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A Training Environments

A.1 Tabular Grid World

When an agent collects an object, it receives the corresponding reward r, and the episode terminates
with a probability of εterm associated with the object. The object disappears when collected, and
reappears with a probability of εrespawn for each time-step. In the following sections, we describe each
object type i as {N × [r, εterm, εrespawn]}i, where N is the number of objects with type i.

Observation Space In tabular grid worlds, object locations are randomised across lifetimes but
fixed within a lifetime. Thus, there are only p× 2m possible states in each lifetime, where p is the
number of possible positions, and m is the total number of objects. An agent is simply represented
by a table with distinct π(a|s) and y(s) values for each state without any function approximation.

Action Space There are two different action spaces. One version consists of 9 movement actions
for adjacent positions (including staying at the same position) and 9 actions for collecting objects
at adjacent positions. The other version has only 9 movement actions. In this version, an object is
automatically collected when the agent visits it. We randomly sample either one of the action spaces
for each lifetime during meta-training.

A.1.1 Dense

Component Description

Observation State index (integer)
Number of actions 9 or 18
Size 11× 11
Objects 2× [1, 0, 0.05], [−1, 0.5, 0.1], [−1, 0, 0.5]
Maximum steps per episode 500
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A.1.2 Sparse

Component Description

Observation State index (integer)
Number of actions 9 or 18
Size 13× 13
Objects [1, 1, 0], [−1, 1, 0]
Maximum steps per episode 50

A.1.3 Long Horizon

Component Description

Observation State index (integer)
Number of actions 9 or 18
Size 11× 11
Objects 2× [1, 0, 0.01], 2× [−1, 0.5, 1]
Maximum steps per episode 1000

A.1.4 Longer Horizon

Component Description

Observation State index (integer)
Number of actions 9 or 18
Size 7× 9
Objects 2× [1, 0.1, 0.01], 5× [−1, 0.8, 1]
Maximum steps per episode 2000

A.1.5 Long Dense

Component Description

Observation State index (integer)
Number of actions 9 or 18
Size 11× 11
Objects 4× [1, 0, 0.005]
Maximum steps per episode 2000

A.2 Random Grid World

The random grid worlds are almost the same as the tabular grid worlds except that object locations
are randomised within a lifetime. More specifically, object locations are randomly determined at
the beginning of each episode, and objects re-appear at random locations after being collected. Due
to the randomness, the state space is exponentially large, which requires function approximation to
represent an agent. The observation consists of a tensor {0, 1}N×H×W , where N is the number of
object types, H ×W is the size of the grid.
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A.2.1 Dense

Component Description

Observation {0, 1}N×H×W

Number of actions 9 or 18
Size 11× 11
Objects 2× [1, 0, 0.05], [−1, 0.5, 0.1], [−1, 0, 0.5]
Maximum steps per episode 500

A.2.2 Long Horizon

Component Description

Observation {0, 1}N×H×W

Number of actions 9 or 18
Size 11× 11
Objects 2× [1, 0, 0.01], 2× [−1, 0.5, 1]
Maximum steps per episode 1000

A.2.3 Small

Component Description

Observation {0, 1}N×H×W

Number of actions 9 or 18
Size 5× 7
Objects 2× [1, 0, 0.05], 2× [−1, 0.5, 0.1]
Maximum steps per episode 500

A.2.4 Small Sparse

Component Description

Observation {0, 1}N×H×W

Number of actions 9 or 18
Size 5× 7
Objects [1, 1, 1], 2× [−1, 1, 1]
Maximum steps per episode 50

A.2.5 Very Dense

Component Description

Observation {0, 1}N×H×W

Number of actions 9 or 18
Size 11× 11
Objects [1, 0, 1]
Maximum steps per episode 2000

A.3 Delayed Chain MDP

This environment is inspired by the Umbrella environment in Behaviour Suite [7]. The agent has a
binary choice (a0, a1) for each time-step. The first action determines the reward at the end of the
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episode (1 or -1). The episode terminates after a fixed number of steps (i.e., chain length), which is
sampled randomly from a pre-defined range for each lifetime and fixed within a lifetime. For each
episode, we randomly determine which action leads to a positive reward and sample the corresponding
chain MDP. There is no state aliasing because all states are distinct. Optionally, there can be noisy
rewards {1,−1} for the states in the middle that are independent of the agent’s action.

A.3.1 Short

+1

-1

Component Description

Observation State index (integer)
Number of actions 2
Chain length [5, 30]
Noisy rewards No

A.3.2 Short and Noisy

+1

-1

Noisy	rewards

Component Description

Observation State index (integer)
Number of actions 2
Chain length [5, 30]
Noisy rewards Yes

A.3.3 Long

+1

-1

Component Description

Observation State index (integer)
Number of actions 2
Chain length [5, 50]
Noisy rewards No

A.3.4 Long and Noisy

+1

-1

Noisy	rewards

Component Description

Observation State index (integer)
Number of actions 2
Chain length [5, 50]
Noisy rewards Yes

A.3.5 State Distraction

In this delayed chain MDP, an observation st ∈ {0, 1}22 consists of two relevant bits: whether a0 is
the correct action and whether the agent has chosen the correct action, and noisy bits {0, 1}20 that
are randomly sampled independently for all states. The agent is required to find out the relevant bits
while ignoring the noisy bits in the observation.

+1

-1

Component Description

Observation {0, 1}22
Number of actions 2
Chain length [5, 30]
Noisy rewards No
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B Implementation Details

B.1 Meta-Training

We trained LPGs by simulating 960 parallel lifetimes (i.e., batch size for meta-gradients), each of
which has a learning agent interacting with a sampled environment, for approximately 1010 steps of
interactions in total. In each lifetime, the agent updates its parameters using a batch of trajectories
generated from 64 parallel environments (i.e., batch size for agent). Each trajectory consists of 20
steps. Thus, each parameter update consists of 64× 20 steps. The meta-hyperparameters used for
meta-training is summarised in Table 1.

Details of LPG Architecture The LPG network takes xt = [rt, dt, γ, π(at|st), yθ(st), yθ(st+1)]
at each time-step t, where rt is a reward, dt is a binary value indicating episode-termination,
and γ is a discount factor. yθ(st) and yθ(st+1) are mapped to a scalar using a shared
embedding network (ϕ): Dense(16)-Dense(1). A backward LSTM with 256 units takes
[rt, dt, γ, π(at|st), ϕ(yθ(st)), ϕ(yθ(st+1))] as input and produces π̂ and ŷ as output. We slightly
modified the LSTM core such that the hidden states are reset for terminal states (dt = 0), which
blocks information from flowing across episodes. In our preliminary experiment, this improved
generalisation performance by making it difficult for LPG to exploit environment-specific patterns.
Rectified linear unit (ReLU) was used as activation function throughout the experiment.

Details of LPG Update In Section 3.3, the meta-gradient for updating LPG is described as the
outcome of REINFORCE for simplicity. In practice, however, we used advantage actor-critic
(A2C) [6] to calculate the meta-gradient, which requires learning value functions for bootstrapping.
Note that value functions were trained only to reduce the variance of meta-gradient. LPG itself has
no access to value functions during meta-training and meta-testing. In principle, the outer algorithm
used for discovery can be any RL algorithm, as long as they are designed to maximise cumulative
rewards.

Details of Hyperparameter Balancing As described in Section 3.4, we trained a bandit p(α|E)
to automatically sample better agent hyperparameters for each environment to make meta-training
more stable. More specifically, the bandit samples hyperparameters at the beginning of each lifetime
according to:

p(α|E) ∝ exp

(
R(α, E) + ρ/

√
N(α, E)

τ

)
, (1)

where R(α, E) is the final return at the end of the agent’s lifetime with hyperparameters α in
environment E , which is averaged over the last 10 lifetimes. N(α, E) is the number of lifetimes
simulated. τ is a constant temperature, and ρ is a coefficient for exploration bonus. Intuitively,
we keep track of how well each α performs and sample hyperparmeters that tend to produce a
larger final return with exploration bonus. In our experiments, α consists of two hyperparameters:
learning rate (αlr) and KL cost (αy) for updating the agent’s predictions. Table 2 shows the range of
hyperparameters searched by the bandit. Note that this hyperparameter balancing requires multiple
lifetimes of experience, which can be done only during meta-training. During meta-testing on unseen
environments, α needs to be manually selected.

Preventing Early Divergence We found that meta-training can be unstable especially early in
training, because the randomly initialised update rule (η) tends to make agents diverge or deterministic,
which eventually causes exploding meta-gradients. To address this issue, we reset the lifetime
whenever the entropy of the policy becomes 0, which means the policy becomes deterministic. We
observed that this is triggered a few times early in training but eventually is not triggered later in
training as the update rule improves.
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Table 1: Meta-hyperparameters for meta-training.

Hyperparameter Value Searched values

Optimiser Adam -
Learning rate 0.0001 {0.0005, 0.0001, 0.00003}

Discount factor (γ) {0.995, 0.99} -
Policy entropy cost (β0) {0.01, 0.02} -

Prediction entropy cost (β1) 0.001 {0.001, 0.0001}
L2 regularisation weight for π̂ (β2) 0.001 {0.01, 0.001}
L2 regularisation weight for ŷ (β3) 0.001 {0.01, 0.001}

Bandit temperature (τ ) 0.1 {1, 0.1}
Bandit exploration bonus (ρ) 0.2 {1, 0.2}

Number of steps for each trajectory 20 -
Number of parameter updates (K) 5 -

Number of parallel lifetimes 960 -
Number of parallel environments per lifetime 64 -
Discount factor and policy entropy cost are randomly sampled from the specified range for each lifetime.

Table 2: Agent hyperparameters for each training environment.

Environment Architecture Optimiser Learning rate (αlr) KL cost (αy) Lifetime

dense Tabular SGD {20, 40, 80} {0.1, 0.5, 1} 3M
sparse Tabular SGD {20, 40, 80} {0.1, 0.5, 1} 3M
long_horizon Tabular SGD {20, 40, 80} {0.1, 0.5, 1} 3M
longer_horizon Tabular SGD {20, 40, 80} {0.1, 0.5, 1} 3M
long_dense Tabular SGD {20, 40, 80} {0.1, 0.5, 1} 3M

dense C(16)-D(32) Adam {0.0005, 0.001, 0.002, 0.005} {0.1, 0.5, 1} 30M
long_horizon C(16)-D(32) Adam {0.0005, 0.001, 0.002, 0.005} {0.1, 0.5, 1} 30M
small D(32) Adam {0.0005, 0.001, 0.002, 0.005} {0.1, 0.5, 1} 30M
sparse D(32) Adam {0.0005, 0.001, 0.002, 0.005} {0.1, 0.5, 1} 30M
very_dense C(32-16-16)-D(256) Adam {0.0005, 0.001, 0.002, 0.005} {0.1, 0.5, 1} 30M

short Tabular SGD {20, 40, 80} {0.1, 0.5, 1} 1M
short_noisy Tabular SGD {20, 40, 80} {0.1, 0.5, 1} 1M
long Tabular SGD {20, 40, 80} {0.1, 0.5, 1} 1M
long_noisy Tabular SGD {20, 40, 80} {0.1, 0.5, 1} 1M
distractor D(16) Adam {0.002, 0.005, 0.01} {0.1, 0.5, 1} 2M
‘C(N1-N2-...)’ represents convolutional layers with N1, N2, ... filters for each layer.
‘D(N)’ represents a dense layer with N units.
Lifetime is defined as the total number of steps.
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B.2 Meta-Testing

We selected the best update rule (η) and hyperparameters according to the validation performance on
two Atari games (breakout, boxing), and used them to evaluate across all 57 Atari games. We
found that subtracting a baseline slightly improves the performance on Atari games as follows:

∆θ ∝ Eπθ

[
∇θ log πθ(a|s)(π̂ − fθ(s))− αy∇θDKL(yθ(s)‖ŷ)− 1

2
||fθ(s)− π̂||2

]
, (2)

where fθ(s) is an action-independent baseline function. The hyperparameters are summarised in
Table 3, and the learning curves are shown in Figure 1.

B.3 Computing Infrastructure

Our implementation is based on JAX [1], RLAX [2], Optax [4], Haiku [3] using TPUs [5]. The
training environments are also implemented in JAX, which enables running on TPU as well. It took
approximately 24 hours to converge using a 16-core TPU-v2.

Table 3: Hyperparameters used for meta-testing on Atari games.

Hyperparameter Value Searched values

Optimiser Adam -
Network architecture C(32)-C(64)-C(64)-D(512) -

Learning rate (αlr) 0.0005 {0.001, 0.0005, 0.0003}
KL cost (αy) 0.5 {1, 0.5, 0.1}

Discount factor (γ) 0.995 -
Number of steps for each trajectory 20 -

Number of parallel environments (batch size) 30 -
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C Generalisation to Atari Games
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Figure 1: Learning curves on Atari games. X-axis and y-axis represent the number of frames and episode return
respectively. Shaded areas show standard errors from 3 independent runs.
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