Supplementary Material: Discovering Reinforcement Learning Algorithms

Junhyuk Oh	Matteo Hessel	Wojciech M. Cz	arnecki	Zhongwen Xu
Had	lo van Hasselt	Satinder Singh	David Sil	ver
		DeepMind		

A Training Environments

A.1 Tabular Grid World

When an agent collects an object, it receives the corresponding reward r, and the episode terminates with a probability of ϵ_{term} associated with the object. The object disappears when collected, and reappears with a probability of $\epsilon_{\text{respawn}}$ for each time-step. In the following sections, we describe each object type i as $\{N \times [r, \epsilon_{\text{term}}, \epsilon_{\text{respawn}}]\}_i$, where N is the number of objects with type i.

Observation Space In tabular grid worlds, object locations are randomised across lifetimes but fixed within a lifetime. Thus, there are only $p \times 2^m$ possible states in each lifetime, where p is the number of possible positions, and m is the total number of objects. An agent is simply represented by a table with distinct $\pi(a|s)$ and y(s) values for each state without any function approximation.

Action Space There are two different action spaces. One version consists of 9 movement actions for adjacent positions (including staying at the same position) and 9 actions for collecting objects at adjacent positions. The other version has only 9 movement actions. In this version, an object is automatically collected when the agent visits it. We randomly sample either one of the action spaces for each lifetime during meta-training.

A.1.1 Dense

Component	Description
Observation Number of actions Size Objects Maximum steps per episode	State index (integer) 9 or 18 11 × 11 $2 \times [1, 0, 0.05]$, $[-1, 0.5, 0.1]$, $[-1, 0, 0.5]$ 500

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

A.1.2 Sparse

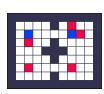
Component	Description
Observation	State index (integer)
Number of actions	9 or 18
Size	13×13
Objects	[1, 1, 0], [-1, 1, 0]
Maximum steps per episode	50

A.1.3 Long Horizon

\square			_		
\square	+		_	_	
\vdash	+		_	_	
\vdash		-	-	_	-
\vdash			-	-	-
\vdash			-	-	-
\vdash			-		

Component	Description
Observation	State index (integer)
Number of actions	9 or 18
Size	11×11
Objects	$2 \times [1, 0, 0.01], 2 \times [-1, 0.5, 1]$
Maximum steps per episode	1000

A.1.4 Longer Horizon



Component	Description
Observation	State index (integer)
Number of actions	9 or 18
Size	7 imes 9
Objects	$2 \times [1, 0.1, 0.01], 5 \times [-1, 0.8, 1]$
Maximum steps per episode	2000

A.1.5 Long Dense

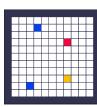
\vdash			
	1.1		
\vdash			
\vdash			

Component	Description
Observation	State index (integer)
Number of actions	9 or 18
Size	11×11
Objects	$4 \times [1, 0, 0.005]$
Maximum steps per episode	2000

A.2 Random Grid World

The random grid worlds are almost the same as the tabular grid worlds except that object locations are randomised within a lifetime. More specifically, object locations are randomly determined at the beginning of each episode, and objects re-appear at random locations after being collected. Due to the randomness, the state space is exponentially large, which requires function approximation to represent an agent. The observation consists of a tensor $\{0,1\}^{N \times H \times W}$, where N is the number of object types, $H \times W$ is the size of the grid.

A.2.1 Dense



Component	Description
Observation Number of actions	$\{0,1\}^{N \times H \times W}$ 9 or 18 11 × 11
Size Objects Maximum steps per episode	11×11 $2 \times [1, 0, 0.05], [-1, 0.5, 0.1], [-1, 0, 0.5]$ 500

A.2.2 Long Horizon

Т					
Т					
Τ					
Т					

Component	Description
Observation Number of actions Size	$ \begin{cases} 0,1 \}^{N \times H \times W} \\ 9 \text{ or } 18 \\ 11 \times 11 \\ 2 \times [-1,0,0,01], 2 \times [-1,0,5,1] \end{cases} $
Objects Maximum steps per episode	$2 \times [1, 0, 0.01], 2 \times [-1, 0.5, 1]$ 1000

A.2.3 Small

Component	Description
Observation	$\{0,1\}^{N \times H \times W}$
Number of actions	9 or 18
Size	5×7
Objects	$2 \times [1, 0, 0.05], 2 \times [-1, 0.5, 0.1]$
Maximum steps per episode	500

A.2.4 Small Sparse

Component	Description
Observation	$\{0,1\}^{N \times H \times W}$
Number of actions	9 or 18
Size	5×7
Objects	$[1, 1, 1], 2 \times [-1, 1, 1]$
Maximum steps per episode	50

A.2.5 Very Dense

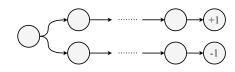
Component	Description
Observation Number of actions Size Objects Maximum steps per episode	$ \begin{cases} 0,1 \}^{N \times H \times W} \\ 9 \text{ or } 18 \\ 11 \times 11 \\ [1,0,1] \\ 2000 \end{cases} $

A.3 Delayed Chain MDP

This environment is inspired by the *Umbrella* environment in Behaviour Suite [7]. The agent has a binary choice (a_0, a_1) for each time-step. The first action determines the reward at the end of the

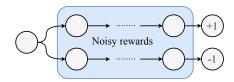
episode (1 or -1). The episode terminates after a fixed number of steps (i.e., chain length), which is sampled randomly from a pre-defined range for each lifetime and fixed within a lifetime. For each episode, we randomly determine which action leads to a positive reward and sample the corresponding chain MDP. There is no state aliasing because all states are distinct. Optionally, there can be noisy rewards $\{1, -1\}$ for the states in the middle that are independent of the agent's action.

A.3.1 Short



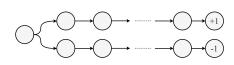
Component	Description		
Observation	State index (integer)		
Number of actions	2		
Chain length	[5, 30]		
Noisy rewards	No		

A.3.2 Short and Noisy



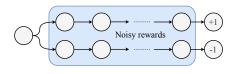
Component	Description
Observation	State index (integer)
Number of actions	2
Chain length	[5, 30]
Noisy rewards	Yes

A.3.3 Long



Component	Description		
Observation	State index (integer)		
Number of actions	2		
Chain length	[5,50]		
Noisy rewards	No		

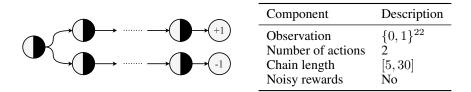
A.3.4 Long and Noisy



Component	Description
Observation	State index (integer)
Number of actions	2
Chain length	[5, 50]
Noisy rewards	Yes

A.3.5 State Distraction

In this delayed chain MDP, an observation $s_t \in \{0, 1\}^{22}$ consists of two relevant bits: whether a_0 is the correct action and whether the agent has chosen the correct action, and noisy bits $\{0, 1\}^{20}$ that are randomly sampled independently for all states. The agent is required to find out the relevant bits while ignoring the noisy bits in the observation.



B Implementation Details

B.1 Meta-Training

We trained LPGs by simulating 960 parallel lifetimes (i.e., batch size for meta-gradients), each of which has a learning agent interacting with a sampled environment, for approximately 10^{10} steps of interactions in total. In each lifetime, the agent updates its parameters using a batch of trajectories generated from 64 parallel environments (i.e., batch size for agent). Each trajectory consists of 20 steps. Thus, each parameter update consists of 64×20 steps. The meta-hyperparameters used for meta-training is summarised in Table 1.

Details of LPG Architecture The LPG network takes $x_t = [r_t, d_t, \gamma, \pi(a_t|s_t), y_\theta(s_t), y_\theta(s_{t+1})]$ at each time-step t, where r_t is a reward, d_t is a binary value indicating episode-termination, and γ is a discount factor. $y_\theta(s_t)$ and $y_\theta(s_{t+1})$ are mapped to a scalar using a shared embedding network (φ): Dense(16)-Dense(1). A backward LSTM with 256 units takes $[r_t, d_t, \gamma, \pi(a_t|s_t), \varphi(y_\theta(s_t)), \varphi(y_\theta(s_{t+1}))]$ as input and produces $\hat{\pi}$ and \hat{y} as output. We slightly modified the LSTM core such that the hidden states are reset for terminal states ($d_t = 0$), which blocks information from flowing across episodes. In our preliminary experiment, this improved generalisation performance by making it difficult for LPG to exploit environment-specific patterns. Rectified linear unit (ReLU) was used as activation function throughout the experiment.

Details of LPG Update In Section 3.3, the meta-gradient for updating LPG is described as the outcome of REINFORCE for simplicity. In practice, however, we used advantage actor-critic (A2C) [6] to calculate the meta-gradient, which requires learning value functions for bootstrapping. Note that value functions were trained only to reduce the variance of meta-gradient. LPG itself has no access to value functions during meta-training and meta-testing. In principle, the *outer* algorithm used for discovery can be any RL algorithm, as long as they are designed to maximise cumulative rewards.

Details of Hyperparameter Balancing As described in Section 3.4, we trained a bandit $p(\alpha|\mathcal{E})$ to automatically sample better agent hyperparameters for each environment to make meta-training more stable. More specifically, the bandit samples hyperparameters at the beginning of each lifetime according to:

$$p(\alpha|\mathcal{E}) \propto \exp\left(\frac{R(\alpha,\mathcal{E}) + \rho/\sqrt{N(\alpha,\mathcal{E})}}{\tau}\right),$$
 (1)

where $R(\alpha, \mathcal{E})$ is the final return at the end of the agent's lifetime with hyperparameters α in environment \mathcal{E} , which is averaged over the last 10 lifetimes. $N(\alpha, \mathcal{E})$ is the number of lifetimes simulated. τ is a constant temperature, and ρ is a coefficient for exploration bonus. Intuitively, we keep track of how well each α performs and sample hyperparameters that tend to produce a larger final return with exploration bonus. In our experiments, α consists of two hyperparameters: learning rate (α_{lr}) and KL cost (α_y) for updating the agent's predictions. Table 2 shows the range of hyperparameters searched by the bandit. Note that this hyperparameter balancing requires multiple lifetimes of experience, which can be done only during meta-training. During meta-testing on unseen environments, α needs to be manually selected.

Preventing Early Divergence We found that meta-training can be unstable especially early in training, because the randomly initialised update rule (η) tends to make agents diverge or deterministic, which eventually causes exploding meta-gradients. To address this issue, we reset the lifetime whenever the entropy of the policy becomes 0, which means the policy becomes deterministic. We observed that this is triggered a few times early in training but eventually is not triggered later in training as the update rule improves.

Hyperparameter	Value	Searched values
Optimiser	Adam	-
Learning rate	0.0001	$\{0.0005, 0.0001, 0.00003\}$
Discount factor (γ)	$\{0.995, 0.99\}$	-
Policy entropy cost (β_0)	$\{0.01, 0.02\}$	-
Prediction entropy cost (β_1)	0.001	{0.001, 0.0001}
L2 regularisation weight for $\hat{\pi}$ (β_2)	0.001	$\{0.01, 0.001\}$
L2 regularisation weight for \hat{y} (β_3)	0.001	$\{0.01, 0.001\}$
Bandit temperature (τ)	0.1	{1, 0.1}
Bandit exploration bonus (ρ)	0.2	$\{1, 0.2\}$
Number of steps for each trajectory	20	-
Number of parameter updates (K)	5	-
Number of parallel lifetimes	960	-
Number of parallel environments per lifetime	64	-

Table 1: Meta-hyperparameters for meta-training.

Discount factor and policy entropy cost are randomly sampled from the specified range for each lifetime.

Table 2: Agent hyperparameters for each training environment.

Environment	Architecture	Optimiser	Learning rate (α_{lr})	KL cost (α_y)	Lifetime
dense sparse long_horizon longer_horizon long_dense	Tabular Tabular Tabular Tabular Tabular Tabular	SGD SGD SGD SGD SGD	$ \begin{array}{l} \{20, 40, 80\} \\ \{20, 40, 80\} \\ \{20, 40, 80\} \\ \{20, 40, 80\} \\ \{20, 40, 80\} \\ \{20, 40, 80\} \end{array} $	$\begin{array}{c} \{0.1, 0.5, 1\} \\ \{0.1, 0.5, 1\} \\ \{0.1, 0.5, 1\} \\ \{0.1, 0.5, 1\} \\ \{0.1, 0.5, 1\} \\ \{0.1, 0.5, 1\} \end{array}$	3M 3M 3M 3M 3M
dense long_horizon small sparse very_dense	C(16)-D(32) C(16)-D(32) D(32) D(32) C(32-16-16)-D(256)	Adam Adam Adam Adam Adam	$ \begin{array}{l} \{0.0005, 0.001, 0.002, 0.005\} \\ \{0.0005, 0.001, 0.002, 0.005\} \\ \{0.0005, 0.001, 0.002, 0.005\} \\ \{0.0005, 0.001, 0.002, 0.005\} \\ \{0.0005, 0.001, 0.002, 0.005\} \end{array} $	$\{0.1, 0.5, 1\}$ $\{0.1, 0.5, 1\}$	30M 30M 30M 30M 30M
short_noisy long long_noisy distractor	Tabular Tabular Tabular Tabular D(16)	SGD SGD SGD SGD Adam	$ \begin{array}{l} \{20, 40, 80\} \\ \{20, 40, 80\} \\ \{20, 40, 80\} \\ \{20, 40, 80\} \\ \{20, 40, 80\} \\ \{0.002, 0.005, 0.01\} \end{array} $	$\begin{array}{c} \{0.1, 0.5, 1\} \\ \{0.1, 0.5, 1\} \\ \{0.1, 0.5, 1\} \\ \{0.1, 0.5, 1\} \\ \{0.1, 0.5, 1\} \\ \{0.1, 0.5, 1\} \end{array}$	1M 1M 1M 1M 2M

'C(N1-N2-...)' represents convolutional layers with N1, N2, ... filters for each layer. 'D(N)' represents a dense layer with N units.

Lifetime is defined as the total number of steps.

B.2 Meta-Testing

We selected the best update rule (η) and hyperparameters according to the validation performance on two Atari games (breakout, boxing), and used them to evaluate across all 57 Atari games. We found that subtracting a baseline slightly improves the performance on Atari games as follows:

$$\Delta\theta \propto \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s)(\hat{\pi} - f_{\theta}(s)) - \alpha_{y} \nabla_{\theta} D_{\mathrm{KL}}(y_{\theta}(s) \| \hat{y}) - \frac{1}{2} ||f_{\theta}(s) - \hat{\pi}||^{2} \right], \quad (2)$$

where $f_{\theta}(s)$ is an action-independent baseline function. The hyperparameters are summarised in Table 3, and the learning curves are shown in Figure 1.

B.3 Computing Infrastructure

Our implementation is based on JAX [1], RLAX [2], Optax [4], Haiku [3] using TPUs [5]. The training environments are also implemented in JAX, which enables running on TPU as well. It took approximately 24 hours to converge using a 16-core TPU-v2.

Table 3: Hyperp		

Hyperparameter	Value	Searched values
Optimiser	Adam	-
Network architecture	C(32)-C(64)-C(64)-D(512)	-
Learning rate $(\alpha_{\rm lr})$	0.0005	$\{0.001, 0.0005, 0.0003\}$
$KL \cos t (\alpha_v)$	0.5	$\{1, 0.5, 0.1\}$
Discount factor (γ)	0.995	-
Number of steps for each trajectory	20	-
Number of parallel environments (batch size)	30	-

C Generalisation to Atari Games

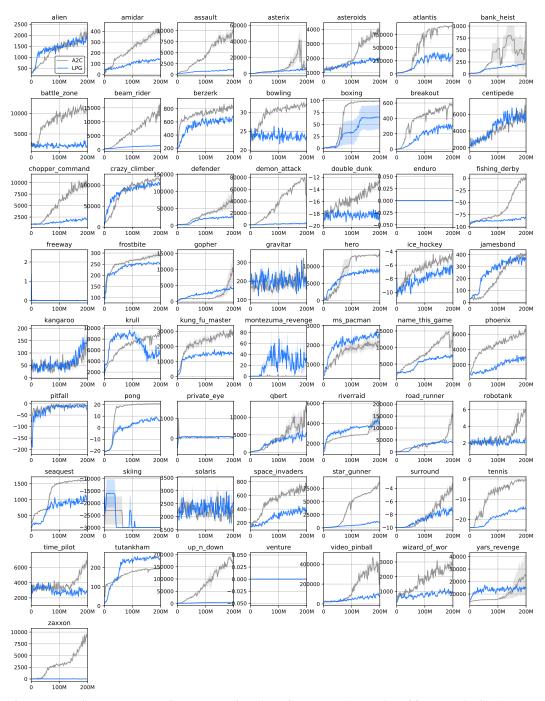


Figure 1: Learning curves on Atari games. X-axis and y-axis represent the number of frames and episode return respectively. Shaded areas show standard errors from 3 independent runs.

References

- [1] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, and S. Wanderman-Milne. JAX: composable transformations of Python+NumPy programs, 2018.
- [2] D. Budden, M. Hessel, J. Quan, S. Kapturowski, K. Baumli, S. Bhupatiraju, A. Guy, and M. King. RLax: Reinforcement Learning in JAX, 2020.
- [3] T. Hennigan, T. Cai, T. Norman, and I. Babuschkin. Haiku: Sonnet for JAX, 2020.
- [4] M. Hessel, D. Budden, F. Viola, M. Rosca, E. Sezener, and T. Hennigan. Optax: composable gradient transformation and optimisation, in jax!, 2020.
- [5] N. P. Jouppi, C. Young, N. Patil, D. A. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, R. C. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon. In-datacenter performance analysis of a tensor processing unit. *CoRR*, abs/1704.04760, 2017.
- [6] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In *International Conference on Machine Learning*, 2016.
- [7] I. Osband, Y. Doron, M. Hessel, J. Aslanides, E. Sezener, A. Saraiva, K. McKinney, T. Lattimore, C. Szepezvari, S. Singh, et al. Behaviour suite for reinforcement learning. In *International Conference on Learning Representations*, 2020.