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A Classi�cation of related work

Table A.1 summarizes the most relevant related works that perform learning-based processing of
meshes. Each method is classi�ed according to the type of approach (graph-based/non-graph-based),
to the type of pooling (no pooling, mesh-based/non-mesh-based, task-driven/non-task-driven), to
the implementation of a form of dynamic feature aggregation, and to the type of task for which the
method is designed.

Method

Type of method Pooling

Dynamic aggr. TaskGraph-based Non-graph Non-mesh based Mesh-based

Spatial Spectral Non-task-driven Task-driven

GCNN [1] 8 Shape correspondence
ACNN [2] 8 Shape correspondence/description/retrieval
MoNet [3] 8 Shape correspondence

FeaStNet [4] 8 8 ([5]) 8 Shape correspondence/segmentation
GEM-CNN [6] 8 Shape correspondence/classi�cation

DCM-Net [7] 8 ([8]) 8 ([9]/[10]) 8 Scene segmentation
SN [11] 8 Deformation prediction/generative model

CoMA [12] 8 8 ([9]) Generative model
TangentConv [13] 8 8 (grid-based) Scene segmentation

TextureNet [14] 8 8 (sample-based) Scene segmentation
MeshCNN [15] 8 8 Shape classi�cation/segmentation

MeshNet [16] 8 Shape classi�cation/retrieval
SyncSpecCNN [17] 8 8 (spectral) Shape segmentation/keypoint prediction

SpiralNet++ [18] 8 8 ([9]) 8 Shape correspondence/classi�cation/reconstruction

PD-MeshNet 8 8 8 Shape classi�cation/segmentation

Table A.1: Classi�cation of most relevant related work that perform learning-based processing of
meshes.

A.1 Forms of dynamic aggregation

For each node in an input graph, FeaStNet [4] dynamically learns the correspondence between its
neighboring nodes and the �lter weights based on the features of the node and of its neighbors. DCM-
Net [7] dynamically determines the neighbors of each node in its convolution based on Euclidean
distance.

B Analogy between line graph and medial graph

In the following, we show that, for an edge-manifold, triangle meshM , the medial graph of the mesh
graphG(M ) coincides with the line graph of the primal graph,i.e.,, M (G(M )) � L (P(M )) (cf.
Theorem 1). For simplicity, we further assume the mesh to be of genus 0; a similar result can be
obtained for embeddings on surfaces of higher genus by extending Lemma 2. For convenience, we
report here the de�nitions ofline graphandmedial graph:

� The line graphL (G) of a graphG has a node for each edge ofG, and two nodes inL (G) are
adjacent if and only if the corresponding edges inG have a node in common [19, p. 20].

� The medial graphM (G) of a planegraphG - or more generally of a graph embedded on a
higher-genus surface [19, p. 723] - has a node for each edge ofG and an edge between two nodes
if the edges ofG corresponding to the two nodes are adjacent on one face ofG [20].

Assumption 1. M is an edge-manifold, triangle mesh of genus 0.

Lemma 1. Under Assumption 1,P(M ) is a cubic (i.e.,, 3-regular), planar graph.

Proof. 3-regularity follows by de�nition of simplex mesh, together with the fact thatM is triangular
by hypothesis. The further hypothesis of edge-manifoldness yields the fact thatP(M ) is a planar
graph, by de�nition of edge-manifoldness.

Lemma 2(Ore [21]). The medial graph of a cubic plane graph coincides with its line graph.

Corollary 1. M (P(M )) � L (P(M )) .

Proof. The proposition follows directly from Lemmas 1 and 2.

Lemma 3(Gross and Yellen[19, p. 724]). The medial graph of a plane graph – and more generally
of a graph embedded on a surface – is identical to the medial graph of its dual graph.

Theorem 1. M (G(M )) � L (P(M )) .
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Proof. By de�nition, our primal graphP(M ) is the (topologically) dual graph ofG(M ) [22],
henceM (G(M )) � M (P(M )) from Lemma 3. From Corollary 1 it also holds thatM (P(M )) �
L (P(M )) ; thus,M (G(M )) � L (P(M )) .

C Further details on graphs

C.1 Handling non-manifoldness

In the following, we show that PD-MeshNet can be easily extended to handle non-manifold meshes.
The de�nition of the dual features that we borrow from [15] relies on the assumption that each
edge of the mesh to which a feature is assigned is shared by exactly two faces, hence implying
edge-manifoldness. However, the assumption of edge-manifoldness of the input mesh is not required
by PD-MeshNet for the convolution operation – which can handle an arbitrary number of neighbors –
nor is necessary for the pooling operation – which does not alter the topological type of the mesh, as
opposed,e.g., to theedge collapseused in [15] (cf. [23] and Fig. C.1). Therefore, by simply adding
nodes in the dual graph or changing the de�nition of features, PD-MeshNet can handle non-manifold
edges. Considering the non-manifold edge shared by facesA, B andC in Fig. C.2, we identify the
following two possible solutions:

1. Two separate dual nodesf A; B g andf A; C g can be de�ned; since each is associated to
exactly two faces (respectivelyA; B andA; C ), the same features as [15] (cf. Sec. 3.1 in the
main paper) can be used.

2. A single dual nodef A; B; C g can be inserted in the graph. In this case, different features
need to be de�ned; one possibility is to concatenate – or average – the features that can be
de�ned between facesA; B and facesA; C (cf. Sec. 3.1 in the main paper).

(a) Since the vertexc on the left side has valence 3,
collapsing the edgeabcauses the formation of a non-
manifold edge (in yellow on the right side)

(b) Collapsing the edgeabon the left side of the �gure
causes the vertexc to become of valence 3 (cf. right
side)

Figure C.1: Theedge collapseoperation used for pooling in [15] cannot collapse edges adjacent
to valence-3 vertices, because it would break the assumption of edge-manifoldness required by the
convolution operation of [15]; a valence-3 vertex is formed whenever an edge adjacent to a valence-4
vertex is collapsed. On the contrary, PD-MeshNet does not require edge-manifoldness to de�ne its
convolution operation, and its pooling operation does not alter the topological type of the mesh.

Figure C.2: Shown in red is an example of non-manifold edge shared by three facesA; B; andC.
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C.2 Dual-graph features

We provide in the following a detail about the de�nition of the dual features. For each dual node
f A; B g we replace the internal angles
 A and
 B used as features by [15] with the edge-to-edge
ratiosof the facesA andB , i.e., with reference to Fig. 2 in the main paper,kabk

kadk , kabk
kbdk and kabk

kbck , kabk
kack

are used respectively in place of
 A and
 B . It should be noted that the two types of features encode
the same type of information. Indeed, for instance by the law of cosines one has:

2kadkkbdk cos(
 A ) = kadk2 + kbdk2 � k abk2 )

) 2 cos(
 A ) =
kadk
kbdk

+
kbdk
kadk

�
kabk
kadk

kabk
kbdk

)

) cos(
 A ) =
1
2

�
k1

k2
+

k2

k1
� k1k2

�
;

(1)

with k1 := kabk
kadk andk2 := kabk

kbdk .

C.3 Dual-graph con�gurations

The following section introduces different possible con�gurations of the dual graph; the ablation study
in Sec. C.4 shows that the choice of any of these con�gurations produces no signi�cant differences in
performance.
We de�ne three admissible con�gurations of the dual graph, depending on whether a single or a
double dual node is de�ned for each edge of the mesh, and on the directness of the edges of the dual
graph:
Single dual nodes.For each pair of adjacent mesh facesA; B 2 F (M ), asinglenodef A; B g is
inserted in the graph. This is the con�guration introduced in the main paper, and we refer to it as
dual-graph con�gurationA
 . As previously mentioned, this is the con�guration implicitly used by
the method of Hanocka et al.[15], and for each dual node we therefore de�ne the same features
as [15], up to the implementation detail mentioned in Sec. C.2. In symbols, with reference to Fig. 2
in the main paper, one has the following feature vector for a generic dual nodef A; B g:

~f f A;B g =
�
� AB ;

kabk
hA

;
kabk
hB

;
kabk
kadk

;
kabk
kbdk

;
kabk
kbck

;
kabk
kack

� |

: (2)

It should be noted that the both the edge-to-height ratios and the edge-to-edge ratios in(2) are de�ned
up to rotational symmetry,i.e., one can have:

~f f A;B g =
�
� AB ;

kabk
hB

;
kabk
hA

;
kabk
kbck

;
kabk
kack

;
kabk
kadk

;
kabk
kbdk

� |

(3)

in alternative to(2). To solve the ordering ambiguity, similarly to [15] we further sort both the
edge-to-height ratios and the edge-to-edge ratios in increasing order. Each edge in the graph is
undirected, i.e.,, each nodef A; B g is connected to its neighboring nodesf A; M g; M 2 N A nf B g
and f B; N g; N 2 N B nf Ag both with incoming(e.g., f A; M g ! f A; B g) andoutgoing(e.g.,
f A; B g ! f A; M g) edges (Fig. C.3a).
Double dual nodes.Alternatively, one can map each pair of adjacent facesA; B 2 F (M ) to a
doubledual node, by inserting a nodeA ! B and a nodeB ! A in the dual graph. This allows
avoiding the symmetry ambiguity in the features: without loss of generality, we assign to the dual
nodeA ! B the subset of the features in(2) that represent the geometry of faceA as seen from face
B , and to nodeB ! A the features that represent the geometry of faceB as seen from faceA, i.e.,,
with reference to Fig. 2 in the main paper:

~f A ! B =
�
� AB ;

kabk
hA

;
kabk
kadk

;
kabk
kbdk

� |

; ~f B ! A =
�
� AB ;

kabk
hB

;
kabk
kbck

;
kabk
kack

� |

: (4)

The edges in the graph can be bothundirectedanddirected, i.e.,, a generic dual nodeA ! B can be
connected to the neighboring nodesM ! A; M 2 N A nf B g andB ! N; N 2 N B nf Ag:

� Both with anincomingand anoutgoingedge, as done for generic graphs in [24] (where the
neighboring nodes are instead of the formA ! M andN ! B ). We refer to this con�guration as
dual-graph con�gurationB
 (Fig. C.3b);
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(a) Con�guration A
 (b) Con�guration B


(c) Con�guration C


Figure C.3: Admissible dual-graph con�gurations for an example mesh.

� Only with edges outgoing fromM ! A and incoming inB ! N , i.e.,, of the form(M ! A) !
(A ! B ) and(A ! B ) ! (B ! N ). We term this con�gurationdual-graph con�gurationC

(Fig. C.3c).

C.4 Ablation study

We experimentally noticed no substantial differences in performance across the three con�gurations,
and in the main paper we therefore reported for simplicity the results obtained for dual-graph
con�guration A
 . Below we present the results of an ablation study performed on the SHREC dataset
for the mesh classi�cation task and on the Human Body dataset for the mesh segmentation task,
using for both the parameters provided in Sec. F. The training process is run for 200 epochs for
the classi�cation experiment and for 20 epochs (considering the whole augmented dataset) for the
segmentation experiment. As shown in Tables C.2 and C.3, in the mesh segmentation task the
single-node con�guration (A
 ) performs slightly better than the double-node con�gurations (B
 and
C
 ), while the latter outperform con�gurationA
 by a small margin in the mesh classi�cation task.
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Dual-graph con�guration Split 16 Split 10

A
 99.72% 99.11%
B
 100.00% 99.78%
C
 100.00% 99.67%

Table C.2: Classi�cation accuracy on the SHREC dataset for the three admissible dual-graph
con�gurations. Similarly to what done in the main paper, we limit the training to 200 epochs, and for
each split we randomly generate 3 sets and average the results over these.

Dual-graph con�guration Face labels

A
 84.78%
B
 84.18%
C
 83.53%

Table C.3: Segmentation accuracy on the Human Body dataset for the three admissible dual-graph
con�gurations. Similarly to what done in the main paper, we generate 20 augmented versions of each
training sample by randomly sliding vertices along the mesh edges. Mean pooling aggregation is
used.

D Further details on convolution

In the following section, we provide the mathematical details of the convolution operation used by
PD-MeshNet according to the different dual-graph con�gurations. We use the notation introduced in
the main paper, and we further de�ne the following symbols:

�; ~� Non-linear activation functions (ReLU) associated with the primal and dual layer
respectively

W ; ~W Shared learnable kernel used to multiply respectively primal- and dual- node
features

�; ~� Non-linear activation functions (Leaky-ReLU) used before softmax when com-
puting primal- and dual- attention coef�cients respectively

a; ~a Learnable attention parameters used in the computation of the primal- and dual-
attention coef�cients respectively

f A jj f B Vertical concatenation between featuresf A andf B

D.1 Dual convolution

In the following, we assume(A; B ) to be a pair of adjacent mesh faces. It should be noted that for
each dual node the neighborhoods that index the summations in the equations in the section below
match exactly those de�ned in the medial graphM (G(M )) (cf. Fig. C.3 and Fig. 1c in the main
paper); optionally, self-loops can be inserted in the graph, and multiple attention heads can be used,
with the resulting features being either concatenated or averaged.

D.1.1 Dual-graph con�guration A


For the generic dual nodef A; B g, the layer outputs the following feature:

~f 0
f A;B g = ~�

0

@
X

M 2N A nf B g

~� f A;M g;f A;B g
~f f A;M g

~W +
X

N 2N B nf A g

~� f B;N g;f A;B g
~f f B;N g

~W

1

A : (5)
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The attention coef�cient~� f A;M g;f A;B g de�ned on the generic dual edgef A; M g ! f A; B g, with
M 2 N A nf B g, can be found as follows:

~� f A;M g;f A;B g =
e~� (~a T [ ~f f A;M g

~W k ~f f A;B g
~W ])

X

K 2N A nf B g

e~� (~a T [ ~f f A;K g
~W k ~f f A;B g

~W ]) +
X

N 2N B nf A g

e~� (~a T [ ~f f B;N g
~W k ~f f A;B g

~W ])
:

(6)
Similarly, the attention coef�cient~� f B;N g;f A;B g de�ned on the generic dual edgef B; N g ! f A; B g,
with N 2 N B nf Ag, can be computed as:

~� f B;N g;f A;B g =
e~� (~a T [ ~f f B;N g

~W k ~f f A;B g
~W ])

X

M 2N A nf B g

e~� (~a T [ ~f f A;M g
~W k ~f f A;B g

~W ]) +
X

K 2N B nf A g

e~� (~a T [ ~f f B;K g
~W k ~f f A;B g

~W ])
:

(7)

D.1.2 Dual-graph con�guration B


For the generic dual nodeA ! B , the layer outputs the following feature:

~f
0

A ! B = ~�

0

@
X

M 2N A nf B g

~� M ! A;A ! B ~f M ! A
~W +

X

N 2N B nf A g

~� B ! N;A ! B ~f B ! N
~W

1

A : (8)

The attention coef�cient~� M ! A;A ! B de�ned on the generic dual edge(M ! A) ! (A ! B ),
with M 2 N A nf B g, can be found as follows:

~� M ! A;A ! B =
e~� (~a T [ ~f M ! A ~W k ~f A ! B ~W ])

X

K 2N A nf B g

e~� (~a T [ ~f K ! A ~W k ~f A ! B ~W ]) +
X

N 2N B nf A g

e~� (~a T [ ~f B ! N ~W k ~f A ! B ~W ])
:

(9)
Similarly, the attention coef�cient~� B ! N;A ! B de�ned on the generic dual edge(B ! N ) ! (A !
B ), with N 2 N B nf Ag, can be computed as:

~� B ! N;A ! B =
e~� (~a T [ ~f B ! N ~W k ~f A ! B ~W ])

X

M 2N A nf B g

e~� (~a T [ ~f M ! A ~W k ~f A ! B ~W ]) +
X

K 2N B nf A g

e~� (~a T [ ~f B ! K ~W k ~f A ! B ~W ])
:

(10)

D.1.3 Dual-graph con�guration C


For the generic dual nodeA ! B , the layer outputs the following feature:

~f
0

A ! B = ~�

0

@
X

M 2N A nf B g

~� M ! A;A ! B ~f M ! A
~W

1

A : (11)

The attention coef�cient~� M ! A;A ! B de�ned on the generic dual edge(M ! A) ! (A ! B ),
with M 2 N A nf B g, can be found as follows:

~� M ! A;A ! B =
e~� (~a T [ ~f M ! A ~W k ~f A ! B ~W ])

X

K 2N A nf B g

e~� (~a T [ ~f K ! A ~W k ~f A ! B ~W ])
: (12)

D.2 Primal convolution

For all dual-graph con�gurations, the output feature of a generic primal nodeA can simply be found
as:

f 0
A = �

0

@
X

M 2N A

� M;A f M W

1

A : (13)
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What varies across the different dual-graph con�gurations is the attention coef�cient� M;A associated
to each generic primal edgeM ! A, with M 2 N A , as we detail below.

Dual-graph con�guration A
 .

� M;A =
e� (a T ~f 0

f A;M g )
X

B 2N A

e� (a T ~f 0
f A;B g )

: (14)

Dual-graph con�guration B
 and C
 .

� M;A =
e�

�
a T ~f

0
M ! A

�

X

B 2N A

e�
�

a T ~f
0
B ! A

� : (15)

E Further details on pooling

E.1 Implementation details

As shown in Sec. 3.3, contracting edges in the primal graph according to the quantity (1) in the main
paper causes the formation of clusters of faces that belong in general to a triangle fan. One special
case that can occur is the one in which a single primal edge not selected for contraction according
to (1) from the main paper prevents the formation of aclosedtriangle fan. Consider the example
of Fig. E.4: the edges between the pairs of faces(A; B ), (B; E ), (C; D), and(D; E ) are selected
for contraction according to (1) from the main paper, but the one before facesA andC is not. As a
consequence, one would have the formation of a new primal node (cluster of faces)ABCDE with a
self-loop corresponding to the edge originally between primal nodesA andC. To avoid generating
such self-loop, we force the single edge that prevents the formation of aclosedtriangle fan (between
nodesA andC in the example) to also be collapsed.

Figure E.4: Example of contraction of a primal edge performed even though the quantity (1) from
the main paper is not among the largestK . The edges selected for contraction according to (1) from
the main paper are shown in green on the left side. The primal edge between facesA andC is also
contracted because it is the only one that prevents the facesA; B; C; D andE from forming aclosed
triangle fan after pooling.

F Architectures and training details

F.1 Classi�cation

The results reported for the classi�cation experiments are obtained using the architecture shown
in Fig. F.5, with input graphs of dual-graph con�gurationA
 , and using 3 attention heads with
concatenation of the output features across the different heads. Each residual convolutional block
contains two stacked convolutional layers with a single skip connection and each followed by group
normalization (GN) [25] and ReLU activation. The network is trained for 200 epochs using cross-
entropy loss and a �xed learning rate of2e� 4. A batch size of16 is used.
A summary of the architecture parameters can be found in Tab. F.4.
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