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1 General Approach

As discussed in the main text, we assume a neural encoding model p(r|s), which specifies how
neural (population) activity r depends on a one-dimensional stimulus s, and is parametrized by a
scalar-valued, deterministic function θ(s) such that

p(r|s) = p(r|θ(s)), (1)

where θ(s) is increasing in s. We assume that the code is efficient in that it maximizes the
average across s of a function f(·) of the square root of the Fisher information in r about s,
Is(s) = Ep(r|s)

[( d
ds log p(r|s)

)2]
, while satisfying, on average, some constraint h(r) ≤M , that is

max Eps(s)
[
f
(√

Is(s)
)]
, s.t. Ep(r|s)ps(s) [h(r)] ≤M. (2)

Specific assumptions about f(·) and h(·) are discussed in the main text, and will be revisited further
below.

1.1 Deriving the efficient coding objective in terms of θ(s)

Here we derive the θ(s) optimization from our assumptions. Because θ is a deterministic remapping
of s, an application of the chain rule shows that the Fisher information in r about s is related to the
Fisher information in r about θ by

Is(s) = Iθ
(
θ(s)

)(dθ
ds

)2

. (3)

Note that Iθ(θ) = Ep(r|θ)
[( d

dθ log p(r|θ)
)2]

is determined only by features of the encoding model.
Turning to the constraint,

Eps(s)p(r|s)[h(r)] = Eps(s)
[∫

h(r)p(r|θ(s))dr
]
:= Eps(s) [C(θ(s))] , (4)

where we have definedC(θ) := Ep(r|θ) [h(r)]. Finally, we made two additional coding assumptions
on θ(s), namely that θ(s) is increasing

dθ
ds

> 0 (5)

and that the θ(s) curve has finite extent Lθ in θ space∫
dθ
ds

ds =
∫

dθ = Lθ. (6)

Taking the assumed objective function, Eq. (2), and (i) plugging Eq. (3) into the objective, (ii) plug-
ging Eq. (4) into the constraint, (iii) introducing the encoding specific constraints, Eqs. (5) and (6),
yields the primary optimization problem from the main text:

max
θ(s)

Eps(s)
[
f

(√
Iθ(θ)

dθ
ds

)]
s.t. Eps(s) [C(θ(s))] ≤M,

dθ
ds

> 0,

∫
dθ
ds

ds = Lθ. (7)
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1.2 Assumptions about functional forms

The features of our efficient coding problem, ps(s), f(
√
I), Iθ(θ), and C(θ), are allowed to be quite

flexible, but are still subject to some constraints, as listed here:

• ps(s) is assumed to be continuous, and to have no zero-probability ’gaps’. This latter
assumption is for convenience, and can be removed without changing the results.

• f(
√
I) is assumed to be continuous and monotonically increasing. Given these assump-

tions, we shown in the next section that f(·) must additionally be concave and asymptoti-
cally sublinear for the optimization-problem to be well-behaved.

• Iθ(θ) is assumed to be continuous and non-zero (note that Fisher information is always
≥ 0).

• C(θ) is assumed to be continuous and non-negative. Note that non-negativity follows from
non-negativity of h(r).

1.3 Concavity and sub-linearity of the objective function

The requirement that the objective function is concave and asymptotically sub-linear can be demon-
strated most directly in an optimal control approach to solving the variational optimization. Here,
we interpret the efficient coding problem as optimizing a control u(s) on how fast θ is increasing
at each stimulus, that is, u(s) := dθ

ds . Note that in this formulation, the stimulus s plays the role of
time in a traditional optimal control setting. The last two constraints in Equation 7 act as a restric-
tion on the control set, and a boundary condition for state θ, respectively. For such optimal control
problems, the Pontryagin maximality principle (see [1, 3]) states that, if we form the Hamiltonian

H (s, θ(s), q(s), u(s)) = q(s)u(s) + f
(
u(s)

√
Iθ(θ(s))

)
ps(s) + λC(θ(s))ps(s), (8)

by adding to the objective function a term composed of the product between the dynamics
(dθ/ds = u) and a ’momentum’ co-state, q(s), then the optimal trajectory will be given by a lo-
cal optimization of u(s),

u∗(s) = argmaxu(s) H(s, θ(s), q(s), u(s)), (9)

in conjunction with Hamilton’s equations,

dθ
ds

=
∂H

∂q
,

dq
ds

= −∂H
∂θ

. (10)

Here we focus on the control maximization:

max
u(s)

q(s)u(s) + f
(
u(s)

√
Iθ(θ)

)
ps(s). (11)

Recall that u(s) = dθ/ds is strictly positive, and f(·) is increasing. This means that, in order to have
a maximum where u(s) 6=∞, q(s) must be negative everywhere, and f(·) must increase sublinearly
as u(s) → ∞. Furthermore, because u(s) ∈ (0,∞) cannot be at the boundaries, we have a second
order condition for maximality:

∂2

∂u2

(
q(s)u(s) + f

(
u(s)

√
Iθ(θ)

)
ps(s)

)
= f ′′

(
u(s)

√
Iθ(θ)

)
Iθ(θ)ps(s) < 0. (12)

The non-negativity of Iθ(θ) and ps(s) implies that maxima are only possible in places where f(·) is
concave. This restriction does not fully rule out non-concave objectives, for which optimal solutions
could transition discontinuously between concave regions of the objective function. This behavior
might be interesting, but we limit the analysis to continuous u(s). That is to say, we require our
solution to be well-behaved, in the sense that θ(s) isC1, continuous and with continuous derivatives.
This is the standard requirement for optimization by Euler-Lagrange. Hence, in order for solutions
θ(s) to be C1, the objective function must be concave and asymptotically sublinear as its argument
increases.
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2 Finding efficient coding solutions

Here we derive the solution to the efficient coding problem above. We first outline the general
approach, leading to a system of ordinary differential equations that describe the efficient coding
solution. From this we derive in turn the three special-case analytic solution described in the main
text.

2.1 General optimal solution

There are several ways to solve the general optimization problem. Here we walk through an ap-
proach that is particularly intuitive, but requires some setup. Start with the general optimization
problem (Eq. (7)),

max
θ(s)

Eps(s)
[
f

(√
Iθ(θ)

dθ

ds

)]
s.t. Eps(s) [C(θ)] ≤M,

dθ

ds
> 0,

∫
dθ

ds
ds = Lθ. (13)

Because θ(s) is continuous and strictly increasing, we know that θ is an invertible function of s, and
can therefore be re-expressed in terms of cumulative distribution functions or probability density
functions

θ(s) = CDF−1θ (CDFs(s)); pθ(θ)dθ = ps(s)ds. (14)

Equivalently,

s(θ) = CDF−1s (CDFθ(θ));
dθ
ds

=
ps(s(θ))

pθ(θ)
. (15)

The idea here is to transform the optimization of the function θ(s) into an optimization of pθ(θ), the
probability density function. To do this, we first change the variable of integration from ps(s)ds to
pθ(θ)dθ and substitute the ratio of probability density functions in place of the θ derivative,

max
pθ(θ)

∫ Lθ

0

f

(
ps(s(θ))

pθ(θ)

√
Iθ(θ)

)
pθ(θ)dθ s.t.

∫ Lθ

0

C(θ)pθ(θ)dθ ≤M,

∫ Lθ

0

pθ(θ)dθ = 1

(16)
In this formulation, the final two (parameter) constraints have been absorbed into assumptions on
the probability density function. First, pθ(θ) is positive. Second, the length of θ-space is Lθ, and
pθ is normalized over this length. Here we have WLOG set the lower bound of θ to zero. Note that
s(θ) = CDF−1s (CDFθ(θ)) has its own θ dependence, which introduces some notational complexity.
To handle this complexity, we define the additional functions α(θ) and πs(α), given by

1. CDFθ(θ) = α(θ),

2. dα
dθ = pθ(θ) ,

3. ps(s(θ)) = ps(CDF−1s (CDFθ(θ))) = πs(α(θ)) .

This turns the optimization problem into

max
α(θ),pθ(θ)

∫ Lθ

0

f

(√
Iθ(θ)πs(α(θ))

pθ(θ)

)
pθ(θ)dθ s.t.


∫
C(θ)pθ(θ)dθ ≤M,∫
pθ(θ)dθ = 1,

dα
dθ = pθ(θ)

(17)

Here we are optimizing both of the functions α(θ) and pθ(θ) under the constraint that dαdθ = pθ(θ)
(by the definition of α(θ)), that is, that they specify the cumulative and probability density functions
of the same distribution. The pθ(θ) optimization has a familiar form. Along with the top two
constraints, it takes the from of a constrained minimization of the −f divergence [2] between pθ
and

√
Iθ(θ)πs(α(θ)). In this problem, however, the target distribution is also dependent on the

distribution that we are optimizing. We will see that this target adaptation is what accounts for
stimulus-distribution dependent adaptation.
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Optimizing both α(θ) and pθ(θ), the Euler-Lagrange equations result in the system of ordinary
differential equations,

f̂

(√
Iθ(θ)πs(α(θ))

pθ(θ)

)
= λC(θ) + Z − γ(θ) (18)

dγ
dθ

= f ′

(√
Iθ(θ)πs(α(θ))

pθ(θ)

)√
Iθ(θ)π

′
s(α(θ)), (19)

dα
dθ

= pθ(θ). (20)

Here, λ, Z, and γ(θ) are Lagrange multipliers in charge of enforcing, respectively, the constraint on
C(θ), normalization of pθ(θ), and the equality between pθ and the derivative of the θ CDF, α(θ).
The constraint on C(θ), and the required normalization, can be satisfied by solving (numerically
if necessary) for the values of λ and Z. The objective function appears here in two forms: the
derivative, f ′(·), in Eq. (19), and the Legendre transform, f̂(·), in Eq. (18), which is defined as
f̂(x) = f ′(x)x− f(x).

2.2 Special-case analytic solutions

We now derive each of the special cases in turn.

2.2.1 Log-objective function, f(
√
I) ∝ log I

Setting f(x) = log x, implies that f ′(x) = 1/x, and f̂(x) = 1 − log x, in which case the γ(θ)
dynamics, Eq. (19), become

dγ
dθ

=
π′s(α(θ))

πs(α(θ))
pθ(θ) =

d
dθ

log πs(α(θ)) (21)

Hence, γ(θ) = log πs(α(θ)) + c0 with constant c0. Plugging this result into Eq. (18) cancels the πs
dependence on the right-hand side and, absorbing constants into Z, the remaining equation can be
solved to yield

pθ(θ) = Z−1
√
Iθ(θ) exp(−λC(θ)). (22)

2.2.2 Unconstrained optimization, M →∞

For convenience denote G(θ) =

√
Iθ(θ)πs(α(θ))

pθ(θ)
. In Eq. (18), setting C(θ) = 0 (or λ = 0 if eg. a

constraint is present, but not binding) means that γ(θ) = Z− f̂(G(θ)). Furthermore, note that from
the definition f̂(x) = f ′(x)x− f(x),

dγ
dθ

= − d
dθ
f̂(G(θ)) = −f ′′(G(θ))G(θ)G′(θ). (23)

This γ derivative can be plugged directly into Eq. (19), yielding:

−f
′′(G(θ))

f ′(G(θ))
G′(θ) =

π′s(α)

πs(α)
pθ(θ) (24)

Equivalently,
d
dθ

log f ′(G(θ)) =
d
dθ

log
1

πs(α(θ))
. (25)

Hence,

f ′

(√
Iθ(θ)πs(α(θ))

pθ(θ)

)
∝ 1

πs(α(θ))
, (26)

from which it follows that

pθ(θ) =
√
Iθ(θ)

ps(s(θ))

f ′−1
(

Z
ps(s(θ))

) , (27)

the form shown in the main text.
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2.2.3 Uniform stimulus probability density, ps(s) ∝ 1

From the discussion above, when the stimulus distribution is uniform, that is ps(s) = ps, and
πs(·) ∝ 1, the−f divergence interpretation becomes clear. In this case, π′s(α(θ)) = 0, making γ(θ)
a constant that can be absorbed into Z. Then, solving Eq. (18) yields

pθ(θ) =
√
Iθ(θ)

ps

f̂−1(λC(θ) + Z)
. (28)

2.3 Multiple constraints

In the above derivation, the constraint C(θ) passes through unchanged to give a factor of λC(θ) in
Eq. (18). The same will occur with multiple constraints, to give a term λTC(θ) in place of λC(θ)
in all of the above solutions. Satisfying the constraints then requires solving a higher dimensional
system of equations for the values of the Lagrange multipliers, but the results remain qualitatively
unchanged.

3 Flat-Fisher space reparameterization

As discussed in the main text, transformation to the flat-Fisher space facilitates an understanding of
the efficient coding solutions that is invariant to our parameterization of the neural activity. Here
we derive this remapping, apply it to special-case solutions and the overall problem formulation,
and then derive the relationship between the flat-Fisher space parameter distribution and the Fisher
information in stimulus space.

3.1 Defining the reparametrization

We want our reparameterization to satisfy

dθ̂ =
√
Iθ(θ)dθ. (29)

First we have to ensure that such a reparameterization is well behaved and well defined. Because√
Iθ(θ) is strictly positive (”strictly” by assumption), we can always solve this differential equation

to find a strictly monotonic (increasing) function F :

θ̂(θ) = F (θ) =

∫ θ

θ0

√
Iθ(θ′)dθ′. (30)

This reveals that such a reparameterization will be invertible and thus well behaved. However, the
transformation is only defined up to the integration constant. In fact, the Fisher information can be
made constant by any transformation of the form dθ̂ = a

√
Iθ(θ)dθ with constant a:

Iθ̂

(
θ̂
)
= Iθ

(
θ
(
θ̂
))(dθ

dθ̂

)2

=
1

a2
(31)

Therefore, the flat-Fisher space is well-defined only up to shifting the origin and re-scaling the
length. For our purposes, neither of these will matter: the scale only serves to change the normal-
ization of the distribution pθ̂, and we are free to choose the origin of θ̂.

3.2 Reparameterization of special-case solutions

As noted in the main text, all of the special-case solutions are scaled by a factor of
√
Iθ. Owing to

the invertible mapping between θ and θ̂, this scaling can be removed by reparameterization to the
flat-Fisher space,

pθ̂

(
θ̂
)
= pθ

(
θ
(
θ̂
)) dθ

dθ̂
=

pθ

(
θ
(
θ̂
))

√
Iθ

(
θ
(
θ̂
)) . (32)

This removes Iθ terms from the solution, but does require reparameterizing the constraint to
C
(
θ
(
θ̂
))

= C
(
F−1

(
θ̂
))

:= Cθ̂

(
θ̂
)

.
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3.3 Reparameterization of problem formulation

Explicit
√
Iθ dependence can be fully removed from the optimization problem by reparameterizing

prior to solving. We first note that

dθ̂
ds

=
dθ̂
dθ

dθ
ds

=
√
Iθ

dθ
ds
. (33)

and that
dθ̂
ds

=
ps(s)

pθ̂(θ̂)
=

√
Iθ(θ)ps(s)

pθ(θ)
. (34)

From Eq. (33) and the fact that
√
Iθ is strictly positive, it follows that, dθ/ds > 0 ⇐⇒ dθ̂/ds > 0.

Thus, the positivity constraint on the θ derivatives can be replaced by a positivity constraint on θ̂
derivatives, and, plugging Eq. (33) in the objective function in the optimization, Eq. (7), yields

max
θ̂(s)

Eps(s)

[
f

(
dθ̂
ds

)]
s.t. Eps(s)

[
Cθ̂

(
θ̂
)]
≤M,

dθ̂
ds

> 0,

∫
dθ
ds

ds = Lθ. (35)

Equation 34 ensures that the solution approach described above goes through unchanged, replacing√
Iθ(θ)/pθ(θ) by 1/pθ̂(θ̂).

One step remains for transformation to the flat-Fisher space: satisfaction of the length constraint
on θ. The idea here is to make use of the invertible mapping θ ↔ θ̂, such that if we move from a
starting location in θ-space, θ0, by some distance Lθ, then, in doing so, we will have moved from the
corresponding location in θ̂-space, θ̂0, by a distance Lθ̂. Regardless of the value of Lθ, the invertible
mapping provides the transformation from θ-distances to θ̂-distances. More specifically,

Lθ =

∫ s1

s0

dθ
ds

ds =
∫ θ1

θ0

dθ = θ1 − θ0, (36)

while

Lθ̂ =

∫ s1

s0

dθ̂
ds

ds =
∫ θ1

θ0

√
Iθ(θ)dθ = F (θ1)− F (θ0). (37)

So, given a starting point, θ0 and a θ-length, Lθ, we can find the corresponding θ̂-length by:

Lθ̂ = F (θ0 + Lθ)− F (θ0). (38)

The same logic provides a transformation from θ̂-lengths to θ-lengths:

Lθ = F−1(θ̂0 + Lθ)− F−1(θ̂0). (39)

Thus, we can transform uniquely between lengths Lθ and Lθ̂ so that the θ length constraint will be
satisfied if and only if the θ̂ length constraint is satisfied.

In fact, because the θ̂ length gives a constraint on the integrated root-Fisher information, it can be
transformed into stimulus space using

√
Isds =

√
Iθdθ, to give:

Lθ̂ =

∫ θ1

θ0

√
Iθ(θ)dθ =

∫
S

√
Is(s)ds. (40)

This is the total root-Fisher constraint of earlier works [4, 5, 6] and, because it depends on the
stimulus Fisher information, it is independent of how we choose to parameterize the problem.

3.4 Flat-Fisher distribution depends only on observable quantities

Here we derive the relationship between the flat-Fisher parameter distribution pθ̂(θ̂) and two ob-
servable (or controllable) quantities: the stimulus distribution ps(s) and the Fisher information in
the neural activity about the stimulus Is(s). The flat-Fisher parameter θ̂ is a monotonic increasing
function of the parameter θ, and thus a monotonic increasing function of the stimulus s. So,

pθ̂

(
θ̂(s)

)
= ps(s) /

dθ̂
ds
. (41)
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Because dθ̂ = a
√
Iθ(θ)dθ and Is(s) = Iθ(θ(s))

dθ
ds

2
, we have

dθ̂

ds
=
dθ̂

dθ

dθ

ds
= a

√
Iθ(θ(s))

√
Is(s)√
Iθ(θ(s))

. (42)

Hence,

pθ̂

(
θ̂(s)

)
=

1

a

ps(s)√
Is(s)

. (43)

This can also be derived heuristically by taking the ratio of two changes of variable:

ps(s)ds = pθ(θ)dθ = pθ̂(θ̂)dθ̂, (44)√
Is(s)ds =

√
Iθ(θ)dθ =

√
Iθ̂(θ̂)dθ̂ =

1

a
dθ̂, (45)

to get:
ps(s)√
Is(s)

=
pθ(θ)√
Iθ(θ)

= apθ̂(θ̂). (46)

Thus,

pθ̂(θ̂(s)) ∝
pθ(θ)√
Iθ(θ)

=
ps(s)√
Is(s)

. (47)

4 Adaptation of optimal codes to stimulus distribution

4.1 Stimulus distribution invariance implies log objective function

It is difficult to analyze the role of the stimulus distribution in the general efficient coding solutions
that we have presented so far (Eqs. (18)-(20)) because the stimulus distribution comes into play in
two places: in the argument to the objective function and in the γ dynamics. Here we instead use a
different approach to solving the optimization problem. Specifically, we reparameterize the parame-
ter θ to the flat-Fisher space θ̂ and we reparameterize the stimulus to the space ŝ = CDFs(s) in which
the ŝ probability is uniform. This means that stimulus density terms become ps(CDF−1s (ŝ)) = πs(ŝ)
and that

dθ̂
dŝ

=
1

pθ̂(θ̂(ŝ))
. (48)

Now we solve the optimization by optimal control (see also Sec. (1.3)) keeping ŝ as the independent
variable. Denoting u = dθ̂

dŝ gives the Hamiltonian

H
(
ŝ, θ̂(ŝ), q(ŝ), u(ŝ)

)
= q(ŝ)u(ŝ) + f (u(ŝ)πs(ŝ)) + λCθ̂

(
θ̂(ŝ)

)
. (49)

Applying the Pontryagin maximality principle (see Sec.(1.3) and [1, 3]) and rearranging the outputs
gives

λC ′
θ̂

(
θ̂(ŝ)

)
=

d
dŝ
f ′
(
u(ŝ)πs(ŝ)

)
πs(ŝ) , (50)

a second order differential equation for θ̂(ŝ).

Let us first examine the constraint free case. Setting C ′
θ̂
(θ̂) = 0, the differential Equation (50) can

be integrated to give f ′(uπs)πs = const. Thus, the πs dependence will only cancel if f ′(x) ∝ 1/x,
in which case a uniform solution (unconstrained, log objective) is achieved. Otherwise u(ŝ) will be
a non-trivial function of πs(ŝ) and stimulus distribution dependence will be assured. Thus, when
constraints are absent, a log objective function is required for stimulus distribution independence.

In the presence of constraints, we can make a similar argument on the full differential Equation (50).
Here the dependence on πs(ŝ) will again cancel if and only if f is a logarithm so that f ′ ∝ 1/x.
Otherwise, the differential equation that determines u(ŝ) = dθ̂/dŝ = 1/pθ̂(θ̂(ŝ)) will depend on
the probability density of the stimulus. This means that each stimulus distribution, πsi, will have
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its own differential equation that determines the solution. Some of these differential equations will
share solutions, for example stimulus distributions that are shifted from each other by a constant
stimulus offset. We need to show that, unless the πs dependence explicitly cancels, not all of the
different πsi differential equations will share the same solution. This may be fairly obvious, but we
give an argument here that also foreshadows the results of the next section.

Suppressing the ŝ function arguments, assume that for a given stimulus distribution, πs1, u1 is the
solution to the differential equation:

λ1C
′
θ̂

(
θ̂1

)
=

d
dŝ
f ′
(
u1πs1

)
πs1. (51)

Because θ̂(ŝ) and its inverse map one bounded space to another, the function 1/u1(ŝ) can be nor-
malized to a probability density and we can probe the optimal solution using this probability density
πs2 = A/u1 (A constant). If the parameter distribution is adaptation invariant, the two stimulus
distributions πs1 and πs2 will have the same solution: u1 = u2. This requires

d
dŝ
f ′
(
u1πs1

)
πs1 =

d
dŝ
f ′
(
u2
A

u1

) A
u1

= f ′
(
A
) d

dŝ
A

u1
. (52)

Thus, invariance requires
d
dŝ
f ′
(
u1πs1

)
πs1 ∝

d
dŝ

1

u1
, (53)

for all probability distributions πs1. Integrating both sides, we see that this is only possible if
(i) f ′(x) ∝ 1/x and so f is log, or (ii) 1/u1 ∝ πs1. In this second case, we have a ’fixed point’ of
the mapping because the distribution of parameters is proportional to the stimulus distribution, this
is examined more below. For our current purpose, this proportionality must hold for all stimulus dis-
tributions πs. However, this evidently requires that different stimulus distribution result in different
functions u and so cannot lead to stimulus distribution invariance. Thus, regardless of constraints,
stimulus distribution invariance will only hold if the objective function is logarithmic.

4.2 Derivation of the adaptation fixed point

We have derived both the general solution to the efficient coding optimization and the transformation
to the flat-Fisher space. We can now find the fixed point of neural adaptation in the flat-Fisher space.
First, we rewrite the optimization solutions, Eqs. (18)-(20) in the flat-Fisher space, making use of
Eq. (34),

f̂

πs
(
α̂
(
θ̂
))

pθ̂

(
θ̂
)

 = λCθ̂

(
θ̂
)
+ Z − γ

(
θ̂
)
, (54)

dγ

dθ̂
= f ′

πs
(
α̂
(
θ̂
))

pθ̂

(
θ̂
)

π′s

(
α̂
(
θ̂
))

, (55)

dα̂

dθ̂
= pθ̂

(
θ̂
)
. (56)

Here α̂ is now the cumulative distribution function of pθ̂, while the stimulus distribution dependent
term πs(·) remains unchanged.

We search for a fixed point in the sense of distributions: after adapting to a particular distribution
of stimuli, ps, the neural code will be characterized by a distribution of flat-space parameters, pθ̂.
When the ’input’ stimulus distribution is the same as the ’output’ parameter distribution, this can be
said to be an adaptation fixed point. That is,

pθ̂

(
θ̂
)
∝ ps

(
s
(
θ̂
))

= πs

(
α
(
θ̂
))

. (57)

Proportionality allows the stimulus domain and parameter domain to have different lengths and, as
we saw above, pθ̂(θ̂) is only defined up to a proportionality constant due to rescaling of the θ̂ domain.
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It may seem strange to compare distributions of stimuli to distributions of activity parameters, but it
can be seen by integrating ps(s)ds = pθ̂(θ̂)dθ̂ that, at such a fixed point,

θ̂(s) = as+ b, (58)

with a and b constants. Hence, θ̂ and s are related through a linear scaling and shifting. Because
θ̂ is only defined up to such a scaling and shifting, this is as close as we can come to identifying
stimuli and (flat space) parameters. Intuitively, the distribution pθ̂ is shaped by two factors: (i) the
likelihood of the stimulus that each value of θ̂ encodes, and (ii) the degree to which the codes for
nearby stimuli are stretched apart or compressed together in parameter space. At the fixed point,
there will be no stretching or compression, so that the parameter probability density is determined
exclusively by the probability density of the stimulus encoded.

At such a fixed point, Equation (57) shows that the argument to f̂ in Eq. (54), and the argument to
f ′ in Eq. (55) become constant,

πs

(
α
(
θ̂
))

pθ̂

(
θ̂
) = c0. (59)

Taking Eq. (55) and multiplying the right-hand side of by c0 and also dividing it by the equivalent
ratio of probability densities from Eq. (59) gives:

dγ
dθ

= f ′(c0)π
′
s

(
α
(
θ̂
))

c0
pθ̂

(
θ̂
)

πs

(
α
(
θ̂
)) = c1

d
dθ

log πs

(
α
(
θ̂
))

(60)

This is a constant multiple of the log-objective function solution in Eq. (21), and can be substituted
into Eq. (54) to give (combining additive constants into Z and multiplicative constants in λ and Z)

log πs

(
α
(
θ̂
))

= λCθ̂

(
θ̂
)
+ Z. (61)

Hence,
pθ̂

(
θ̂
)
∝ πs

(
α
(
θ̂
))
∝ exp

(
λCθ̂

(
θ̂
))

. (62)

Because it is a function of the parameter directly, the constraint function, Cθ̂(θ̂) will be dependent on
the particular parameterization that is used, here the flat-Fisher space parameterization. If required,
it can be converted back to θ-space given knowledge of Iθ(θ) via the integrated transformation from
above, C(θ) = Cθ̂(F (θ)).

Once we know Cθ̂(θ̂), we can also recover the objective function. Probing with a uniform stimulus
distribution, we know that the resulting flat-space distribution follows

pθ̂(θ̂) =
ps

f̂−1(λCθ̂(θ̂) + Z)
. (63)

This allow us to fit f̂−1 by regressing Cθ̂(θ̂(s)) against 1/pθ̂(θ̂(s)). This does require determining
the function θ̂(s) for the code adapted to the uniform stimulus distribution, which can be accom-
plished by integrating (numerically) 1/pθ̂(θ̂(s))ds.

5 Estimating the distribution of neural activity parameters from data

Because the distribution pθ̂(θ̂(s)) is crucial for characterization of the objective and constraint func-
tions that shape a neural code, we showed in a main text a proof of principle for recovery of pθ̂(θ̂(s))
from neural activity data. Here we present the details of the model architecture and training used.

5.1 Parameter regression

The first step in recovery of the flat space parameter distribution from activity data, {si, ri}i, is re-
gression from stimuli to the parameters underlying the neural activity. Given a known or identified
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neural activity model, p(r|η(s)) = exp(η(s)TT (r) − A(η(s))), we aim to find the function η(s)
by regression. Here, we use a neural network to perform maximum likelihood regression. Parame-
terizing η(s) by weights, w, we can compute gradients of the log likelihood of the data under the
model according to:

∂L

∂w
=

(∑
i

T (ri)−
∂A(η(si))

∂η

)
∂η

∂w
, (64)

where L is the log-likelihood of the activity data, L =
∑
i log p (ri|η(si)). Here T (r) are the suffi-

cient statistics and ∂A/∂η is the parameter to moment mapping of our activity model. Concretely,
the term in parentheses is calculated from the data and model output, and used as the initial gradient
for backpropagation to produce the weight gradients.

For the example in the main text, we used a neural network with 4 layers of width 3 and tanh non-
linearity implemented in PyTorch. We trained on 2k data points with 20k repeats of the training set
and mini-batches of size 100 using the Adam optimizer with learning rate, 10−3 and regularization
by weight decay with strength 10−2. Training hyperparameters and network architecture were set
manually based on recovery of a validation η(s) curve (different from the test curve) under the same
(Poisson noise) loss function. Hyperparameters were probed within a 10-fold range for training
hyperparameters and a 2-fold range for architecture parameters.

5.2 Extracting the flat-Fisher distribution

Having performed the parameter regression, we now want to estimate the parameter distribution in
the flat-Fisher space. This can be accomplished using Eq. (43),

pθ̂

(
θ̂(s)

)
∝ ps(s)√

Is(s)
. (65)

We know ps(s), so all that is left is to find the stimulus Fisher information, Is(s). Here, we use
the Fisher information in our trained model of neural activity as a proxy for the stimulus Fisher
information in the neural activity. With the parameter mapping η(s) from our trained model, this is
given by:

Is(s) =
dη

ds

T

Iη(η(s))
dη

ds
. (66)

The η derivatives can be computed by forward differentiation of the fit η(s) function. The model
Fisher information function, Iη(·), is specified by our exponential family model of the noise in
neural activity, we take the function to be known and evaulated on fit outputs η(s). Alternatively, it
could be sampled, using the identity Iη(η) = covp(r|η)[T (r)].

Instead of computing Is and dividing the result out from the (known) stimulus distribution, we can
also CDF transform the incoming data prior to training, s̃ = CDFs(s) so that the output parameters
are η(s̃). In this case, the parameter derivatives are:

dη

ds̃
=
dη

ds

ds

ds̃
=
dη

ds

1

ps(s(s̃))
. (67)

Then,

Is̃ =
dη

ds̃

T

Iη(η(s̃))
dη

ds̃
=
dη

ds

T

Iη(η(s̃))
dη

ds

1

ps(s(s̃))2
=

Is(s(s̃))

ps(s(s̃))2
. (68)

Hence,

pθ̂(θ̂(s)) ∝
1√

Is̃(CDFs(s))
. (69)

The constant of proportionality can be found by normalization of this function.
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