmax )) + 8

p
nb(1 � 
 )3

+
12Vmax jSjjAj ln(2jSjjAj =� )

nb(1 � 
 )3 +
3
 K � 1Vmax

(1 � 
 )2

Proof. In �nite state action space, the number of all deterministic policies is less thanjAj jSj . Thus269

we have a policy class with� � = 0 andj� j � jAj jSj . Since theQ value is bounded in[0; Vmax ],270

we can construct a� covering setF of all value functions in[0; Vmax ]jSjjAj with ( Vmax
� + 1) jSjjAj

271

functions. Then� F � maxg minf 2F kf � gk�; 2 � maxg minf 2F kf � gk1 � � .272

We can also bound� � in �nite state action space. For any �xeds; a, by Berstein's inequality we273

have that with probability of 1- �
jSjjAj :274

jb� (s; a) � � (s; a)j =

�
�
�
�
�
1
n

nX

i =1

1(s( i ) = s; a( i ) = a) � E[1(s( i ) = s; a( i ) = a)]

�
�
�
�
�

(98)

�

r
2V[1(s( i ) = s; a( i ) = a)] ln(2 jSjjAj =� )

n
+

4 ln(2jSjjAj =� )
n

(99)

=

r
2� (s; a)(1 � � (s; a)) ln(2 jSjjAj =� )

n
+

4 ln(2jSjjAj =� )
n

(100)
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By taking summation ofjb� (s; a) � � (s; a)j and union bound over all(s; a), we can bound the total275

variation bounds betweenb� and� , with probability at least1 � � ,276

kb� � � kT V =
1
2

X

s;a

jb� (s; a) � � (s; a)j (101)

�
1
2

X

s;a

 r
2� (s; a)(1 � � (s; a)) ln(2 jSjjAj =� )

n
+

4 ln(2jSjjAj =� )
n

!

(102)

=
2jSjjAj ln(2jSjjAj =� )

n
+

1
2

X

s;a

r
2� (s; a)(1 � � (s; a)) ln(2 jSjjAj =� )

n
(103)

�
2jSjjAj ln(2jSjjAj =� )

n
+

1
2

vu
u
t

X

s;a

2� (s; a) ln(2 jSjjAj =� )
n

X

s;a

(1 � � (s; a))

(Cauchy-Schwartz's inequality)

=
2jSjjAj ln(2jSjjAj =� )

n
+

1
2

r
2 ln(2jSjjAj =� )

n
(jSjjAj � 1) (104)

�
2jSjjAj ln(2jSjjAj =� )

n
+

r
jSjjAj ln(2jSjjAj =� )

2n
(105)

Now in a �nite state action space we can construct the policy andQ function sets withjFj �277

( Vmax
� + 1) jSjjAj , j� j � j Aj jSj , � � = 0 , � F � � , and bounded� � . By plugging these terms into the278

result of Theorem 1, we have the following bound:279

v�
M � v�̂ t

M �
4C

(1 � 
 )3

 r
419V 2

max (jSj ln jAj + jSjjAj ln(1 + Vmax =�) + ln(1 =� ))
3n

+ 2
p

�

!

+
6CVmax

(1 � 
 )3

 r
jSjjAj ln(2jSjjAj =� )

2n
+

2jSjjAj ln(2jSjjAj =� )
n

!

+
3
 K � 1Vmax

(1 � 
 )2 ;

(106)

for any chosen� > 0. So we can set that� = 1=n to upper bound the the in�mum of this upper280

bound.281

v�
M � v�̂ t

M �
4C

(1 � 
 )3

 r
419V 2

max (jSj ln jAj + jSjjAj ln(1 + nVmax ) + ln(1 =� ))
3n

+ 2

r
1
n

!

+
6CVmax

(1 � 
 )3

 r
jSjjAj ln(2jSjjAj =� )

2n
+

2jSjjAj ln(2jSjjAj =� )
n

!

+
3
 K � 1Vmax

(1 � 
 )2

(107)

Notice that in discrete space we have thatU � 1. By replacingC with 1=band simplify some terms,282

we have that:283

v�
M � v�̂ t

M �

s
6704V 2

max jSj(ln( jAj =� ) + jAj ln(1 + nVmax ))
3nb2(1 � 
 )6 +

8
b
p

n(1 � 
 )3

+

s
18V 2

max jSjjAj ln(2jSjjAj =� )
nb2(1 � 
 )6 +

12Vmax jSjjAj ln(2jSjjAj =� )
nb(1 � 
 )3 +

3
 K � 1Vmax

(1 � 
 )2

�
52Vmax

p
jSjjAj (

p
ln(2jSjjAj =� ) +

p
ln(1 + nVmax )) + 8

p
nb(1 � 
 )3

+
12Vmax jSjjAj ln(2jSjjAj =� )

nb(1 � 
 )3 +
3
 K � 1Vmax

(1 � 
 )2

284
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D Proofs for Q Iteration Guarantees285

In this section, we are going to prove the our main result for theQ iteration algorithm, Algorithm 2.286

First we introduce a similar completeness assumption about the Bellman optimality operator:287

Assumption 5(Completeness underT� ). maxf 2F ming2F kg � T � f k2
2;� � � F288

We will �rst state our main theorem here and then give a proof sketch before we start the proof289

formally.290

Theorem 4. Given a MDPM = < S; A ; R; P; 
; p > , a datasetD = f (s; a; r; s0)g with n samples291

that is draw i.i.d. from� � R � P, and a �nite Q-function classesF satisfying Assumption 5,b� t292

from Algorithm 2 satis�es that with probability at least1 � � , ve� � vb� t �293

2C
(1 � 
 )2

0

@

s
208V 2

max ln jF j
�

3n
+ 2

p
� F + Vmax � � +






 Qe� � T � Qe�








2;�

1

A +
(2
 t + � � )Vmax

1 � 


for any policye� 2 � all
C .294

We will �rst give a proof sketch before we start the proof formally. The proof follows a similar295

structural as the policy iteration case. To prove Theorem 4 we �rst prove a similar version of Theo-296

rem 4 but the comparator polices are in strong� -constrained policy set (formally stated as Theorem297

5 later). Then we show an upper bound ofv�
M 0 � v� t

M 0 where� 2 � all
SC and � t is the output of298

algorithm (Theorem 5, will be formally stated later). Then we are going to show that for any policy299

� in the� -constrained policy set , after a projection� it is in the strong� -constrained policy set and300

v�
M � v�( � )

M 0 + Vmax � � =(1 � 
 ). Then we can provide the upper bound forv�
M � v� t

M for any� in301

� -constrained policy set (Theorem 4).302

The proof sketch of Theorem 5 goes as follow. One key step to prove this error bound is to convert
the performance difference between any policye� 2 � all

SC and � t to a value function gap that is
�ltered by � :

ve� � v� t � k �
�

Qe� � f t

�
k1;� 1 =(1 � 
 );

where� 1 is some admissible distribution overS �A . The �lter � allows the change of measure from303

� 1 to � without constraining the density ratio between an arbitrary distribution� and� . Instead for304

any s; a where� is one, by de�nition� is lower bounded and the density ratio is bounded byC305

(details in Lemma 13).306

The rest of the proof has a similar structure with the standard FQI analysis. In Lemma 15, we bound307

the normk� (Qe� � f t )k2;� 1 by Ck(f t � T � f t )k2;� =(1 � 
 ) and one additional sub-optimality error308

kQe� � T � Qe� k2;� . The additional sub-optimality error term comes from the fact thate� may not be309

an optimal policy since the optimal policy may not be a� -constrained policy. The last step to �nish310

the proof is to bound the expected Bellman residual by concentration inequality. Lemma 16 shows311

how to bound that following a similar approach as [1]. Then the main theorem is proved by combine312

all those steps. After that we prove when we can bound the value gap with resepct to optimal value313

in Corollary 4.314

Now we start the proof. We are going to condition on the high probability bounds in Assumption 2315

holds when we proof the lemmas.316

Lemma 13. For � t = �( b� t ) in Algorithm 2, for any policye� 2 � all
SC we have

ve� � v� t �
1X

h=0


 h
� 





 �

�
Qe� � f t

� 






1;� � t
h � e�

+





 �

�
Qe� � f t

� 






1;� �
h � � t

�
:

Proof. Given a deterministic greedy policyb� t , � t = �( b� t ) is also a deterministic policy and317

� t (s) equalsb� t (s) unless� (s; b� t (s)) = 0 , where� t (s) = aabs. Notice b� t (s) is the maximizer318

of � (s; �)f t (s; �). If � (s; b� t (s)) = 0 then� (s; a)f t (s; a) = 0 for all a. We have that� t (s) is also the319
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maximizer of� (s; �)f t (s; �).320

ve� � v� t =
1X

h=0


 h Es� � � t
h

[Qe� (s; e� ) � Qe� (s; � t )] ([3, Lemma 6.1])

�
1X

h=0


 h Es� � � t
h

h
� (s; e� )Qe� (s; e� ) � � (s; � t )Qe� (s; � t )

i
(108)

�
1X

h=0


 h Es� � � t
h

[� (s; e� )Qe� (s; e� ) � � (s; e� )f t (s; e� ) + � (s; � t )f t (s; � t ) � � (s; � t )Qe� (s; � t )]

(109)

�
1X

h=0


 h
� 





 �

�
Qe� � f t

� 






1;� � t
h � e�

+





 �

�
Qe� � f t

� 






1;� � t
h � � t

�
(110)

Equation (108) follows from the fact that for alls; a such thate� (ajs) > 0, either� (s; a) = 1 , or321

a = aabs. a = aabs indicates thatQe� (s; a) = 0 . So for alls; a such thate� (ajs) > 0, Qe� (s; a) =322

� (s; a)Qe� (s; a). The second part follows from that for anys; a, Qe� (s; a) � � (s; a)Qe� (s; a). Equa-323

tion (109) follows from the fact that� t (s) is the maximizer of� (s; �)f t (s; �).324

Lemma 14. For any two function f 1; f 2 : S0 � A 0 ! R+ , de�ne � f 1 ;f 2 (s) =
arg maxa2A jf 1(s; a) � f 2(s; a)j. Then we have8� : S0 ! �( A 0),








 max

a2A
f 1 � max

a2A
f 2










1;P ( � )
� k f 1 � f 2k1;P ( � ) � � f 1 ;f 2

:

Proof.








 max

a2A
f 1 � max

a2A
f 2










1;P ( � )
= Es� P ( � )

�
�
�
�max

a2A
f 1(s; a) � max

a2A
f 2(s; a)

�
�
�
�

� Es� P ( � ) max
a2A

jf 1(s; a) � f 2(s; a)j

= Es� P ( � ) ;a � � f 1 ;f 2
jf 1(s; a) � f 2(s; a)j

= kf 1 � f 2k2
1;P ( � ) � � f 1 ;f 2

:

325

Lemma 15. For the data distribution� and any admissible distribution� over S0 � A 0, f; f 0 :326

S � A ! R+ and anye� 2 � all
SC , we have327






 �

�
f � Qe�

� 






1;�
� C

�
kf � T � f 0k2;� +






 T� Qe� � Qe�








2;�
+ Vmax � �

�

+ 






 �

�
f 0 � Qe�

� 






2;P ( � ) � � �f 0;�Q e�

:
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Proof.





 �

�
f � Qe�

� 






1;�
(111)

=





 �

�
f � T � f 0+ T� f 0 � T � Qe� + T� Qe� � Qe�

� 






1;�
(112)

� k � (f � T � f 0)k1;� +





 �

�
T� f 0 � T � Qe�

� 






1;�
+






 �

�
T� Qe� � Qe�

� 






1;�
(113)

� C kf � T � f 0k1;b� + 









 max

a2A
�f 0 � max

a2A
�Q e�










1;P ( � )
+ C






 T� Qe� � Qe�








1;b�
(114)

� 2CVmax � � + C kf � T � f 0k1;� + 









 max

a2A
�f 0 � max

a2A
�Q e�










1;P ( � )
+ C






 T� Qe� � Qe�








1;�
(115)

� C
�

kf � T � f 0k2;� +





 T� Qe� � Qe�








1;�
+ 2Vmax � �

�
+ 







 �

�
f 0 � Qe�

� 






1;P ( � ) � � �f 0;�Q e�

(116)

The change of norms fromk � k� to k � k� follows from that� (s; a) 6= 0 iff b� (s; a) � b and thus328

� (s; a) � b� (s; a)U=b= Cb� (s; a). The last step follows from Lemma 14.



 �

�
T� f 0 � T � Qe�

� 




1;� �329






 maxa2A �f 0 � maxa2A �Q e�






1;P ( � ) follows from:330






 �

�
T� f 0 � T � Qe�

� 






1;�
= E(s;a ) � �

h
� (s; a)

�
�
�T� f 0(s; a) � T � Qe� (s; a)

�
�
�
i

(117)

� E(s;a ) � �

h�
�
�T� f 0(s; a) � T � Qe� (s; a)

�
�
�
i

(118)

= E(s;a ) � �

� �
�
�
� 
 Es0� P (s;a ) max

a02A
� (s0; a0)f 0(s0; a0) � max

a02A
� (s0; a0)Qe� (s0; a0)

�
�
�
�

�

(119)

� 
 E(s;a ) � �;s 0� P (s;a )

� �
�
�
�max
a02A

� (s0; a0)f 0(s0; a0) � max
a02A

� (s0; a0)Qe� (s0; a0)

�
�
�
�

�

(Jensen)

= 
 Es0� P ( � )

� �
�
�
�max
a02A

� (s0; a0)f 0(s0; a0) � max
a02A

� (s0; a0)Qe� (s0; a0)

�
�
�
�

�

(120)

= 









 max

a2A
�f 0 � max

a2A
�Q e�










1;P ( � )
(121)

331

Now we are going to use Berstein's inequality to boundkf t +1 � T � f t k2;� , which mostly follows332

from [1]'s proof for the vanilla value iteration.333

Lemma 16. With Assumption 5 holds, letg?
f = arg min g2F kg�T � f k2;� , thenkg?

f �T � f k2
2;� � � F .334

The datasetD is generated i.i.d. fromM as follows:(s; a) � � , r = R(s; a), s0 � P(s; a). De�ne335

L � (f ; f 0) = E[L D (f ; f 0)]. We have that8f 2 F , with probability at least1 � � ,336

L � (T�;D f ; f ) � L � (g?
f ; f ) �

208V 2
max ln jF j

�

3n
+ � F

whereT�;D f = arg min g2F L D (g; f ).337

Proof. This proof is similar with the proof of Lemma 7, and we adapt it to operatorT� . The only338

change is the de�nition ofVf (�) and X (�; �; �). The de�nition of L D and L � would not change339

betweenM andM 0, and the right hand side is also the same constant forM andM 0. So the result340

we prove here does not change fromM to M 0.341

For the simplicity of notations, letVf (s) = max a2A � (s; a)f (s; a). Fix f; g 2 F , and de�ne

X (g; f; g?
f ) := ( g(s; a) � r � 
V f (s0))2 �

�
g?

f (s; a) � r � 
V f (s0)
� 2

:
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Plugging each (s; a; r; s0) 2 D into X (g; f; g?
f ), we get i.i.d. variables

X 1(g; f; g?
f ); X 2(g; f; g?

f ); : : : ; X n (g; f; g?
f ). It is easy to see that

1
n

nX

i =1

X i (g; f; g?
f ) = L D (g; f ) � L D (g?

f ; f ):

By the de�nition of L � , it is also easy to see that

L � (g; f ) = kg � T � f k2
2;� + Es;a � �

�
Vr;s 0

�
r + 
 max

a02A
� (s0; a0)f (s0; a0)

��

Notice that the second part does not depends ong. Then

L � (g; f ) � L � (T� f ; f ) = kg � T � f k2
2;�

Then we bound the variance ofX :342

V[X (g; f; g?
f )] � E[X (g; f; g?

f )2]

= E�

� � �
g(s; a) � r � 
V f (s0)

� 2
�

�
g?

f (s; a) � r � 
V f (s0)
� 2

� 2
�

= E�

h�
g(s; a) � g?

f (s; a)
� 2�

g(s; a) + g?
f (s; a) � 2r � 2
V f (s0)

� 2
i

� 4V 2
max E�

h�
g(s; a) � g?

f (s; a)
� 2

i

= 4V 2
max kg � g?

f k2
2;� (122)

� 8V 2
max (E[X (g; f; g?

f )] + 2 � F ): (*)

Step (*) holds because343

kg � g?
f k2

2;�

� 2
�
kg � T � f k2

2;� + kT� f � g?
f k2

2;�

�
((a + b)2 � 2a2 + 2b2)

� 2
�
kg � T � f k2

2;� � kT � f � g?
f k2

2;� + 2kT� f � g?
f k2

2;�

�

= 2
�
(L � (g; f ) � L � (T� f ; f )) � (L � (g?

f ; f ) � L � (T� f ; f )) + 2 kT� f � g?
f k2

2;�

�

= 2
�
(L � (g; f ) � L � (g?

f ; f ) + 2 kT� f � g?
f k2

2;�

�

= 2
�
E[X (g; f; g?

f )] + 2 kT� f � g?
f k2

2;�

�

� 2(E
�
X (g; f; g?

f )
�

+ 2 � F )

Next, we apply (one-sided) Bernstein's inequality and union bound over allf 2 F andg 2 F . With344

probability at least1 � � , we have345

E[X (g; f; g?
f )] �

1
n

nX

i =1

X i (g; f; g?
f ) �

s
2V[X (g; f; g?

f )] ln jF j 2

�

n
+

4V 2
max ln jF j 2

�

3n

=

vu
u
t 32V 2

max

�
E[X (g; f; g?

f )] + 2 � F

�
ln jF j

�

n
+

8V 2
max ln jF j

�

3n

SinceT�;D f minimizesL D ( � ; f ), it also minimizes1
n

P n
i =1 X i (�; f; g ?

f ). This is because the two
objectives only differ by a constantL D (g?

f ; f ). Hence,

1
n

nX

i =1

X i (T�;D f; f; g ?
f ) �

1
n

nX

i =1

X i (g?
f ; f; g ?

f ) = 0 :

Then,346

E[X (T�;D f; f; g ?
f )] �

vu
u
t 32V 2

max

�
E[X (T�;D f; f; g ?

f )] + 2 � F

�
ln jF j

�

n
+

8V 2
max ln jF j

�

3n
:
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Solving for the quadratic formula,347

E[X (T�;D f; f; g ?
f )] �

vu
u
t 48

 
8V 2

max ln jF j
�

3n

! 2

+
64V 2

max ln jF j
�

n
� F +

56V 2
max ln jF j

�

3n

�
(56 + 32

p
3)V 2

max ln jF j
�

3n
+

s
64V 2

max ln jF j
�

n
� F

(
p

a + b �
p

a +
p

bandln jF j
� > 0)

�
112V 2

max ln jF j
�

3n
+

s
64V 2

max ln jF j
�

n
� F

�
112V 2

max ln jF j
�

3n
+

32V 2
max ln jF j

�

n
+ � F

�
208V 2

max ln jF j
�

3n
+ � F

Noticing thatE[X (T�;D f ; f; g ?
f )] = L � (T�;D f ; f ) � L � (g?

f ; f ), we complete the proof.348

Now we could prove the main theorem about �tted Q iteration.349

Theorem 5. Given a MDPM = < S; A ; R; P; 
; p > , a datasetD = f (s; a; r; s0)g with n samples350

that is draw i.i.d. from� � R � P, and a �nite Q-function classesF satisfying Assumption 5,351

� t = �( b� t ) from Algorithm 2 satis�es that with probability at least1 � 2� , ve� � v� t �352

2C
(1 � 
 )2

0

@

s
208V 2

max ln jF j
�

3n
+ 2

p
� F + Vmax � � +






 Qe� � T � Qe�








1;�

1

A +
2
 t Vmax

1 � 


for any policye� 2 � all
SC .353

Proof. Firstly, we can letf = f t andf 0 = f t � 1 in Lemma 15. This gives us that






 f t � Qe�








1;�
� C

�
kf t � T � f t � 1k2;� +






 Qe� � T � Qe�








1;�
+ 2Vmax � �

�
+ 
 kf t � 1� Qe� k1;P ( � ) � � f k � 1 ;Q e�

Note that we can apply the same analysis onP(� ) � � f k � 1 ;Q ? and expand the inequalityt times. It354

then suf�ces to upper boundkf t � T � f t � 1k2;� .355

kf t � T � f t � 1k2
2;�

= L � (f t ; f t � 1) � L � (T� f t � 1; f t � 1) (De�nition of L � )
= [ L � (f t ; f t � 1) � L � (g?

f t � 1
; f t � 1)] + [ L � (g?

f t � 1
; f t � 1) � L � (T� f t � 1; f t � 1)]

� � 4 + kg?
f t � 1

� T � f t � 1k2
2;� (Lemma 16 and de�nition ofL � )

� � 4 + � F : (De�nition of g?
Q k � 1

and Assumption 5)

The inequality holds with probability at least1 � � and� 4 = 208V 2
max ln jF j

�
3n + � F . Noticing that� 4

and� F do not depend ont, and the inequality holds simultaneously for differentt, we have that

kf t � Qe� k1;� �
1 � 
 t

1 � 

C

� p
(� 4 + � F ) + Vmax � � +






 Qe� � T � Qe�








1;�

�
+ 
 t Vmax :
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Applying this to Lemma 13, we have that356

veπ − vπt
≤ 2

1− γ

(
1− γt

1− γ
C

(√
(ε4 + εF ) + Vmaxεµ +

∥∥∥Qeπ − TζQeπ∥∥∥
1,µ

)
+ γtVmax

)
≤ 2C

(1− γ)2

(√
ε4 + εF + Vmaxεµ +

∥∥∥Qeπ − TζQeπ∥∥∥
1,µ

)
+

2γtVmax

1− γ

≤ 2C

(1− γ)2


√

208V 2
max ln |F|δ
3n

+ 2
√
εF + Vmaxεµ +

∥∥∥Qeπ − TζQeπ∥∥∥
1,µ

+
2γtVmax

1− γ
.

357

Now we are going to use the fact that there is an no-value-loss projection from the ζ-constrained358

policy set to the strong ζ-constrained policy set to prove an error bound w.r.t any π̃ ∈ Πall
C .359

Theorem 2. Given a MDP M =< S,A, R, P, γ, p >, a dataset D = {(s, a, r, s′)} with n samples360

that is draw i.i.d. from µ × R × P , and a finite Q-function classes F satisfying Assumption 5, π̂t361

from Algorithm 2 satisfies that with probability at least 1− 2δ, veπ − vbπt ≤362

2C

(1− γ)2


√

208V 2
max ln |F|δ
3n

+ 2
√
εF + Vmaxεµ +

∥∥∥Qeπ − TζQeπ∥∥∥
2,µ

+
(2γt + εζ)Vmax

1− γ

for any policy π̃ ∈ Πall
C .363

Proof. The difference between this theorem and Theorem 5 is that π̃ is in Πall
C which is significantly364

larger than Πall
SC .365

This prove mimics the proof of Theorem 1. For any policy π̃ ∈ Πall
C , Lemma 3 tells that veπ

M ≤366

v
Ξ(eπ)
M ′ +

Vmaxεζ
1−γ . Since πt = Ξ(π̂t), vbπt

M = vbπt
M ′ ≥ v

πt
M . Then veπ

M − v
bπt
M ≤ v

Ξ(eπ)
M ′ − v

πt
M ′ +

Vmaxεζ
1−γ and367

Theorem 5 completes the proof.368

Remark: The first term in the theorem comes from that the best policy in the ζ-constrained policy369

set is not optimal. Note that the ζ-constrained policy set does not requires any realizability to do370

with our function approximation but merely about the density ratio of a policy. When there is an371

optimal policy of M such in Πall
C , we have the same type of bound as standard approximate value372

iteration analysis.373

Corollary 4. If there exists an π? onM such that Pr(µ(s, a) ≤ 2b|π?) ≤ ε. then under the condition374

as Theorem 4, π̂t from Algorithm 2 satisfies that with probability at least 1− 2δ, vπ
?

M − v
πt
M ≤375

2C

(1− γ)2


√

208V 2
max ln |F|δ
3n

+ 2
√
εF + Vmaxεµ +

∥∥∥Qπ? − TζQπ?∥∥∥
2,µ

+
Vmax(2γt + ε+ CUεµ)

1− γ

Proof. The proof of π? ∈ Πall
C is same as the proof in Corollary 1. Then proof is finished by376

applying Theorem 4.377

E Details of CartPole Experiment378

E.1 Full results of Discretized CartPole-v0379

In section 6.1, we compare AVI, BCQL[2], SPIBB[4], Behavior cloning and our algorithm PQI, in380

CartPole-v0 with discretized state space. The data is generated by a ε-greedy policy (ε from 0.1 to381

0.9) and we report the resulting policies from different algorithm with the best hyper-parameter in382

each ε. In this section we show the learning curve for each ε and each hyper-parameter value. We383

run the BCQ algorithm with the threshold of µ̂(a|s) in {0, 0.05, 0.1, 0.2}, and we run the SPIBB384
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Figure 1: CartPole-v0 with discretized state space. The learning curve of all algorithms with differ-
ent hyper-parameters, data generated with different ε-greedy behavior policy. The hyper-parameter
of SPIBB [4] and PQI is the threshold of µ̂(s, a) and the hyper-parameter of BCQL [2] is the thresh-
old of µ̂(a|s).

algorithm with the threshold of µ̂(s, a) in {0.01, 0.005, 0.001, 0.0005, 0.0001} and PQI with the385

threshold of µ̂(s, a) in a smaller set {0.005, 0.001, 0.0005}. Figure 1 shows for most of the ε and386

threshold our algorithm tie with the best baseline (SPIBB), and the best threshold of our algorithm387

outperform all baseline algorithms in 8 out of 9 cases.388

In Figure 1, we observe the trend that smaller ε will prefer a smaller b. This is verified by more389

results in the next section, and we discuss the reasons for this phenomenon there.390

E.2 Ablation study of threshold b391

A key aspect of our algorithm is to filter the state space by a threshold on the estimated probability392

µ̂(s, a). This prevents the algorithm from updating using low-confidence state, action pairs when393

bootstrapping values. Then the choice of threshold b is a key trade-off in our algorithm: if b is too394

small it can not remove the low-confident state, action pairs effectively; if b is too large it might395

remove too many state, action pairs and prevent learning from more data. In order to demonstrate396

the effect of b and how should we choose b in different settings, we show the performance of PQI in397

a larger range of b and several ε values.398

In figure 2 we show the trend that smaller b works better for larger ε and larger b works better for399

smaller ε in general. This can be explained in the following way: with a larger ε the data distribution400

is more exploratory and hence the probabilities on individual state, action pairs are smaller. So a the401

same threshold that performs well with low exploration now censors a much larger part of the state,402

action space, necessitating a smaller threshold as ε is increased. In general, we find that having the403

largest threshold which still retains a significant fraction of the state, action space is a good heuristic404

for setting the b parameter.405
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