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A Proofs of the Main Results

We first introduce some additional notations for convenience.

Notations. For a matrix X ∈ Rm×n, X ≥ c for some scalar c ∈ R means that each element
of X is no-less than c. For a vector x, we use (x2),

√
x, |x| to denote the component-wise

square, square-root, and absolute value of x. We use P(s,a,b),s′ to denote the transition probability
P (s′ | s, a, b), and Ps,a,b to denote the vector P (· | s, a, b). We use ‖u − v‖TV to denote the total
variation distance between two probability distributions u, v ∈ ∆(S) over a finite space S , which is
defined as ‖u−v‖TV := 1

2

∑
s∈S |u(s)−v(s)|. We also use Pµ,ν to denote the transition probability

of state-action pairs induced by the policy pair (µ, ν), which is defined as
Pµ,ν(s,a,b),(s′,a′,b′) = µ(a′ | s′)ν(b′ | s′)P (s′ | s, a, b).

Hence, the Q-value function can be written as
Qµ,ν = r + γPµ,νQµ,ν = (I − γPµ,ν)−1r.

Also, for any V ∈ R|S|, we define the vector VarP (V ) ∈ R|S|×|A|×|B| as

VarP (V )(s, a, b) := VarP (· | s,a,b)(V ) = P (V )2 − (PV )2.

Then, we define Σµ,νG to be the variance of the discounted reward under the MG G, i.e.,

Σµ,νG (s, a, b) := E
[( ∞∑

t=0

γtr(st, at, bt)−Qµ,νG (s, a, b)
)2 ∣∣ s0 = s, a0 = a, b0 = b

]
.

It can be shown (see an almost identical formula for MDPs in [26, Lemma 6]) that Σµ,νG satisfies
some Bellman-type equation for any policy pair (µ, ν):

Σµ,νG = γ2 VarP (V µ,νG ) + γ2Pµ,νΣµ,νG . (A.1)

It can also be verified that ‖Σµ,νG ‖∞ ≤ γ2/(1− γ)2 [26, 23]. Before proceeding further, we provide
a roadmap of the proof.

Proof Roadmap. Our proof mainly consists of the following steps:

1. Helper lemmas and a crude bound. We first establish several important lemmas, including the
component-wise error bounds for the final Q-value errors, the variance error bound, and a crude
error bound that directly uses Hoeffding’s inequality. Some of the results are adapted from the
single-agent setting to zero-sum MGs. See §A.1.

2. Establishing an auxiliary Markov game. To improve the crude bound, we build up an absorbing
Markov game, in order to handle the statistical dependence between P̂ and some value function
generated by P̂ , which occurs as a product in the component-wise bound above. By carefully
designing the auxiliary game, we establish a Bernstein-like concentration inequality, despite this
dependency. See §A.2, and more precisely, Lemmas A.9 and A.10.

3. Final bound for ε-approximate NE value. Lemma A.9 in Step 2 allows us to exploit the
variance bound, see Lemma A.3, to obtain an Õ(

√
1/[(1− γ)3]N) order bound on the Q-value

error, leading to a Õ((1− γ)−3ε−2) near-minimax optimal sample complexity for achieving the
ε-approximate NE value. See §A.3.

4. Final bounds for ε-NE policy. Based on the final bound in Step 3, we then establish a Õ((1−
γ)−5ε−2) sample complexity for obtaining an ε-NE policy pair, by solving an additional matrix
game over the output Q-value Q̂µ̂,ν̂ . See §A.4. In addition, given a smooth Planning Oracle,
by Lemma A.10 in Step 2, and more careful self-bounding techniques, we establish a Õ((1 −
γ)−3ε−2) sample complexity for achieving such an ε-NE policy pair, directly using the output
policies (µ̂, ν̂). See §A.5.
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A.1 Important Lemmas

We start with the component-wise error bounds.
Lemma A.1 (Component-Wise Bounds). For any policy pair (µ, ν), it follows that

Qµ,ν − Q̂µ,ν = γ(I − γPµ,ν)−1(P − P̂ )V̂ µ,ν ,

γ(I − γPµ,ν(µ))−1(P − P̂ )V̂ µ,ν(µ) ≤ Qµ,∗ − Q̂µ,∗ ≤ γ(I − γPµ,ν̂(µ))−1(P − P̂ )V̂ µ,∗,

γ(I − γP µ̂(ν),ν)−1(P − P̂ )V̂ ∗,ν ≤ Q∗,ν − Q̂∗,ν ≤ γ(I − γP̂µ(ν),ν)−1(P − P̂ )V ∗,ν ,

where we recall that ν(µ) and µ(ν) denote the best-response policy given µ and ν, respectively (see
(2.4)). Moreover, we have

Qµ,ν ≥ Q∗ − ‖Qµ,ν − Q̂µ,ν‖∞ − ‖Q̂µ,ν − Q̂∗‖∞ − ‖Q̂µ
∗,∗ −Q∗‖∞ (A.2)

Qµ,ν ≤ Q∗ + ‖Qµ,ν − Q̂µ,ν‖∞ + ‖Q̂µ,ν − Q̂∗‖∞ + ‖Q̂∗,ν
∗
−Q∗‖∞ (A.3)

V µ,∗ ≥ V ∗ − ‖Qµ,∗ − Q̂µ,∗‖∞ − ‖V̂ µ,∗ − V̂ ∗‖∞ − ‖Q̂µ
∗,∗ −Q∗‖∞ (A.4)

V ∗,ν ≤ V ∗ + ‖Q∗,ν − Q̂∗,ν‖∞ + ‖V̂ ∗,ν − V̂ ∗‖∞ + ‖Q̂∗,ν
∗
−Q∗‖∞. (A.5)

Proof. First, note that

Qµ,ν − Q̂µ,ν = (I − γPµ,ν)−1r − (I − γP̂µ,ν)−1r

= (I − γPµ,ν)−1[(I − γP̂µ,ν)− (I − γPµ,ν)]Q̂µ,ν

= γ(I − γPµ,ν)−1(Pµ,ν − P̂µ,ν)Q̂µ,ν = γ(I − γPµ,ν)−1(P − P̂ )V̂ µ,ν ,

proving the first equation. Also,

Qµ,∗ − Q̂µ,∗ ≤ Qµ,ν̂(µ) − Q̂µ,∗ = Qµ,ν̂(µ) − Q̂µ,ν̂(µ)

=
(
I − γPµ,ν̂(µ)

)−1
r −

(
I − γP̂µ,ν̂(µ)

)−1
r

=
(
I − γPµ,ν̂(µ)

)−1[
(I − γP̂µ,ν̂(µ))− (I − γPµ,ν̂(µ))

]
Q̂µ,ν̂(µ)

= γ(I − γPµ,ν̂(µ))−1(P − P̂ )V̂ µ,ν̂(µ),

where we recall that ν̂(µ)(· | s) ∈ argmin V̂ µ,ν(s) for all s ∈ S . By similar arguments, recalling that
ν(µ)(· | s) ∈ argminV µ,ν(s) for all s, we have

Qµ,∗ − Q̂µ,∗ ≥ Qµ,ν(µ) − Q̂µ,ν(µ) = (I − γPµ,ν(µ))−1r − (I − γP̂µ,ν(µ))−1r

= (I − γP̂µ,ν(µ))−1[(I − γP̂µ,ν(µ))− (I − γPµ,ν(µ))]Qµ,ν(µ)

= γ(I − γP̂µ,ν(µ))−1(P − P̂ )V µ,∗.

Similar arguments yield the third inequality in the first argument.

For the second argument, we have

Qµ,ν −Q∗ = Qµ,ν − Q̂∗ + Q̂∗ −Q∗ ≥ Qµ,ν − Q̂∗ + Q̂µ
∗,∗ −Q∗

≥ −‖Qµ,ν − Q̂∗‖∞ − ‖Q̂µ
∗,∗ −Q∗‖∞,

which, combined with triangle inequality, yields the first inequality. Similarly, we have

Qµ,ν −Q∗ = Qµ,ν − Q̂∗ + Q̂∗ −Q∗ ≤ Qµ,ν − Q̂∗ + Q̂∗,ν
∗
−Q∗

≤ ‖Qµ,ν − Q̂∗‖∞ + ‖Q̂∗,ν
∗
−Q∗‖∞,

Using triangle inequality proves the second inequality. For (A.4)-(A.5), we similarly have

V µ,∗ − V ∗ = V µ,∗ − V̂ ∗ + V̂ ∗ − V ∗ ≥ V µ,∗ − V̂ ∗ + V̂ µ
∗,∗ − V ∗

≥ −‖V µ,∗ − V̂ ∗‖∞ − ‖V̂ µ
∗,∗ − V ∗‖∞, (A.6)

V ∗,ν − V ∗ = V ∗,ν − V̂ ∗ + V̂ ∗ − V ∗ ≤ V ∗,ν − V̂ ∗ + V̂ ∗,ν − V ∗

≤ ‖V ∗,ν − V̂ ∗‖∞ + ‖V̂ ∗,ν − V ∗‖∞. (A.7)
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Notice that for any µ ∈ ∆(A)|S| and ν ∈ ∆(B)|S|,

‖V µ,∗ − V̂ µ,∗‖∞

=
∥∥∥ min
ϑ∈∆(B)

Ea∼µ(· | s),b∼ϑ[Qµ,∗(·, a, b)]− min
ϑ∈∆(B)

Ea∼µ(· | s),b∼ϑ[Q̂µ,∗(·, a, b)]
∥∥∥
∞

≤ max
ϑ∈∆(B)

∥∥Ea∼µ(· | s),b∼ϑ[Qµ,∗(·, a, b)]− Ea∼µ(· | s),b∼ϑ[Q̂µ,∗(·, a, b)]
∥∥
∞ ≤ ‖Q

µ,∗ − Q̂µ,∗‖∞
(A.8)

‖V ∗,ν − V̂ ∗,ν‖∞

=
∥∥∥ max
u∈∆(A)

Ea∼u,b∼ν(· | s)[Q
∗,ν(·, a, b)]− max

u∈∆(A)
Ea∼u,b∼ν(· | s)[Q̂

∗,ν(·, a, b)]
∥∥∥
∞

≤ max
u∈∆(A)

∥∥Ea∼u,b∼ν(· | s)[Q
∗,ν(·, a, b)]− Ea∼u,b∼ν(· | s)[Q̂

∗,ν(·, a, b)]
∥∥
∞ ≤ ‖Q

∗,ν − Q̂∗,ν‖∞.

(A.9)

Combining (A.6)-(A.7) and (A.8)-(A.9), together with triangle inequality, we arrive at (A.4)-(A.5),
and complete the proof.

The errors in (A.2)-(A.3) are decomposed into three terms. The second term ‖Q̂µ,ν − Q̂∗‖∞ is
the optimization error we obtained from the algorithm that solves the empirical game. This can be
handled by the algorithm. We will thus focus on bounding the other two terms. To this end, we need
the following lemma; see also Lemma 2 in [23].

Lemma A.2. For any policy pair (µ, ν) and vector v ∈ R|S|×|A|×|B|, ‖(I − γPµ,ν)−1v‖∞ ≤
‖v‖∞/(1− γ).

Proof. The proof is straightforward. Letting w = (I − γPµ,ν)−1v, we have v = (I − γPµ,ν)w.
Triangle inequality yields ‖v‖∞ ≥ ‖w‖∞ − γ‖Pµ,νw‖∞ ≥ ‖w‖∞ − γ‖w‖∞, which completes the
proof.

Next we establish the Bellman property of a policy pair (µ, ν)’s variance and its accumulation. This
has been observed for MDPs before in [64, 65, 66, 23]. We establish the counterpart for Markov
games as follows.
Lemma A.3. For any policy pair (µ, ν) and MG G with transition model P , we have∥∥∥(I − γPµ,ν)−1

√
VarP

(
V µ,νG

)∥∥∥
∞
≤

√
2

(1− γ)3
.

Proof. The proof follows that of [23, Lemma 3]. For any positive vector v, by Jensen’s inequality,
we have

‖(I − γPµ,ν)−1
√
v‖∞ =

1

1− γ
‖(1− γ)(I − γPµ,ν)−1

√
v‖∞ ≤

√∥∥∥ 1

1− γ
(I − γPµ,ν)−1v

∥∥∥
∞
.

(A.10)

Also, observe that

‖(I − γPµ,ν)−1v‖∞ = ‖(I − γPµ,ν)−1(I − γ2Pµ,ν)(I − γ2Pµ,ν)−1v‖∞
=
∥∥[(I − γPµ,ν)−1(1− γ + γ − γ2Pµ,ν)](I − γ2Pµ,ν)−1v

∥∥
∞

=
∥∥[(1− γ)(I − γPµ,ν)−1 + γI](I − γ2Pµ,ν)−1v

∥∥
∞

≤ (1− γ)
∥∥(I − γPµ,ν)−1(I − γ2Pµ,ν)−1v

∥∥
∞ + γ

∥∥(I − γ2Pµ,ν)−1v
∥∥
∞

≤ 1− γ
1− γ

∥∥(I − γ2Pµ,ν)−1v
∥∥
∞ + γ

∥∥(I − γ2Pµ,ν)−1v
∥∥
∞ ≤ 2

∥∥(I − γ2Pµ,ν)−1v
∥∥
∞. (A.11)

Combining (A.10) and (A.11) yields

‖(I − γPµ,ν)−1
√
v‖∞ ≤

√∥∥∥ 2

1− γ
(I − γ2Pµ,ν)−1v

∥∥∥
∞
. (A.12)
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In addition, by (A.1), we have Σµ,νG = γ2(I − γ2Pµ,ν)−1 VarP (V µ,νG ). Letting v = VarP (V µ,νG ) in
(A.12) and noticing that ‖Σµ,νG ‖∞ ≤ γ2/(1− γ)2 completes the proof.

Finally, if we just apply Hoeffding’s inequality, we obtain the following concentration argument,
upon which we will improve to obtain our final results.
Lemma A.4. Let (µ∗, ν∗) be the Nash equilibrium policy pair under the actual model G. Then, for
any δ ∈ (0, 1], with probability at least 1− δ, we have

‖Q∗ − Q̂µ
∗,ν∗‖∞ ≤ ∆δ,N , ‖Q∗ − Q̂µ

∗,∗‖∞ ≤ ∆δ,N ,

‖Q∗ − Q̂∗,ν
∗
‖∞ ≤ ∆δ,N , ‖Q∗ − Q̂∗‖∞ ≤ ∆δ,N ,

where

∆δ,N :=
γ

(1− γ)2

√
2 log(2|S||A||B|/δ)

N
.

Proof. First note that V ∗ is fixed and independent of the randomness in P̂ . Due to the boundedness
of V ∗ that ‖V ∗‖∞ ≤ (1− γ)−1, and the union of Hoeffding bounds over S ×A× B, we have that
with probability at least 1− δ∥∥(P̂ − P )V ∗

∥∥
∞ ≤

1

1− γ
·
√

2 log(2|S||A||B|/δ)
N

. (A.13)

On the other hand, let Tµ,ν be the Bellman operator under the true transition model P , using any joint
policy (µ, ν), i.e., for any s ∈ S and (s, a, b) ∈ S ×A× B, V ∈ R|S| and Q ∈ R|S|×|A|×|B|:

Tµ,ν(V )(s) = Ea∼µ(· | s),b∼ν(· | s)
[
r(s, a, b) + γ · P (· | s, a, b)>V

]
Tµ,ν(Q)(s, a, b) = r(s, a, b) + γ · Es′∼P (· | s,a,b),a′∼µ(· | s′),b′∼ν(· | s′)

[
Q(s′, a′, b′)

]
.

Similarly, let T̂µ,ν be the corresponding operator defined under the estimated transition P̂ . Note that
Q̂µ,ν and Q∗ are the fixed points of T̂µ,ν and Tµ∗,ν∗ , respectively. We thus have

‖Q∗ − Q̂µ,ν‖∞ = ‖Tµ∗,ν∗Q∗ − T̂µ,νQ̂µ,ν‖∞
≤ ‖Tµ∗,ν∗Q∗ − r − γP̂µ

∗,ν∗Q∗‖∞ + ‖r + γP̂µ
∗,ν∗Q∗ − T̂µ,νQ̂µ,ν‖∞

= γ‖Pµ
∗,ν∗Q∗ − P̂µ

∗,ν∗Q∗‖∞ + γ‖P̂µ
∗,ν∗Q∗ − P̂µ,νQ̂µ,ν‖∞

= γ‖PV ∗ − P̂ V ∗‖∞ + γ‖P̂ V ∗ − P̂ V̂ µ,ν‖∞ ≤ γ‖(P − P̂ )V ∗‖∞ + γ‖V ∗ − V̂ µ,ν‖∞.
(A.14)

To show the first argument, letting µ = µ∗ and ν = ν∗, we have

γ‖V ∗ − V̂ µ
∗,ν∗‖∞

= γ
∥∥Ea∼µ∗(· | s),b∼ν∗(· | s)[Q∗(·, a, b)]− Ea∼µ∗(· | s),b∼ν∗(· | s)[Q̂µ

∗,ν∗(·, a, b)]
∥∥
∞

≤ γ‖Q∗ − Q̂µ
∗,ν∗‖∞. (A.15)

Using (A.15) to bound the last term in (A.14), and solving for ‖Q∗ − Q̂µ∗,ν∗‖∞ from (A.14), we
obtain the first argument.

For the second argument, letting µ = µ∗ and ν = ν̂(µ∗) (note that Q̂µ
∗,∗ = Q̂µ

∗,ν̂(µ∗)), we have

γ‖V ∗ − V̂ µ
∗,∗‖∞

= γ
∥∥ min
ϑ∈∆(B)

Ea∼µ∗(· | s),b∼ϑ[Q∗(·, a, b)]− min
ϑ∈∆(B)

Ea∼µ∗(· | s),b∼ϑ[Q̂µ
∗,∗(·, a, b)]

∥∥
∞

≤ γ max
ϑ∈∆(B)

∥∥Ea∼µ∗(· | s),b∼ϑ[Q∗(·, a, b)]− Ea∼µ∗(· | s),b∼ϑ[Q̂µ
∗,∗(·, a, b)]

∥∥
∞

≤ γ‖Q∗ − Q̂µ
∗,∗‖∞, (A.16)
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where the first inequality is due to the non-expansiveness of the min operator. Using (A.16) to bound
the last term in (A.14), and solving for ‖Q∗ − Q̂µ∗,∗‖∞ from (A.14), we obtain the second argument.
Similarly, we can obtain the third argument.

For the fourth argument, letting µ = µ̂∗ and ν = ν̂∗, the NE policy under P̂ (note that Q̂µ̂
∗,ν̂∗ = Q̂∗),

we have

γ‖V ∗ − V̂ ∗‖∞
= γ

∥∥ max
u∈∆(A)

min
ϑ∈∆(B)

Ea∼u,b∼ϑ[Q∗(·, a, b)]− max
u∈∆(A)

min
ϑ∈∆(B)

Ea∼u,b∼ϑ[Q̂∗(·, a, b)]
∥∥
∞

≤ γ max
u∈∆(A)

∥∥ min
ϑ∈∆(B)

Ea∼u,b∼ϑ[Q∗(·, a, b)]− min
ϑ∈∆(B)

Ea∼u,b∼ϑ[Q̂∗(·, a, b)]
∥∥
∞

≤ γ‖Q∗ − Q̂∗‖∞,

where the inequalities are due to the non-expansivenesses of both the max and the min operators.
This, combined with (A.14), completes the proof.

A.2 An Auxiliary Markov Game

Motivated by the absorbing MDP technique in [23], we propose to introduce an absorbing Markov
game, in order to handle the interdependence between P̂ and V̂ µ,ν , for any µ, ν (which may also
depend on P̂ ), which will show up frequently in the analysis.

We now define a new Markov game Gs,u as follows (with s ∈ S and u ∈ R a constant): Gs,u is
identical to G, except that PGs,u(s | s, a, b) = 1 for all (a, b) ∈ A×B, namely, state s is an absorbing
state; and the instantaneous reward at s is always (1− γ)u. The rest of the reward function and the
transition model of Gs,u are the same as those of G. For notational simplicity, we now use Xµ,ν

s,u to
denote Xµ,ν

Gs,u , where X can be either the value functions Q and V , or the reward function r, under
the model Gs,u. Obviously, for any policy pair (µ, ν), V µ,νs,u (s) = u for the absorbing state s.

In addition, we define Us for some state s to choose u from, which is a set of evenly spaced elements
in the interval [V ∗(s)−∆, V ∗(s) + ∆] for some ∆ > 0, i.e., Us ⊂ [V ∗(s)−∆, V ∗(s) + ∆]. An
appropriately chosen size of |Us| will be the key in the proof. We also use P̂Gs,u to denote the
transition model of the absorbing MG for the empirical MG Ĝ, denoted by Ĝs,u. Specifically, at all
non-absorbing states, P̂Gs,u is identical to P̂ ; while at the absorbing state, P̂Gs,u(s | s, a, b) = 1 for
any (a, b) ∈ A × B. The corresponding value functions are for short denoted by V̂ µ,νs,u and Q̂µ,νs,u .
Similar as in the original MG, we also use V̂ ∗s,u to denote the NE value under the model Ĝs,u, and use
V̂ µ,∗s,u and V̂ ∗,νs,u to denote the best-response values of some given µ and ν, under the model Ĝs,u. Now
we first have the following lemma based on Bernstein’s inequality; see a similar argument in Lemma
5 in [23].

Lemma A.5. For fixed state s, action (a, b), a finite set Us, and δ > 0, it holds that for all u ∈ Us,
with probability greater than 1− δ,

∣∣(Ps,a,b − P̂s,a,b) · V̂ ∗s,u∣∣ ≤
√

2 log(4|Us|/δ) ·VarPs,a,b(V̂
∗
s,u)

N
+

2 log(4|Us|/δ)
3(1− γ)N

,

∣∣(Ps,a,b − P̂s,a,b) · V̂ µ∗,∗s,u

∣∣ ≤
√

2 log(4|Us|/δ) ·VarPs,a,b(V̂
µ∗,∗
s,u )

N
+

2 log(4|Us|/δ)
3(1− γ)N

,

∣∣(Ps,a,b − P̂s,a,b) · V̂ ∗,ν∗s,u

∣∣ ≤
√

2 log(4|Us|/δ) ·VarPs,a,b(V̂
∗,ν∗
s,u )

N
+

2 log(4|Us|/δ)
3(1− γ)N

,

∣∣(Ps,a,b − P̂s,a,b) · V̂ µ∗,ν∗s,u

∣∣ ≤
√

2 log(4|Us|/δ) ·VarPs,a,b(V̂
µ∗,ν∗
s,u )

N
+

2 log(4|Us|/δ)
3(1− γ)N

,
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∣∣(Ps,a,b − P̂s,a,b) · V µ̂s,u,∗∣∣ ≤
√

2 log(4|Us|/δ) ·VarPs,a,b(V
µ̂s,u,∗)

N
+

2 log(4|Us|/δ)
3(1− γ)N

,

∣∣(Ps,a,b − P̂s,a,b) · V ∗,ν̂s,u ∣∣ ≤
√

2 log(4|Us|/δ) ·VarPs,a,b(V
∗,ν̂s,u)

N
+

2 log(4|Us|/δ)
3(1− γ)N

,

where Ps,a,b and P̂s,a,b are the transition models extracted from the original game G and its empirical
version Ĝ, respectively (not related to either Gs,u or Ĝs,u), and (µ̂s,a, ν̂s,a) is the output of the
Planning Oracle using the auxiliary empirical model Ĝs,u

Proof. The key observation is that the random variables P̂s,a,b and V̂ ∗s,u are independent. Using
Bernstein’s inequality along with a union bound over all u ∈ Us, we obtain the first inequality. The
other inequalities follow similarly, as P̂s,a,b is independent of V̂ µ

∗,∗
s,u , V̂ ∗,ν

∗

s,u , V̂ µ
∗,ν∗

s,u , V µ̂s,u,∗, and
V ∗,ν̂s,u . This is because the latter terms are all decided by the original game G, and/or the auxiliary
empirical game Ĝs,u (not the original empirical game Ĝ).

Note that the arguments in Lemma A.5 do not hold, if we replace V̂ ∗s,u by V̂ ∗, or V̂ µ
∗,∗

s,u by V̂ µ
∗,∗,

or V̂ ∗,ν
∗

s,u by V̂ ∗,ν
∗
. It will neither hold if we replace V̂ µ

∗,∗
s,u and V µ̂s,u,∗ by some V̂ µ,∗ and V µ,∗, for

any µ that is dependent on P̂ , e.g., the NE policy µ̂∗ for the original empirical game Ĝ. This is one of
the key subtleties that is worth emphasizing.

Next we establish two lemmas that help guide the choices of Us, so that V̂ ∗s,u (resp. V̂ µ
∗,∗

s,u , V̂ ∗,ν
∗

s,u ,
and V̂ µ

∗,ν∗

s,u ) will be a good approximate of V̂ ∗ (resp. V̂ µ
∗,∗, V̂ ∗,ν

∗
, and V̂ µ

∗,ν∗ ).

Lemma A.6. For the absorbing state s, and any joint policy (µ, ν), suppose that u∗ = V ∗G (s),
uµ,∗ = V µ,∗G (s), u∗,ν = V ∗,νG (s), and uµ,ν = V µ,νG (s). Then,

V ∗G = V ∗s,u∗ V µ,∗G = V µ,∗Gs,uµ,∗ V ∗,νG = V ∗,νGs,u∗,ν V µ,νG = V µ,νGs,uµ,ν .

Proof. For the first formula, we need to verify that V ∗G satisfies the optimal (Nash equilibrium)
Bellman equation for the game Gs,u∗ . To this end, note that if s′ = s, then u∗ = V ∗G (s) satisfies the
Bellman equation trivially, since s is absorbing with the value V ∗s,u∗(s) = u∗.

On the other hand, for any s′ 6= s, the outgoing transition model at s′ in Gs,u∗ is the same as that in
G, and V ∗G (s′) per se satisfies the Bellman equation in G (which are the same for Gs,u∗ at these states
s′ 6= s). Thus, V ∗G satisfies the Bellman equation in Gs,u∗ for all states. This proves the first equation.
The proofs for the remaining three equations are analogous.

Perfect choices of u have been specified in Lemma A.6 above. Moreover, we need to quantify how
the value changes if we deviate from these perfect choices, i.e., the robustness to misspecification of
u [23]. This result is formally established in the following lemma; see also Lemma 7 in [23] for a
similar result.

Lemma A.7. For any state s, u, u′ ∈ R, and joint policy pair (µ, ν), we have∥∥V ∗s,u − V ∗s,u′∥∥∞ ≤ |u− u′|, ∥∥V µ,∗s,u − V
µ,∗
s,u′

∥∥
∞ ≤ |u− u

′|,∥∥V ∗,νs,u − V
∗,ν
s,u′

∥∥
∞ ≤ |u− u

′|,
∥∥V µ,νs,u − V

µ,ν
s,u′

∥∥
∞ ≤ |u− u

′|.

Proof. Note that ‖rs,u − rs,u′‖∞ = (1 − γ)|u − u′|, since the reward functions only differ at s,
where rs,u(s, a, b) = (1− γ)u and rs,u′(s, a, b) = (1− γ)u′. We denote the NE policy pair in Gs,u
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by (µ∗s,u, ν
∗
s,u). Thus,

Q∗s,u −Q∗s,u′ = Q
µ∗s,u,ν

∗
s,u

s,u −Q
µ∗
s,u′ ,ν

∗
s,u′

s,u′ ≤ Q
µ∗s,u,ν

∗
s,u′

s,u −Q
µ∗s,u,ν

∗
s,u′

s,u′ (A.17)

=
(
I − γP

µ∗s,u,ν
∗
s,u′

s,u

)−1
rs,u −

(
I − γP

µ∗s,u,ν
∗
s,u′

s,u′

)−1
rs,u′ (A.18)

=
(
I − γP

µ∗s,u,ν
∗
s,u′

s,u

)−1(
rs,u − rs,u′

)
(A.19)

≤ ‖rs,u − rs,u
′‖∞

1− γ
= |u− u′|, (A.20)

where (A.17) uses the fact that at the NE,

V
µ∗s,u,ν

∗
s,u

s,u = min
ν
V
µ∗s,u,ν
s,u ≤ V

µ∗s,u,ν
∗
s,u′

s,u , V
µ∗
s,u′ ,ν

∗
s,u′

s,u′ = max
µ

V
µ,ν∗

s,u′

s,u′ ≥ V
µ∗s,u,ν

∗
s,u′

s,u′ ,

implying the relationships of the corresponding Q-values; (A.18) is by definition; (A.19) uses the

observation that P
µ∗s,u,ν

∗
s,u′

s,u is the same as P
µ∗s,u,ν

∗
s,u′

s,u′ (transition is not affected by the value of
u). Similarly, we can establish the lower bound that Q∗s,u − Q∗s,u′ ≥ −|u − u′|, which proves
‖Q∗s,u −Q∗s,u′‖∞ ≤ |u− u′|. Moreover, we have∥∥V ∗s,u − V ∗s,u′∥∥∞

=
∥∥∥ max
u∈∆(A)

min
ϑ∈∆(B)

Ea∼u,b∼ϑ[Q∗s,u(·, a, b)]− max
u∈∆(A)

min
ϑ∈∆(B)

Ea∼u,b∼ϑ[Q∗s,u′(·, a, b)]
∥∥∥
∞

≤ max
u∈∆(A),ϑ∈∆(B)

∥∥∥Ea∼µ(· | s),b∼ϑ[Q∗s,u(·, a, b)]− Ea∼µ(· | s),b∼ϑ[Q∗s,u′(·, a, b)]
∥∥∥
∞

≤
∥∥Q∗s,u −Q∗s,u′∥∥∞ ≤ |u− u′|,

which proves the first inequality.

For the second one, recalling that the best-response policy of µ under Gs,u being νs,u(µ), we have

Qµ,∗s,u −Q
µ,∗
s,u′ = min

ν
Qµ,νs,u −Q

µ,∗
s,u′ = min

ν

(
I − γPµ,νs,u

)−1
rs,u −Qµ,∗s,u′ (A.21)

≤
(
I − γPµ,νs,u′ (µ)

s,u

)−1
rs,u −

(
I − γPµ,νs,u′ (µ)

s,u′

)−1
rs,u′ (A.22)

=
(
I − γPµ,νs,u′ (µ)

s,u

)−1(
rs,u − rs,u′

)
≤ ‖rs,u − rs,u

′‖∞
1− γ

= |u− u′|, (A.23)

where (A.21) uses the definition of a best-response value, (A.22) plugs in the best-response policy
νs,u′(µ), and (A.23) also uses the fact that the transition does not depend on the value u. A lower
bound can be established by noticing that Qµ,∗s,u′ = minν Q

µ,ν
s,u′ ≤ Q

µ,νs,u(µ)
s,u′ . This proves ‖Qµ,∗s,u −

Qµ,∗s,u′‖∞ ≤ |u− u′|. Furthermore, notice that∥∥V µ,∗s,u − V
µ,∗
s,u′

∥∥
∞ =

∥∥∥ min
ϑ∈∆(B)

Ea∼µ(· | s),b∼ϑ[Qµ,∗s,u(·, a, b)]− min
ϑ∈∆(B)

Ea∼µ(· | s),b∼ϑ[Qµ,∗s,u′(·, a, b)]
∥∥∥
∞

≤ max
ϑ∈∆(B)

∥∥∥Ea∼µ(· | s),b∼ϑ[Qµ,∗s,u(·, a, b)]− Ea∼µ(· | s),b∼ϑ[Qµ,∗s,u′(·, a, b)]
∥∥∥
∞

≤
∥∥Qµ,∗s,u −Qµ,∗s,u′∥∥∞ ≤ |u− u′|,

which proves the second inequality. Similar arguments can also be used to establish the third and the
fourth inequalities. This completes the proof.

We are now ready to show the main result in this section.

Lemma A.8. For any state s, joint action pair (a, b), and a finite set Us, define

ΓUs,δ,N :=
2 log(4|Us|/δ)

3(1− γ)N
, ΥUs,δ,N := 2 +

√
2 log(4|Us|/δ)

N
.
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Then, with probability greater than 1− δ, we have

∣∣(Ps,a,b − P̂s,a,b)V̂ ∗∣∣ ≤
√

2 log(4|Us|/δ) VarPs,a,b(V̂
∗)

N
+ ΓUs,δ,N + min

u∈Us

∣∣V̂ ∗(s)− u∣∣ ·ΥUs,δ,N

∣∣(Ps,a,b − P̂s,a,b)V̂ µ∗,∗∣∣ ≤
√

2 log(4|Us|/δ) VarPs,a,b(V̂
µ∗,∗)

N
+ ΓUs,δ,N

+ min
u∈Us

∣∣V̂ µ∗,∗(s)− u∣∣ ·ΥUs,δ,N

∣∣(Ps,a,b − P̂s,a,b)V̂ ∗,ν∗ ∣∣ ≤
√

2 log(4|Us|/δ) VarPs,a,b(V̂
∗,ν∗)

N
+ ΓUs,δ,N

+ min
u∈Us

∣∣V̂ ∗,ν∗(s)− u∣∣ ·ΥUs,δ,N

∣∣(Ps,a,b − P̂s,a,b)V̂ µ∗,ν∗ ∣∣ ≤
√

2 log(4|Us|/δ) VarPs,a,b(V̂
µ∗,ν∗)

N
+ ΓUs,δ,N

+ min
u∈Us

∣∣V̂ µ∗,ν∗(s)− u∣∣ ·ΥUs,δ,N .

Moreover, recalling that (µ̂s,u, ν̂s,u) is the output of the Planning Oracle using Ĝs,u, we have

∣∣(Ps,a,b − P̂s,a,b)V µ̂,∗∣∣ ≤
√

2 log(4|Us|/δ) ·VarPs,a,b(V
µ̂,∗)

N
+ ΓUs,δ,N

+ min
u∈Us

∥∥V µ̂,∗ − V µ̂s,u,∗∥∥∞ ·ΥUs,δ,N ,

∣∣(Ps,a,b − P̂s,a,b)V ∗,ν̂∣∣ ≤
√

2 log(4|Us|/δ) ·VarPs,a,b(V
∗,ν̂)

N
+ ΓUs,δ,N

+ min
u∈Us

∥∥V ∗,ν̂ − V ∗,ν̂s,u∥∥∞ ·ΥUs,δ,N .

Proof. First, for all u ∈ Us and with probability greater than 1− δ, we have∣∣(Ps,a,b − P̂s,a,b)V̂ ∗∣∣ =
∣∣(Ps,a,b − P̂s,a,b)(V̂ ∗ − V̂ ∗s,u + V̂ ∗s,u)

∣∣
≤
∣∣(Ps,a,b − P̂s,a,b)(V̂ ∗ − V̂ ∗s,u)

∣∣+
∣∣(Ps,a,b − P̂s,a,b)V̂ ∗s,u∣∣ (A.24)

≤ 2 ·
∥∥V̂ ∗ − V̂ ∗s,u∥∥∞ +

∣∣(Ps,a,b − P̂s,a,b)V̂ ∗s,u∣∣ (A.25)

≤ 2 ·
∥∥V̂ ∗ − V̂ ∗s,u∥∥∞ +

√
2 log(4|Us|/δ) ·VarPs,a,b(V̂

∗
s,u)

N
+

2 log(4|Us|/δ)
3(1− γ)N

(A.26)

≤
∥∥V̂ ∗ − V̂ ∗s,u∥∥∞

(
2 +

√
2 log(4|Us|/δ)

N

)

+

√
2 log(4|Us|/δ) ·VarPs,a,b(V̂

∗)

N
+

2 log(4|Us|/δ)
3(1− γ)N

(A.27)

where (A.24)-(A.25) use triangle inequality, (A.26) is due to Lemma A.5, and (A.27) uses the
facts that

√
VarPs,a,b(X + Y ) ≤

√
VarPs,a,b(X)+

√
VarPs,a,b(Y ), and

√
VarPs,a,b(X) ≤ ‖X‖∞.

Moreover, by Lemmas A.6 and A.7, we obtain that∥∥V̂ ∗ − V̂ ∗s,u∥∥∞ =
∥∥V̂ ∗

s,V̂ ∗(s)
− V̂ ∗s,u

∥∥
∞ ≤

∣∣V̂ ∗(s)− u∣∣,
which, combined with (A.27) and taken minimization over all u ∈ Us, yields the first inequality.
Proofs for the remaining inequalities are analogous, except that for the last two, the norms ‖V µ̂,∗ −
V µ̂s,u,∗‖∞ and ‖V ∗,ν̂ − V ∗,ν̂s,u‖∞ are kept and not further bounded.

Next we establish the important result that characterizes the errors |(P − P̂ )V̂ ∗|, |(P − P̂ )V̂ µ
∗,∗|,

|(P − P̂ )V̂ ∗,ν
∗ |, and |(P − P̂ )V̂ µ

∗,ν∗ |, which could not have been handled without the arguments
above, due to the dependence between P̂ and V̂ ∗ (and also V̂ µ

∗,∗, V̂ ∗,ν
∗
, and V̂ µ

∗,ν∗ ).
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Lemma A.9. For any δ ∈ (0, 1], with probability greater than 1− δ, it holds that

∣∣(P − P̂ )V̂ ∗
∣∣ ≤

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
·VarP (V̂ ∗)

N
+ ∆′δ,N

∣∣(P − P̂ )V̂ µ
∗,∗∣∣ ≤

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
·VarP (V̂ µ∗,∗)

N
+ ∆′δ,N

∣∣(P − P̂ )V̂ ∗,ν
∗ ∣∣ ≤

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
·VarP (V̂ ∗,ν∗)

N
+ ∆′δ,N

∣∣(P − P̂ )V̂ µ
∗,ν∗
∣∣ ≤

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
·VarP (V̂ µ∗,ν∗)

N
+ ∆′δ,N

where ∆′δ,N is defined as

∆′δ,N =

√
c log

(
c|S||A||B|/[(1− γ)2δ]

)
N

+
c log

(
c|S||A||B|/[(1− γ)2δ]

)
(1− γ)N

,

and c is some absolute constant.

Proof. Let Us denote a set with evenly spaced elements in the interval [V ∗(s)−∆δ/2,N , V
∗(s) +

∆δ/2,N ], with |Us| = 2/(1− γ)2, and ∆δ,N being defined in Lemma A.4. Lemma A.4 shows that
with probability greater than 1− δ/2,

V̂ ∗(s) ∈
[
V ∗(s)−∆δ/2,N , V

∗(s) + ∆δ/2,N

]
(A.28)

for all s ∈ S. Since each subinterval determined by Us is of length 2∆δ/2,N/(|Us| − 1), and V̂ ∗(s)
will fall into one of them, we know that

min
u∈Us

∣∣V̂ ∗(s)− u∣∣ ≤ 2∆δ/2,N

|Us| − 1
=

2γ

(|Us| − 1)(1− γ)2

√
2 log(4|S||A||B|/δ)

N

≤ 2γ

√
2 log(4|S||A||B|/δ)

N
,

where we have used the fact that |Us| ≥ 1/(1− γ)2 + 1. We then choose δ/2 to be δ/(2|S||A||B|) in
Lemma A.8, so that it holds for all states and joint actions with probability greater than 1− δ/2. By
substitution and noting that the two events in Lemmas A.4 and A.8 both fail with probability δ/2, we
obtain the first inequality by properly choosing the constant c. Similarly, for the other two inequalities,
note that Lemma A.4 can be applied to show that V̂ µ

∗,∗(s), V̂ ∗,ν
∗
(s), and V̂ µ

∗,ν∗(s), all lie in the
interval in (A.28) (centered at V ∗(s)). By similar arguments, the remaining three inequalities can be
proved (note that Lemma A.8 can be applied to V̂ µ

∗,∗(s), V̂ ∗,ν
∗
(s), and V̂ µ

∗,ν∗(s), as well).

Lastly, with a smooth Planning Oracle, see Definition 3.4, we can similarly establish the following
error bounds on |(P − P̂ )V µ̂,∗| and |(P − P̂ )V ∗,ν̂ |, thanks to Lemma A.8.
Lemma A.10. With a smooth Planning Oracle that has smooth constant C (see Definition 3.4), for
any δ ∈ (0, 1], with probability greater than 1− δ, it holds that

∣∣(P − P̂ )V µ̂,∗
∣∣ ≤

√
2 log

(
8(C + 1)|S||A||B|/[(1− γ)4δ]

)
·VarP (V µ̂,∗)

N
+ ∆′′δ,N

∣∣(P − P̂ )V ∗,ν̂
∣∣ ≤

√
2 log

(
8(C + 1)|S||A||B|/[(1− γ)4δ]

)
·VarP (V ∗,ν̂)

N
+ ∆′′δ,N

where ∆′′δ,N is defined as

∆′′δ,N =

√
c log

(
c(C + 1)|S||A||B|/[(1− γ)4δ]

)
N

+
c log

(
c(C + 1)|S||A||B|/[(1− γ)4δ]

)
(1− γ)N

,

for some absolute constant c.
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Proof. Following the proof of Lemma A.9, let Us denote a set with evenly spaced elements in the
interval [V ∗(s)−∆δ/2,N , V

∗(s) + ∆δ/2,N ], with ∆δ,N being defined in Lemma A.4. By Lemma
A.4, we know that V̂ ∗(s) lies in this interval with probability greater than 1 − δ/2, for all s ∈ S.
Now we choose |Us| = (C + 1)/(1− γ)4, where C is the smooth coefficient in Definition 3.4. As
V̂ ∗(s) will fall into one of the subintervals determined by Us, we have

min
u∈Us

∣∣V̂ ∗(s)− u∣∣ ≤ 2∆δ/2,N

|Us| − 1
≤ 2γ(1− γ)2

C
·
√

2 log(4|S||A||B|/δ)
N

, (A.29)

which also uses the fact |Us| ≥ C/(1 − γ)4 + 1. Furthermore, by Definition 3.4 and the proof of
Lemma A.7, we have∥∥µ̂− µ̂s,u∥∥TV ≤ C · ‖Q̂∗ − Q̂∗s,u‖∞ ≤ C · ∣∣V̂ ∗(s)− u∣∣. (A.30)

On the other hand, we have∥∥V µ̂,∗ − V µ̂s,u,∗∥∥∞ ≤ max
ϑ∈∆(B)

∥∥Ea∼µ̂(· | s),b∼ϑ[Qµ̂,∗(·, a, b)]− Ea∼µ̂s,u(· | s),b∼ϑ[Qµ̂s,u,∗(·, a, b)]
∥∥
∞

≤ max
ϑ∈∆(B)

∥∥Ea∼µ̂(· | s),b∼ϑ[Qµ̂,∗(·, a, b)]− Ea∼µ̂(· | s),b∼ϑ[Qµ̂s,u,∗(·, a, b)]
∥∥
∞

+ max
ϑ∈∆(B)

∥∥Ea∼µ̂(· | s),b∼ϑ[Qµ̂s,u,∗(·, a, b)]− Ea∼µ̂s,u(· | s),b∼ϑ[Qµ̂s,u,∗(·, a, b)]
∥∥
∞

≤
∥∥Qµ̂,∗ −Qµ̂s,u,∗∥∥∞ +

∥∥µ̂− µ̂s,u∥∥TV · ∥∥Qµ̂s,u,∗∥∥∞ (A.31)

≤ γ
∥∥V µ̂,∗ − V µ̂s,u,∗∥∥∞ +

C

1− γ
·
∣∣V̂ ∗(s)− u∣∣, (A.32)

where (A.31) uses Hölder’s inequality, and (A.32) follows by expanding the Q-value functions, using
(A.30), and noticing that ‖Qµ̂s,u,∗‖∞ ≤ 1/(1− γ). Combining (A.32) and (A.29), and taking min
over u ∈ Us, we have

min
u∈Us

∥∥V µ̂,∗ − V µ̂s,u,∗∥∥∞ ≤ C

(1− γ)2
· min
u∈Us

∣∣V̂ ∗(s)− u∣∣ ≤ 2γ ·
√

2 log(4|S||A||B|/δ)
N

.

The rest of the proof follows the arguments of Lemma A.9, which combines the last two inequalities
in Lemma A.8 to obtain the desired bound. Note that the absolute constant here might be different
from that in Lemma A.9. The proof for the second inequality is analogous.

A.3 Proof of Theorem 3.2

We are now ready to prove Theorem 3.2. To this end, we first establish the following lemma.
Lemma A.11. For any policy pair (µ̂, ν̂) that satisfies the condition in Theorem 3.2, there exists
some absolute constant c such that∥∥Qµ̂,ν̂ − Q̂µ̂,ν̂∥∥∞ ≤ γ

1− αδ,N

(√
c log(c|S||A||B|/[(1− γ)2δ])

(1− γ)3N
+
c log(c|S||A||B|/[(1− γ)2δ])

(1− γ)2N

)

+
1

1− αδ,N
· γεopt

(1− γ)

(
1 +

√
log(c|S||A||B|/[(1− γ)2δ])

N

)
∥∥Q∗ − Q̂µ∗,∗∥∥∞ ≤ γ

1− αδ,N

(√
c log(c|S||A||B|/[(1− γ)2δ])

(1− γ)3N
+
c log(c|S||A||B|/[(1− γ)2δ])

(1− γ)2N

)

∥∥Q∗ − Q̂∗,ν∗∥∥∞ ≤ γ

1− αδ,N

(√
c log(c|S||A||B|/[(1− γ)2δ])

(1− γ)3N
+
c log(c|S||A||B|/[(1− γ)2δ])

(1− γ)2N

)
,

where

αδ,N =
γ

1− γ

√
2 log(16|S||A||B|/[(1− γ)2δ])

N
.
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Proof. Note that

‖Qµ̂,ν̂ − Q̂µ̂,ν̂‖∞ = γ
∥∥(I − γP µ̂,ν̂)−1(P − P̂ )V̂ µ̂,ν̂

∥∥
∞ (A.33)

≤ γ
∥∥(I − γP µ̂,ν̂)−1(P − P̂ )V̂ ∗

∥∥
∞ + γ

∥∥(I − γP µ̂,ν̂)−1(P − P̂ )(V̂ µ̂,ν̂ − V̂ ∗)
∥∥
∞ (A.34)

≤ γ
∥∥(I − γP µ̂,ν̂)−1

∣∣(P − P̂ )V̂ ∗
∣∣∥∥
∞ +

2γεopt
1− γ

, (A.35)

where (A.33) is due to Lemma A.1; (A.34) uses triangle inequality; and (A.35) is due to the non-
negativeness of the entries in (I − γP µ̂,ν̂)−1, the sub-optimality of (µ̂, ν̂), and Lemma A.2. Since
the first term in (A.35) can be bounded using Lemma A.9, we have

‖Qµ̂,ν̂ − Q̂µ̂,ν̂‖∞

≤ γ

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
N

∥∥∥(I − γP µ̂,ν̂)−1

√
VarP (V̂ ∗)

∥∥∥
∞

+
γ∆′δ,N
1− γ +

2γεopt
1− γ

≤ γ

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
N

∥∥∥(I − γP µ̂,ν̂)−1
(√

VarP (V µ̂,ν̂) +

√
VarP (V µ̂,ν̂ − V̂ µ̂,ν̂)

)∥∥∥
∞

+ γ

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
N

∥∥∥(I − γP µ̂,ν̂)−1
(√

VarP (V̂ µ̂,ν̂ − V̂ ∗)
)∥∥∥
∞

+
γ∆′δ,N
1− γ +

2γεopt
1− γ (A.36)

≤ γ

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
N

(√
2

(1− γ)3
+
‖V µ̂,ν̂ − V̂ µ̂,ν̂‖∞

1− γ +
εopt

1− γ

)

+
γ∆′δ,N
1− γ +

2γεopt
1− γ (A.37)

≤ γ

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
N

(√
2

(1− γ)3
+
‖Qµ̂,ν̂ − Q̂µ̂,ν̂‖∞

1− γ

)
+
γ∆′δ,N
1− γ

+

(
2 +

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
N

)
· γεopt

1− γ , (A.38)

where (A.36) uses the fact that
√

VarP (X + Y ) ≤
√

VarP (X) +
√

VarP (Y ); (A.37) is due to

Lemma A.3, the fact that
√

VarP (V µ̂,ν̂ − V̂ µ̂,ν̂) ≤ ‖V µ̂,ν̂ − V̂ µ̂,ν̂‖∞, and ‖V̂ µ̂,ν̂ − V̂ ∗‖∞ ≤ εopt;
(A.38) is due to ‖V µ̂,ν̂ − V̂ µ̂,ν̂‖∞ ≤ ‖Qµ̂,ν̂ − Q̂µ̂,ν̂‖∞. Solving for ‖Qµ̂,ν̂ − Q̂µ̂,ν̂‖∞ in (A.38)
yields the desired inequality.

For the second inequality, by Lemma A.1, we first have

γ(I − γPµ
∗,ν∗)−1(P − P̂ )V̂ µ

∗,ν∗︸ ︷︷ ︸
Qµ∗,ν∗−Q̂µ∗,ν∗

≤ Q∗ − Q̂µ
∗,∗ ≤ γ(I − γPµ

∗,ν̂(µ∗))−1(P − P̂ )V̂ µ
∗,∗︸ ︷︷ ︸

Qµ∗,ν̂(µ∗)−Q̂µ∗,∗

.

Thus, we obtain that

∥∥Q∗ − Q̂µ∗,∗∥∥∞ ≤ max
{∥∥Qµ∗,ν∗ − Q̂µ∗,ν∗∥∥∞, ∥∥Qµ∗,ν̂(µ∗) − Q̂µ

∗,∗∥∥
∞

}
= max

{
γ
∥∥(I − γPµ

∗,ν∗)−1(P − P̂ )V̂ µ
∗,ν∗
∥∥
∞, γ

∥∥(I − γPµ
∗,ν̂(µ∗))−1(P − P̂ )V̂ µ

∗,∗∥∥
∞

}
.

(A.39)
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For the first term in the max operator above, by similar arguments from (A.36)-(A.38), we have∥∥Qµ∗,ν∗ − Q̂µ∗,ν∗∥∥∞ = γ
∥∥(I − γPµ

∗,ν∗)−1(P − P̂ )V̂ µ
∗,ν∗
∥∥
∞

≤ γ

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
N

∥∥∥(I − γPµ
∗,ν∗)−1

√
VarP (V̂ µ∗,ν∗)

∥∥∥
∞

+
γ∆′δ,N
1− γ

(A.40)

≤ γ

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
N

∥∥∥(I − γPµ
∗,ν∗)−1

√
VarP (V µ∗,ν∗ − V̂ µ∗,ν∗)

∥∥∥
∞

+ γ

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
N

∥∥∥(I − γPµ
∗,ν∗)−1

√
VarP (V µ∗,ν∗)

∥∥∥
∞

+
γ∆′δ,N
1− γ

(A.41)

≤ γ

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
N

·
∥∥Qµ∗,ν∗ − Q̂µ∗,ν∗∥∥∞

1− γ

+ γ

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
N

·

√
2

(1− γ)3
+
γ∆′δ,N
1− γ

, (A.42)

where (A.40) is due to Lemma A.9, (A.41) uses triangle inequality, and (A.43) uses Lemma A.3.
Solving for

∥∥Qµ∗,ν∗ − Q̂µ∗,ν∗∥∥∞ gives the bound for it.

Similarly, the second term in the max operator in (A.39) can be bounded by∥∥Qµ∗,ν̂(µ∗) − Q̂µ
∗,∗∥∥

∞ ≤ γ

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
N

·
∥∥Qµ∗,ν̂(µ∗) − Q̂µ∗,∗

∥∥
∞

1− γ

+ γ

√
2 log

(
16|S||A||B|/[(1− γ)2δ]

)
N

·

√
2

(1− γ)3
+
γ∆′δ,N
1− γ

,

(A.43)

which can be solved to obtain a bound for
∥∥Qµ∗,ν̂(µ∗) − Q̂µ∗,∗

∥∥
∞. Combining the two bounds

and (A.39), we prove the second inequality in the lemma. The proof for the third inequality is
analogous.

With Lemma A.11 in hand, we are now ready to prove Theorem 3.2. Note that the condition on N in
Theorem 3.2 makes αδ,N < 1/2. Thus, by (A.2)-(A.3) in Lemma A.1 with (µ, ν) being replaced by
(µ̂, ν̂), we have

− ‖Qµ̂,ν̂ − Q̂µ̂,ν̂‖∞ − γεopt − ‖Q̂µ
∗,∗ −Q∗‖∞ ≤ Qµ̂,ν̂ −Q∗

≤ ‖Qµ̂,ν̂ − Q̂µ̂,ν̂‖∞ + γεopt + ‖Q̂∗,ν
∗
−Q∗‖∞,

where we use
‖Q̂µ̂,ν̂ − Q̂∗‖∞ = γ‖PV̂ µ̂,ν̂ − PV̂ ∗‖∞ ≤ γ‖V̂ µ̂,ν̂ − V̂ ∗‖∞ ≤ γεopt.

Substituting in the bounds of ‖Qµ̂,ν̂ − Q̂µ̂,ν̂‖∞, ‖Q∗ − Q̂µ∗,∗‖∞, and ‖Q∗ − Q̂∗,ν∗‖∞ in Lemma
A.11, we arrive at the final bound for ‖Qµ̂,ν̂ −Q∗‖∞:
‖Qµ̂,ν̂ −Q∗‖∞

≤ 4γ

(√
c log(c|S||A||B|/[(1− γ)2δ])

(1− γ)3N
+
c log(c|S||A||B|/[(1− γ)2δ])

(1− γ)2N

)
+

4γεopt
1− γ

+ γεopt.

With a certain choice of c, we have ‖Qµ̂,ν̂ −Q∗‖∞ ≤ 2ε/3 + 5γεopt/(1− γ).

For the last argument in Theorem 3.2, by triangle inequality, with the same constant c used above, we
have

‖Q̂µ̂,ν̂ −Q∗‖∞ ≤ ‖Qµ̂,ν̂ −Q∗‖∞ + ‖Q̂µ̂,ν̂ −Qµ̂,ν̂‖∞ ≤ ε+
9γεopt
1− γ

,

which completes the proof.
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A.4 Proof of Corollary 3.3

We now prove Corollary 3.3, based on Theorem 3.2. For any state s, we have

V ∗(s)− V µ̃,∗(s) = min
ϑ∈∆(B)

Ea∼µ∗(· | s),b∼ϑ
[
Q∗(s, a, b)

]
− min
ϑ∈∆(B)

Ea∼µ̃(· | s),b∼ϑ
[
Qµ̃,∗(s, a, b)

]
= min
ϑ∈∆(B)

Ea∼µ∗(· | s),b∼ϑ
[
Q∗(s, a, b)

]
− min
ϑ∈∆(B)

Ea∼µ̃(· | s),b∼ϑ
[
Q∗(s, a, b)

]
+ min
ϑ∈∆(B)

Ea∼µ̃(· | s),b∼ϑ
[
Q∗(s, a, b)

]
− min
ϑ∈∆(B)

Ea∼µ̃(· | s),b∼ϑ
[
Qµ̃,∗(s, a, b)

]
≤ min
ϑ∈∆(B)

Ea∼µ∗(· | s),b∼ϑ
[
Q∗(s, a, b)

]
− min
ϑ∈∆(B)

Ea∼µ̃(· | s),b∼ϑ
[
Q∗(s, a, b)

]
+ γ‖V ∗ − V µ̃,∗‖∞

(A.44)

≤ min
ϑ∈∆(B)

Ea∼µ∗(· | s),b∼ϑ
[
Q∗(s, a, b)

]
− min
ϑ∈∆(B)

Ea∼µ∗(· | s),b∼ϑ
[
Q̂µ̂,ν̂(s, a, b)

]
+ min
ϑ∈∆(B)

Ea∼µ̃(· | s),b∼ϑ
[
Q̂µ̂,ν̂(s, a, b)

]
− min
ϑ∈∆(B)

Ea∼µ̃(· | s),b∼ϑ
[
Q∗(s, a, b)

]
+ γ‖V ∗ − V µ̃,∗‖∞ (A.45)

≤ 2
∥∥Q∗ − Q̂µ̂,ν̂∥∥∞ + γ‖V ∗ − V µ̃,∗‖∞, (A.46)

where (A.44) uses the fact that

min
ϑ∈∆(B)

Ea∼µ̃(· | s),b∼ϑ
[
Q∗(s, a, b)

]
− min
ϑ∈∆(B)

Ea∼µ̃(· | s),b∼ϑ
[
Qµ̃,∗(s, a, b)

]
≤ max
ϑ∈∆(B)

∣∣∣∣Ea∼µ̃(· | s),b∼ϑ
[
Q∗(s, a, b)

]
− Ea∼µ̃(· | s),b∼ϑ

[
Qµ̃,∗(s, a, b)

]∣∣∣∣ ≤ γ‖V ∗ − V µ̃,∗‖∞,
and (A.45) is due to the fact that

− min
ϑ∈∆(B)

Ea∼µ∗(· | s),b∼ϑ
[
Q̂µ̂,ν̂(s, a, b)

]
+ min
ϑ∈∆(B)

Ea∼µ̃(· | s),b∼ϑ
[
Q̂µ̂,ν̂(s, a, b)

]
≥ 0,

by definition of µ̃. Hence, (A.46), together with Theorem 3.2, implies that

V ∗ − V µ̃,∗ ≤
2
∥∥Q∗ − Q̂µ̂,ν̂∥∥∞

1− γ
= ε̃. (A.47)

By similar arguments, we have

V ∗,ν̃ − V ∗ ≤
2
∥∥Q∗ − Q̂µ̂,ν̂∥∥∞

1− γ
= ε̃. (A.48)

Combining (A.47) and (A.48) yields

V µ̃,ν̃ − V µ̃,∗ ≤ V ∗,ν̃ − V µ̃,∗ ≤ 2ε̃, V ∗,ν̃ − V µ̃,ν̃ ≤ V ∗,ν̃ − V µ̃,∗ ≤ 2ε̃,

which completes the proof.

A.5 Proof of Theorem 3.5

We now prove the second main result, Theorem 3.5. First, following the proof of Corollary 3.3, it
suffices to prove that V ∗ − V µ̂,∗ ≤ ε̃, V ∗,ν̂ − V ∗ ≤ ε̃, since they together imply that (µ̂, ν̂) is a
2ε̃-Nash equilibrium. The following analysis is devoted to proving this argument.

The idea is similar to that presented in §A.3, i.e., we use the component-wise error decompositions in
Lemma A.1, but use (A.4)-(A.5) instead. In particular, letting µ = µ̂ and ν = ν̂, we have

V µ̂,∗ − V ∗ ≥ −‖Qµ̂,∗ − Q̂µ̂,∗‖∞ − εopt − ‖Q̂µ
∗,∗ −Q∗‖∞ (A.49)

V ∗,ν̂ − V ∗ ≤ ‖Q∗,ν̂ − Q̂∗,ν̂‖∞ + εopt + ‖Q̂∗,ν
∗
−Q∗‖∞. (A.50)

Note that the bounds for ‖Q̂µ∗,∗ − Q∗‖∞ and ‖Q̂∗,ν∗ − Q∗‖∞ have already been established in
Lemma A.11 (without dependence on εopt and the Planning Oracle). It now suffices to bound
‖Qµ̂,∗ − Q̂µ̂,∗‖∞ and ‖Q∗,ν̂ − Q̂∗,ν̂‖∞. For the former term, by Lemma A.1, we first have

γ(I − γP̂ µ̂,ν(µ̂))−1(P − P̂ )V µ̂,ν(µ̂)︸ ︷︷ ︸
Qµ̂,∗−Q̂µ̂,ν(µ̂)

≤ Qµ̂,∗ − Q̂µ̂,∗ ≤ γ(I − γP µ̂,ν̂(µ̂))−1(P − P̂ )V̂ µ̂,ν̂(µ̂)︸ ︷︷ ︸
Qµ̂,ν̂(µ̂)−Q̂µ̂,∗

.
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Thus, we know that∥∥Qµ̂,∗ − Q̂µ̂,∗∥∥∞ (A.51)

≤ max
{
γ
∥∥(I − γP µ̂,ν̂(µ̂))−1(P − P̂ )V̂ µ̂,ν̂(µ̂)

∥∥
∞, γ

∥∥(I − γP̂ µ̂,ν(µ̂))−1(P − P̂ )V µ̂,ν(µ̂)
∥∥
∞

}
.

The first term in the max operator, where the policies in the pair (µ̂, ν̂(µ̂)) are both obtained from
the empirical model Ĝ, can be bounded similarly as that for ‖Qµ̂,ν̂ − Q̂µ̂,ν̂‖∞ in Lemma A.11.
Specifically, following (A.33)-(A.35), we have

γ
∥∥(I − γP µ̂,ν̂(µ̂))−1(P − P̂ )V̂ µ̂,∗

∥∥
∞

≤ γ
∥∥(I − γP µ̂,ν̂(µ̂))−1(P − P̂ )V̂ ∗

∥∥
∞ + γ

∥∥(I − γP µ̂,ν̂(µ̂))−1(P − P̂ )(V̂ µ̂,∗ − V̂ ∗)
∥∥
∞

(A.52)

≤ γ
∥∥(I − γP µ̂,ν̂(µ̂))−1

∣∣(P − P̂ )V̂ ∗
∣∣∥∥
∞ +

2γεopt
1− γ

, (A.53)

where (A.52) uses the triangle inequality, and (A.53) is due to the optimization error of µ̂. Then, to
bound γ

∥∥(I − γP µ̂,ν̂(µ̂))−1
∣∣(P − P̂ )V̂ ∗

∣∣∥∥
∞, the rest of the proof is analogous to the derivations

in (A.36)-(A.38), by replacing ν̂ therein by ν̂(µ̂), and bound ‖V̂ µ̂,∗ − V̂ ∗‖∞ by εopt. Solving for
‖Qµ̂,ν̂(µ̂) − Q̂µ̂,∗‖∞ yields the desired bound for the first term in the max in (A.51), namely, there
exists some constant c such that with probability greater than 1− δ,∥∥Qµ̂,ν̂(µ̂) − Q̂µ̂,∗

∥∥
∞

≤ γ

1− α′δ,N

(√
c log(c(C + 1)|S||A||B|/[(1− γ)4δ])

(1− γ)3N
+
c log(c(C + 1)|S||A||B|/[(1− γ)4δ])

(1− γ)2N

)

+
1

1− α′δ,N
· γεopt

(1− γ)

(
1 +

√
log(c(C + 1)|S||A||B|/[(1− γ)4δ])

N

)
, (A.54)

where α′δ,N is defined as

α′δ,N =
γ

1− γ

√
2 log(8(C + 1)|S||A||B|/[(1− γ)4δ])

N
.

For the second term in the max in (A.51), note that µ̂ is obtained from Ĝ, while ν(µ̂) is obtained
from the true model G. By Lemma A.10, it holds that

γ
∥∥(I − γP̂ µ̂,ν(µ̂))−1

∣∣(P − P̂ )V µ̂,∗
∣∣∥∥
∞

≤ γ

√
2 log

(
8(C + 1)|S||A||B|/[(1− γ)4δ]

)
N

∥∥∥(I − γP̂ µ̂,ν(µ̂))−1
√

VarP (V µ̂,∗)
∥∥∥
∞

+
γ∆′δ,N
1− γ

≤ γ

√
2 log

(
8(C + 1)|S||A||B|/[(1− γ)4δ]

)
N

·
[∥∥∥(I − γP̂ µ̂,ν(µ̂))−1

(√
VarP̂ (V̂ µ̂,ν(µ̂))

+

√
VarP̂ (V µ̂,∗ − V̂ µ̂,ν(µ̂))

)∥∥∥
∞

+
∥∥∥(I − γP̂ µ̂,ν(µ̂))−1

∣∣∣√VarP (V µ̂,∗)

−
√

VarP̂ (V µ̂,∗)
∣∣∣∥∥∥
∞

]
+
γ∆′δ,N
1− γ

(A.55)

≤ γ

√
2 log

(
8(C + 1)|S||A||B|/[(1− γ)4δ]

)
N

(√
2

(1− γ)3
+
‖Qµ̂,∗ − Q̂µ̂,ν(µ̂)‖∞

1− γ

)
+
γ∆′δ,N
1− γ

(A.56)

+
γ

1− γ

√
2 log

(
8(C + 1)|S||A||B|/[(1− γ)4δ]

)
N

∥∥∥∣∣∣√VarP (V µ̂,∗)−
√

VarP̂ (V µ̂,∗)
∣∣∣∥∥∥
∞
,
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where (A.55) uses the norm-like triangle-inequality property of
√

VarP (V ) and triangle inequality,
(A.56) is due to Lemma A.3, and the facts that

√
VarP (X) ≤ ‖X‖∞, ‖V µ̂,∗ − V̂ µ̂,ν(µ̂)‖∞ ≤

‖Qµ̂,∗ − Q̂µ̂,ν(µ̂)‖∞, and Lemma A.2. Moreover, notice that∥∥∥∣∣∣√VarP (V µ̂,∗)−
√

VarP̂ (V µ̂,∗)
∣∣∣∥∥∥
∞

≤
∥∥∥∣∣∣√VarP (V µ̂,∗)−

√
VarP (V ∗)

∣∣∣∥∥∥
∞

+
∥∥∥∣∣∣√VarP̂ (V µ̂,∗)−

√
VarP̂ (V ∗)

∣∣∣∥∥∥
∞

+
∥∥∥∣∣∣√VarP (V ∗)−

√
VarP̂ (V ∗)

∣∣∣∥∥∥
∞

(A.57)

≤
∥∥∥√VarP (V µ̂,∗ − V ∗)

∥∥∥
∞

+
∥∥∥√VarP̂ (V µ̂,∗ − V ∗)

∥∥∥
∞

+
∥∥∥√∣∣∣VarP (V ∗)−VarP̂ (V ∗)

∣∣∣∥∥∥
∞

(A.58)

≤ 2
∥∥V µ̂,∗ − V ∗∥∥∞ +

√∥∥∥VarP (V ∗)−VarP̂ (V ∗)
∥∥∥
∞
, (A.59)

where (A.57) uses triangle inequality, (A.58) uses the norm-like triangle inequality of
√

VarP (V ) and√
VarP̂ (V ), and the fact |

√
X −

√
Y | ≤

√
|X − Y | for X,Y ≥ 0, and (A.59) uses

√
VarP (X) ≤

‖X‖∞ and the definition of ‖ · ‖∞. In addition, we know that with probability at least 1− δ,∥∥∥VarP (V ∗)−VarP̂ (V ∗)
∥∥∥
∞

=
∥∥∥(P − P̂ )(V ∗)2 −

(
(PV ∗)2 − (P̂ V ∗)2

)∥∥∥
∞

≤
∥∥∥(P − P̂ )(V ∗)2

∥∥∥
∞

+
∥∥∥(PV ∗)2 − (P̂ V ∗)2

∥∥∥
∞

≤ 1

(1− γ)2

√
2 log(2|S||A||B|/δ)

N
+

2

1− γ
∥∥(P − P̂ )V ∗

∥∥
∞

≤ 3

(1− γ)2

√
2 log(2|S||A||B|/δ)

N
, (A.60)

due to Hoeffding bound and ‖V ∗‖∞ ≤ 1/(1− γ).

Combining (A.56), (A.59), and (A.60) yields∥∥∥Qµ̂,∗ − Q̂µ̂,ν(µ̂)
∥∥∥
∞

≤ γ

√
2 log

(
8(C + 1)|S||A||B|/[(1− γ)4δ]

)
N

(√
2

(1− γ)3
+
‖Qµ̂,∗ − Q̂µ̂,ν(µ̂)‖∞

1− γ

)
+
γ∆′δ,N
1− γ

+
γ

1− γ

√
2 log

(
8(C + 1)|S||A||B|/[(1− γ)4δ]

)
N

(
2
∥∥V µ̂,∗ − V ∗∥∥∞

+

√
3

(1− γ)2

√
2 log(2|S||A||B|/δ)

N

)
.

Solving for ‖Qµ̂,∗ − Q̂µ̂,ν(µ̂)‖∞ further leads to∥∥Qµ̂,∗ − Q̂µ̂,ν(µ̂)
∥∥
∞

≤ γ

1− α′δ,N

(√
c log(c(C + 1)|S||A||B|/[(1− γ)4δ])

(1− γ)3N
+
c log(c(C + 1)|S||A||B|/[(1− γ)4δ])

(1− γ)2N

)

+
1

1− α′δ,N
· γ

1− γ

√
2 log

(
8(C + 1)|S||A||B|/[(1− γ)4δ]

)
N

(
2
∥∥V µ̂,∗ − V ∗∥∥∞

+
1

1− γ
4

√
c log(c(C + 1)|S||A||B|/δ)

N

)
, (A.61)

for some absolute constant c.
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Now we substitute (A.54) and (A.61) into (A.51), to complete the bound in (A.49). If the first term in
the max in (A.51) is larger, and noticing that the choice of N in the theorem can make α′δ,N < 1/5,
(A.49), (A.51), (A.54), and Lemma A.11 together lead to

V ∗ − V µ̂,∗

≤ 5γ

2

(√
c log(c(C + 1)|S||A||B|/[(1− γ)4δ])

(1− γ)3N
+
c log(c(C + 1)|S||A||B|/[(1− γ)4δ])

(1− γ)2N

)

+
5γεopt

2(1− γ)
+ εopt, (A.62)

with some absolute constant c, where we have replaced the term log(1/(1− γ)2) in the bounds for
‖Q∗ − Q̂µ∗,∗‖∞ and ‖Q∗ − Q̂∗,ν∗‖∞ in Lemma A.11 (including that in the definition of αδ,N ) by
log((C + 1)/(1− γ)4), a larger number. If the second term in the max in (A.51) is larger, (A.49),
(A.51), (A.61), and Lemma A.11 together yield

V ∗ − V µ̂,∗

≤ 5γ

2

(√
c log(c(C + 1)|S||A||B|/[(1− γ)4δ])

(1− γ)3N
+
c log(c(C + 1)|S||A||B|/[(1− γ)4δ])

(1− γ)2N

)

+
5

4
· γ

1− γ

√
2 log

(
8(C + 1)|S||A||B|/[(1− γ)4δ]

)
N

(
2
∥∥V µ̂,∗ − V ∗∥∥∞

+
1

1− γ
4

√
c log(c(C + 1)|S||A||B|/δ)

N

)
+ εopt,

where we have used the fact that α′δ,N < 1/5. Taking infinity norm on both sides and solving for
‖V µ̂,∗ − V ∗‖∞, we have

V ∗ − V µ̂,∗ ≤
∥∥V µ̂,∗ − V ∗∥∥∞ ≤ 5γ

(√
c log(c(C + 1)|S||A||B|/[(1− γ)4δ])

(1− γ)3N
+ (A.63)

c log(c(C + 1)|S||A||B|/[(1− γ)4δ])

(1− γ)2N

)
+

5γ

2(1− γ)2

(c log(c(C + 1)|S||A||B|/δ)
N

)3/4

+ 2εopt,

with some absolute constant c (which can be different from that in (A.62)). Using the choice of N in
the theorem, and combining (A.62) and (A.63), we finally have V ∗−V µ̂,∗ ≤ ε+4εopt/(1−γ). Note
that on the right-hand of (A.63), the N that makes the third term to beO(ε) is Õ(1/[(1−γ)8/3ε4/3]),
which is dominated by Õ(1/[(1 − γ)3ε2]) when ε ∈ (0, 1/(1 − γ)1/2]. In addition, to make
α′δ,N < 1/5, N should be larger than O(1/(1− γ)2), this is consistent with both the first and third
terms on the right-hand of (A.63) to be O(1/(1− γ)1/2), determining the allowed range of ε to be
(0, 1/(1− γ)1/2]. This proves the first bound in the theorem.

The proof for completing the bound in (A.50) is analogous: using Lemmas A.10 and A.1 to bound
‖Q∗,ν̂ − Q̂∗,ν̂‖∞, which is then substituted into (A.50). This completes the proof.

B On the Lower Bound

Now we discuss the lower bound of the sample complexity given in Lemma 3.1.

Proof of Lemma 3.1. The proof follows by recalling the hard cases of MDPs considered in [26] or
[47], and replacing each action a therein by a joint-action (a, b). Without loss of generality, suppose
|A| ≥ |B|. Then, we design a Markov game such that agent 2 has no effect on either the reward or
the transition. Thus, finding an NE is now the same as agent 1 finding the optimal value/policy. By
the arguments in [26, 47], the sample complexity is at least Ω

(
|S| ·max{|A|, |B|} · (1− γ)−3ε−2

)
.

Notice that max{|A|, |B|} = (|A|+ |B|+ ||A| − |B||)/2, we obtain the lower bound.
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Challenge in Obtaining Ω(|A||B|). Though the proof above seems straightforward, and the result
can be obtained in several different ways (either as above or another treatment of turn-based MGs or
the approaches to be introduced), we highlight the challenge in obtaining a tighter lower bound of
order Ω(|A||B|) (not Ω(|A|+ |B|)), if one follows the lower bound proof framework before [26, 47].
The core idea in those proofs is to create a class of O(|S||A|) number of MDPs, which are hard to
distinguish from each other. More specifically, there is a null case MDP in the hypothesis testing, and
every other MDP in the class, as alternative cases, corresponds to every (s, a) pair. Each alternative
case is generated by one single change of the transition probability at this (s, a), while leading to a
large enough difference of the Q-value from the null case. Thus, the optimal action at this alternative
case is changed from the original one in the null case to this a. Then, it can be shown that for any
algorithm, if it correctly outputs the Q-value in the alternative case with high probability, then it
must have sampled Ω((1 − γ)−3ε−2) samples at this (s, a) pair in the null case. As this holds for
all O(|S||A|) alternative cases, and they have no overlapped changes of (s, a) pairs from each other,
leading to a total number of Ω(|S||A|(1− γ)−3ε−2) samples.

In contrast, in zero-sum MGs, at each state s, a zero-sum matrix game is solved. Following the similar
idea, one does need to construct O(|S||A||B|) alternative cases, by only making O(1) number of
changes in the Q-value in each of them, so that the Nash equilibrium Q-value at each s is changed by
a relatively large amount. However, this seems challenging to achieve in general, as the NE value of
zero-sum matrix games is not sensitive to the small number of element changes in the payoff matrices.
It is possible to change the NE value by a relatively large amount by changing one row/column of
the payoff matrix, i.e., O(|A|) (or O(|B|)) number of changes. Nonetheless, this will only give us
essentiallyO(|B|) orO(|A|) hard alternative cases, which ends up with the same Ω(|A|+ |B|) result
as Lemma 3.1. In fact, if the null case admits a pure NE at some state s, it suffices to use samples to
accurately estimate the payoff elements in the row and column that this pure NE point occupies, while
all other payoff values do not need to be accurately estimated. This ends up with a Ω(|A|+ |B|) lower
bound, too. For more general cases with mixed NE, the change of the NE value is still small, with
only O(1) elements changed with a small magnitude. This can be evidenced either by the stability of
the NE in this case against the payoff perturbation [67], or by the sensitivity analysis of the equivalent
linear program of the game [68] against the problem data [69]. Hence, the existing technique based
on constructing state-by-state bandit/matrix game may not be sufficient. More sophisticated coupling
among the matrix games at different states may be required to establish harder MG cases.

On the other hand, interestingly, we note that there are some results on the payoff query complexity,
i.e., the number of queries for the elements in the payoff matrix, for finding the NE [70, 71]. It is
possible to use O(k log(k)/ε2) queries to find the ε-NE in zero-sum matrix games when |A| = |B|,
where k = |A| = |B| [71]. Note that the lower bound given in [71], though being Ω(k2), requires the
accuracy ε ≤ 1/k to be small, which cannot be used in our previous analysis with a dimension-free
choice of ε. From a different angle, these results imply that it may indeed be unnecessary to accurately
estimate all elements in the matrix, in order to obtain an approximate Nash equilibrium.

In light of these observations, we conjecture that the lower bound of Ω(|A|+ |B|) is indeed unimprov-
able, which can be matched by some other (possibly model-free) MARL algorithms. Interestingly,
such a Ω(|A|+ |B|) lower bound on regret has been provided recently in [36], though in a different
MARL setting. This Ω(|A|+ |B|) lower bound was also shown to be attained by no-regret learning
algorithms there, when horizon H = 1. The challenge of matching the lower bound for actual
multi-step Markov games was also acknowledged there.

C A Smooth Planning Oracle

We now show that solving the regularized matrix game induced by Q̂∗, see (3.2), leads to a smooth
Planning Oracle (see Definition 3.4).
Lemma C.1. Suppose that the regularizers Ωi for i = 1, 2 in (3.2) are twice continuously differen-
tiable and strongly convex. Suppose that the solution policy pair (µ̂(· | s), ν̂(· | s)) of (3.2) lies in the
relative interior of the simplexes ∆(A) and ∆(B), respectively. Then, (µ̂, ν̂) is smooth with respect
to Q̂∗, namely, this Planning Oracle follows Definition 3.4 with some constant C.

Proof. Let Qs := Q̂∗(s, ·, ·) ∈ R|A|×|B| denote the payoff matrix of the game at state s. Note that
Qs ∈ [0, (1− γ)−1]|A|×|B|, u ∈ [0, 1]|A| and ϑ ∈ [0, 1]|B|. First, as the solution to (3.2) lies in the
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relative interior of the simplex, by first-order optimality, we have that for each s ∈ S

∇uΩ1(u)−Qsϑ = 0, ∇ϑΩ2(ϑ) +Q>s u = 0, (C.1)

whose solution is unique. Define a function F : R|A| × R|B| × R|A||B| → R|A|+|B| as follows, such
that (C.1) is equivalent to

F
(
u, ϑ, vec(Qs)

)
:=

[
∇uΩ1(u)−Qsϑ
∇ϑΩ2(ϑ) +Q>s u

]
= 0.

As the solution to (C.1) lies in the relative interior of ∆(A)×∆(B), for any choice of Qs ∈ R|A|×|B|
(not just [0, (1 − γ)−1]|A|×|B|), the domain of F can be specified as ∆o(A) ×∆o(B) × Λ, where
∆o(A) and ∆o(B) denote the interiors of ∆(A) and ∆(B), respectively, and Λ ⊂ R|A||B| denotes
some open set that contains [0, (1− γ)−1]|A||B|.

Notice that the Jacobian of F with respect to [u> ϑ>]> is

M
(
u, ϑ, vec(Qs)

)
:=
[
∂F
∂u

∂F
∂ϑ

]
=

[
∇2
uΩ1(u) −Qs
Q>s ∇2

ϑΩ2(ϑ)

]
, (C.2)

which is always invertible for any point in ∆o(A) ×∆o(B) × Λ. This is because Ωi are strongly
convex, and thus the real parts of the eigenvalues of the matrix, which are the eigenvalues of
(M +M>)/2, are always positive and uniformly lower bounded, namely, there exists some constant
η > 0, such that

min
i
λi
(
M(u, ϑ, vec(Qs)) +M>(u, ϑ, vec(Qs))

)
≥ 2η > 0,

with λi(·) being the eigenvalues of the corresponding matrix. This further implies that for any
(u, ϑ, vec(Qs)) ∈ ∆o(A)×∆o(B)× Λ,∥∥M(u, ϑ, vec(Qs))

−1
∥∥

2
=

1

mini σi(M(u, ϑ, vec(Qs)))

≤ 2

mini λi(M(u, ϑ, vec(Qs)) +M>(u, ϑ, vec(Qs)))
≤ 1

η
,

where σi is the singular value of M .

By the implicit function theorem [72], for any point that solves F (u, ϑ,Qs) = 0, since
M(u, ϑ, vec(Qs)) is invertible, there exists a neighborhood U ⊆ ∆o(A), V ⊆ ∆o(B), and W ⊆ Λ
around it, such that [u> ϑ>]> ∈ U × V is a unique function of vec(Qs) for all vec(Qs) ∈W , and

∂[u> v>]>

∂vec(Qs)
= −

[
∂F
∂u

∂F
∂ϑ

]−1 · ∂F

∂vec(Qs)
= −M(u, ϑ, vec(Qs))

−1 ·



− ϑ> ⊗ e1

...
− ϑ> ⊗ e|A|

u> 0 · · · 0
. . .

0 0 · · · u>


,

where ei ∈ R|B| is an all-zero vector except that the i-th element is 1. Thus, we have∥∥∥∥∂[u> v>]>

∂vec(Qs)

∥∥∥∥
2

≤
∥∥M(u, ϑ, vec(Qs))

−1
∥∥

2
·
∥∥∥∥ ∂F

∂vec(Qs)

∥∥∥∥
2

≤ |A||B|
η
·
∥∥∥∥ ∂F

∂vec(Qs)

∥∥∥∥
1

=
|A||B|
η

.

Notice that this is a uniform bound on the gradient of the implicit function, at any point in ∆o(A)×
∆o(B)× Λ, which together with the mean value theorem leads to∥∥[u>1 v>1 ]− [u>2 v>2 ]

∥∥
2
≤ |A||B|

η
·
∥∥vec(Qs,1)− vec(Qs,2)

∥∥
2
,

where the pair (ui, ϑi) is the unique solution of F = 0 corresponding to Qs,i. By the equivalence of
norms and considering all s ∈ S, we can find some constant C (which may depend on |A| and |B|
polynomially) as the smooth coefficient, and this completes the proof.
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To ensure that the solution (µ̂(· | s), ν̂(· | s)) of (3.2) lies in the relative interior of the simplexes, the
common choice of steep regularizers will suffice [61]. The steep regularizer means that for any u (resp.
ϑ) on the boundary of the simplex ∆(A) (resp. ∆(B)), and for every interior sequence un → u (resp.
ϑn → ϑ) that approaches it, it holds that

∥∥dΩ1(u)
du

∣∣
u=un

∥∥
2
→∞ (resp.

∥∥dΩ2(ϑ)
dϑ

∣∣
ϑ=ϑn

∥∥
2
→∞). This

way, the optimizer cannot occur on the boundary of the simplexes. Examples of steep regularizers in
Lemma C.1 include the commonly used negative entropy, Tsallis entropy and Rényi entropy with
certain parameters; see [61] for more details.
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