1 Reviewer #1

- 2 To clarify the origins of ASVs, we will modify lines 146-7: "In the game theory literature, this axiom was first relaxed
- 3 by [43], which termed the result 'random-order values'; [30] referred to them as 'quasivalues'." We will add references
- 4 to line 150: "ASVs uniquely satisfy Axioms 1–3 (q.v. Theorems 12 and 13 in [43], or Theorem 3 in [30])."
- 5 To clarify the notion of accuracy in the global Shapley sum rule, we will add: "The accuracy of randomly drawing from
- 6 f's predicted probability distribution is distinct from the accuracy of predicting the max-probability class."
- 7 In response to R1's statement that the seizure (cf. Sec 4.3) could occur at any point in the time series: Each time series
- 8 represents 1 sec, whereas most seizures last 30–120 sec, so a seizure is occurring (or not) for the entirety of each time
- 9 series. We will add a sentence in the text to clarify this and hope this makes the application seem less odd.
- 10 Regarding R1's concern about the inefficiency of ASVs for feature selection, we propose to reframe Sec 4.4 as
- demonstrating a property of ASVs rather than a primary application.
- Please also see lines 29–32 below in our response to R3.

13 Reviewer #3

- 14 R3's largest concern is that our paper does not discuss the difference between our approach and [19], which appears
- to reach a conclusion opposite to ours. To clarify, [19] studies the causality of the prediction process rather than the
- data-generating process. In particular, see Fig 2 in [19] which shows the causal process considered there: features $(\tilde{X}$'s)
- \rightarrow model inputs $(X's) \rightarrow$ model output (Y). As [19] does not consider causal structure among the features themselves,
- their conclusions are not relevant for the goal of our work: to incorporate causal structure present in the data into model
- explainability. We will make the following addition to the end of Sec 3.2:
- "The distribution $w(\pi)$ incorporates the user's knowledge of the data's causal structure into explanations of the model's
- 21 predictions. Note that this is quite distinct from other work [19], which considers the model's prediction process itself
- to be a causal process (features o model inputs o model output) and finds ordinary Shapley values to be sufficient to
- 23 explain that process. In contrast, ASVs incorporate causal structure present in the data itself."
- 24 R3 finds ASVs' incorporation of causality to be mainly based on intuition. We would distinguish between: (i) gaining
- 25 causal knowledge about the data, and (ii) incorporating it into a model explainability algorithm. ASVs are solely
- 26 focussed on tackling (ii); domain expertise or causal inference should generally be employed for (i). It is ASV's
- 27 handling of (ii) that we claim is mathematically principled: one preserves the 3 important Shapley axioms by restricting
- to permutations of features consistent with causality. We will clarify this in our introduction to ASVs.
- 29 R3 is correct that the ASVs of Sec 4.2 place gender and department choice out-of-causal ordering. To measure
- 30 unresolved discrimination with ASVs, the causal structure needs to used differently namely, in reverse to detect
- whether a protected attribute is causally mediated by a resolving variable [20]. To forecast this to the reader, we will
- modify line 160 (just after ASVs' definition) to read: "Alternatively, anti-causal orderings can also lead to specific
- insights; e.g. in Sec 4.2 we define ASVs that detect unfair model decisions."
- R3 questions the definition of fairness in Sec 4.2. That definition does not allow just any indirect dependence on the
- protected attribute: only dependence on the protected attribute that is mediated by an explicitly specified resolving
- wariable (like free department choice) is permitted. This is a common definition considered by [20] and others.
- R3 stated that addressing the points above "could strengthen the paper tremendously". With the proposed modifications,
- we hope R3 will deem our paper worthy of acceptance.

9 Reviewer #4

- 40 R4 wonders whether ASVs explain the model or the data. The answer (cf. Sec 3.3) lies somewhere in between. As R4
- 41 states, "ASVs can be useful if one's goal is to adjust the input to get a different model prediction". However, this goal is
- not in opposition to "understanding the model" it cannot be done otherwise. We will note this in the text.
- R4 wonders how ASVs advance the state-of-the-art. We claim there is currently no state-of-the-art in causality-based
- 44 model explainability. See e.g. lines 14–23 in our response to R3 above. For a guideline to incorporate a causal graph
- into ASVs, see Eq 11. Also see lines 29–32 in our response to R3 above.

46 References

- 47 [19] Janzing et al, "Feature relevance quantification in explainable AI: a causal problem" (2019).
- 48 [20] Kilbertus et al, "Avoiding discrimination through causal reasoning" (2017).
- 49 [30] Weber, "Probabilistic values for games" (1988).
- [43] Monderer & Samet, "Variations on the Shapley value" (2002).