
Supplementary Material of Primal-Dual Mesh
Convolutional Neural Networks

Francesco Milano∗
ETH Zurich, Switzerland

fmilano@student.ethz.ch

Antonio Loquercio
Robotics and Perception Group

University of Zurich, Switzerland
loquercio@ifi.uzh.ch

Antoni Rosinol
SPARK Lab
MIT, USA

arosinol@mit.edu

Davide Scaramuzza
Robotics and Perception Group

University of Zurich, Switzerland
sdavide@ifi.uzh.ch

Luca Carlone
SPARK Lab
MIT, USA

lcarlone@mit.edu

Contents

A Classification of related work 3

A.1 Forms of dynamic aggregation . 3

B Analogy between line graph and medial graph 3

C Further details on graphs 4

C.1 Handling non-manifoldness . 4

C.2 Dual-graph features . 5

C.3 Dual-graph configurations . 5

C.4 Ablation study . 6

D Further details on convolution 7

D.1 Dual convolution . 7

D.1.1 Dual-graph configuration A© . 7

D.1.2 Dual-graph configuration B© . 8

D.1.3 Dual-graph configuration C© . 8

D.2 Primal convolution . 8

E Further details on pooling 9

E.1 Implementation details . 9

F Architectures and training details 9

F.1 Classification . 9
∗Work performed while at MIT.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

F.2 Segmentation . 10

G Ablation study on components 13

H Metrics 13

I Runtime 15

2

A Classification of related work

Table A.1 summarizes the most relevant related works that perform learning-based processing of
meshes. Each method is classified according to the type of approach (graph-based/non-graph-based),
to the type of pooling (no pooling, mesh-based/non-mesh-based, task-driven/non-task-driven), to
the implementation of a form of dynamic feature aggregation, and to the type of task for which the
method is designed.

Method

Type of method Pooling

Dynamic aggr. TaskGraph-based Non-graph Non-mesh based Mesh-based

Spatial Spectral Non-task-driven Task-driven

GCNN [1] 8 Shape correspondence
ACNN [2] 8 Shape correspondence/description/retrieval
MoNet [3] 8 Shape correspondence

FeaStNet [4] 8 8 ([5]) 8 Shape correspondence/segmentation
GEM-CNN [6] 8 Shape correspondence/classification

DCM-Net [7] 8 ([8]) 8 ([9]/[10]) 8 Scene segmentation
SN [11] 8 Deformation prediction/generative model

CoMA [12] 8 8 ([9]) Generative model
TangentConv [13] 8 8 (grid-based) Scene segmentation

TextureNet [14] 8 8 (sample-based) Scene segmentation
MeshCNN [15] 8 8 Shape classification/segmentation

MeshNet [16] 8 Shape classification/retrieval
SyncSpecCNN [17] 8 8 (spectral) Shape segmentation/keypoint prediction

SpiralNet++ [18] 8 8 ([9]) 8 Shape correspondence/classification/reconstruction

PD-MeshNet 8 8 8 Shape classification/segmentation

Table A.1: Classification of most relevant related work that perform learning-based processing of
meshes.

A.1 Forms of dynamic aggregation

For each node in an input graph, FeaStNet [4] dynamically learns the correspondence between its
neighboring nodes and the filter weights based on the features of the node and of its neighbors. DCM-
Net [7] dynamically determines the neighbors of each node in its convolution based on Euclidean
distance.

B Analogy between line graph and medial graph

In the following, we show that, for an edge-manifold, triangle meshM, the medial graph of the mesh
graph G(M) coincides with the line graph of the primal graph, i.e.,, M(G(M)) ≡ L(P(M)) (cf.
Theorem 1). For simplicity, we further assume the mesh to be of genus 0; a similar result can be
obtained for embeddings on surfaces of higher genus by extending Lemma 2. For convenience, we
report here the definitions of line graph and medial graph:

• The line graph L(G) of a graph G has a node for each edge of G, and two nodes in L(G) are
adjacent if and only if the corresponding edges in G have a node in common [19, p. 20].

• The medial graph M(G) of a plane graph G - or more generally of a graph embedded on a
higher-genus surface [19, p. 723] - has a node for each edge of G and an edge between two nodes
if the edges of G corresponding to the two nodes are adjacent on one face of G [20].

Assumption 1. M is an edge-manifold, triangle mesh of genus 0.

Lemma 1. Under Assumption 1, P(M) is a cubic (i.e.,, 3-regular), planar graph.
Proof. 3-regularity follows by definition of simplex mesh, together with the fact thatM is triangular
by hypothesis. The further hypothesis of edge-manifoldness yields the fact that P(M) is a planar
graph, by definition of edge-manifoldness.

Lemma 2 (Ore [21]). The medial graph of a cubic plane graph coincides with its line graph.

Corollary 1. M(P(M)) ≡ L(P(M)).
Proof. The proposition follows directly from Lemmas 1 and 2.

Lemma 3 (Gross and Yellen [19, p. 724]). The medial graph of a plane graph – and more generally
of a graph embedded on a surface – is identical to the medial graph of its dual graph.

Theorem 1. M(G(M)) ≡ L(P(M)).

3

Proof. By definition, our primal graph P(M) is the (topologically) dual graph of G(M) [22],
hence M(G(M)) ≡M(P(M)) from Lemma 3. From Corollary 1 it also holds that M(P(M)) ≡
L(P(M)); thus, M(G(M)) ≡ L(P(M)).

C Further details on graphs

C.1 Handling non-manifoldness

In the following, we show that PD-MeshNet can be easily extended to handle non-manifold meshes.
The definition of the dual features that we borrow from [15] relies on the assumption that each
edge of the mesh to which a feature is assigned is shared by exactly two faces, hence implying
edge-manifoldness. However, the assumption of edge-manifoldness of the input mesh is not required
by PD-MeshNet for the convolution operation – which can handle an arbitrary number of neighbors –
nor is necessary for the pooling operation – which does not alter the topological type of the mesh, as
opposed, e.g., to the edge collapse used in [15] (cf. [23] and Fig. C.1). Therefore, by simply adding
nodes in the dual graph or changing the definition of features, PD-MeshNet can handle non-manifold
edges. Considering the non-manifold edge shared by faces A, B and C in Fig. C.2, we identify the
following two possible solutions:

1. Two separate dual nodes {A,B} and {A,C} can be defined; since each is associated to
exactly two faces (respectively A,B and A,C), the same features as [15] (cf. Sec. 3.1 in the
main paper) can be used.

2. A single dual node {A,B,C} can be inserted in the graph. In this case, different features
need to be defined; one possibility is to concatenate – or average – the features that can be
defined between faces A,B and faces A,C (cf. Sec. 3.1 in the main paper).

(a) Since the vertex c on the left side has valence 3,
collapsing the edge ab causes the formation of a non-
manifold edge (in yellow on the right side)

(b) Collapsing the edge ab on the left side of the figure
causes the vertex c to become of valence 3 (cf. right
side)

Figure C.1: The edge collapse operation used for pooling in [15] cannot collapse edges adjacent
to valence-3 vertices, because it would break the assumption of edge-manifoldness required by the
convolution operation of [15]; a valence-3 vertex is formed whenever an edge adjacent to a valence-4
vertex is collapsed. On the contrary, PD-MeshNet does not require edge-manifoldness to define its
convolution operation, and its pooling operation does not alter the topological type of the mesh.

Figure C.2: Shown in red is an example of non-manifold edge shared by three faces A,B, and C.

4

C.2 Dual-graph features

We provide in the following a detail about the definition of the dual features. For each dual node
{A,B} we replace the internal angles γA and γB used as features by [15] with the edge-to-edge
ratios of the faces A and B, i.e., with reference to Fig. 2 in the main paper, ‖ab‖‖ad‖ , ‖ab‖‖bd‖ and ‖ab‖‖bc‖ , ‖ab‖‖ac‖
are used respectively in place of γA and γB . It should be noted that the two types of features encode
the same type of information. Indeed, for instance by the law of cosines one has:

2‖ad‖‖bd‖ cos(γA) = ‖ad‖2 + ‖bd‖2 − ‖ab‖2 ⇒

⇒2 cos(γA) =
‖ad‖
‖bd‖

+
‖bd‖
‖ad‖

− ‖ab‖
‖ad‖

‖ab‖
‖bd‖

⇒

⇒ cos(γA) =
1

2

(
k1
k2

+
k2
k1
− k1k2

)
,

(1)

with k1 := ‖ab‖
‖ad‖ and k2 := ‖ab‖

‖bd‖ .

C.3 Dual-graph configurations

The following section introduces different possible configurations of the dual graph; the ablation study
in Sec. C.4 shows that the choice of any of these configurations produces no significant differences in
performance.
We define three admissible configurations of the dual graph, depending on whether a single or a
double dual node is defined for each edge of the mesh, and on the directness of the edges of the dual
graph:
Single dual nodes. For each pair of adjacent mesh faces A,B ∈ F(M), a single node {A,B} is
inserted in the graph. This is the configuration introduced in the main paper, and we refer to it as
dual-graph configuration A©. As previously mentioned, this is the configuration implicitly used by
the method of Hanocka et al. [15], and for each dual node we therefore define the same features
as [15], up to the implementation detail mentioned in Sec. C.2. In symbols, with reference to Fig. 2
in the main paper, one has the following feature vector for a generic dual node {A,B}:

f̃{A,B} =

[
θAB ,

‖ab‖
hA

,
‖ab‖
hB

,
‖ab‖
‖ad‖

,
‖ab‖
‖bd‖

,
‖ab‖
‖bc‖

,
‖ab‖
‖ac‖

]ᵀ
. (2)

It should be noted that the both the edge-to-height ratios and the edge-to-edge ratios in (2) are defined
up to rotational symmetry, i.e., one can have:

f̃{A,B} =

[
θAB ,

‖ab‖
hB

,
‖ab‖
hA

,
‖ab‖
‖bc‖

,
‖ab‖
‖ac‖

,
‖ab‖
‖ad‖

,
‖ab‖
‖bd‖

]ᵀ
(3)

in alternative to (2). To solve the ordering ambiguity, similarly to [15] we further sort both the
edge-to-height ratios and the edge-to-edge ratios in increasing order. Each edge in the graph is
undirected, i.e.,, each node {A,B} is connected to its neighboring nodes {A,M},M ∈ NA\{B}
and {B,N}, N ∈ NB\{A} both with incoming (e.g., {A,M} → {A,B}) and outgoing (e.g.,
{A,B} → {A,M}) edges (Fig. C.3a).
Double dual nodes. Alternatively, one can map each pair of adjacent faces A,B ∈ F(M) to a
double dual node, by inserting a node A → B and a node B → A in the dual graph. This allows
avoiding the symmetry ambiguity in the features: without loss of generality, we assign to the dual
node A→ B the subset of the features in (2) that represent the geometry of face A as seen from face
B, and to node B → A the features that represent the geometry of face B as seen from face A, i.e.,,
with reference to Fig. 2 in the main paper:

f̃A→B =

[
θAB ,

‖ab‖
hA

,
‖ab‖
‖ad‖

,
‖ab‖
‖bd‖

]ᵀ
, f̃B→A =

[
θAB ,

‖ab‖
hB

,
‖ab‖
‖bc‖

,
‖ab‖
‖ac‖

]ᵀ
. (4)

The edges in the graph can be both undirected and directed, i.e.,, a generic dual node A→ B can be
connected to the neighboring nodes M → A,M ∈ NA\{B} and B → N,N ∈ NB\{A}:
• Both with an incoming and an outgoing edge, as done for generic graphs in [24] (where the

neighboring nodes are instead of the form A→M and N → B). We refer to this configuration as
dual-graph configuration B© (Fig. C.3b);

5

(a) Configuration A© (b) Configuration B©

(c) Configuration C©

Figure C.3: Admissible dual-graph configurations for an example mesh.

• Only with edges outgoing from M → A and incoming in B → N , i.e.,, of the form (M → A)→
(A→ B) and (A→ B)→ (B → N). We term this configuration dual-graph configuration C©
(Fig. C.3c).

C.4 Ablation study

We experimentally noticed no substantial differences in performance across the three configurations,
and in the main paper we therefore reported for simplicity the results obtained for dual-graph
configuration A©. Below we present the results of an ablation study performed on the SHREC dataset
for the mesh classification task and on the Human Body dataset for the mesh segmentation task,
using for both the parameters provided in Sec. F. The training process is run for 200 epochs for
the classification experiment and for 20 epochs (considering the whole augmented dataset) for the
segmentation experiment. As shown in Tables C.2 and C.3, in the mesh segmentation task the
single-node configuration (A©) performs slightly better than the double-node configurations (B© and
C©), while the latter outperform configuration A© by a small margin in the mesh classification task.

6

Dual-graph configuration Split 16 Split 10

A© 99.72% 99.11%
B© 100.00% 99.78%
C© 100.00% 99.67%

Table C.2: Classification accuracy on the SHREC dataset for the three admissible dual-graph
configurations. Similarly to what done in the main paper, we limit the training to 200 epochs, and for
each split we randomly generate 3 sets and average the results over these.

Dual-graph configuration Face labels

A© 84.78%
B© 84.18%
C© 83.53%

Table C.3: Segmentation accuracy on the Human Body dataset for the three admissible dual-graph
configurations. Similarly to what done in the main paper, we generate 20 augmented versions of each
training sample by randomly sliding vertices along the mesh edges. Mean pooling aggregation is
used.

D Further details on convolution

In the following section, we provide the mathematical details of the convolution operation used by
PD-MeshNet according to the different dual-graph configurations. We use the notation introduced in
the main paper, and we further define the following symbols:

ξ, ξ̃ Non-linear activation functions (ReLU) associated with the primal and dual layer
respectively

W , W̃ Shared learnable kernel used to multiply respectively primal- and dual- node
features

η, η̃ Non-linear activation functions (Leaky-ReLU) used before softmax when com-
puting primal- and dual- attention coefficients respectively

a, ã Learnable attention parameters used in the computation of the primal- and dual-
attention coefficients respectively

fA||fB Vertical concatenation between features fA and fB

D.1 Dual convolution

In the following, we assume (A,B) to be a pair of adjacent mesh faces. It should be noted that for
each dual node the neighborhoods that index the summations in the equations in the section below
match exactly those defined in the medial graph M(G(M)) (cf. Fig. C.3 and Fig. 1c in the main
paper); optionally, self-loops can be inserted in the graph, and multiple attention heads can be used,
with the resulting features being either concatenated or averaged.

D.1.1 Dual-graph configuration A©

For the generic dual node {A,B}, the layer outputs the following feature:

f̃ ′
{A,B} = ξ̃

 ∑
M∈NA\{B}

α̃{A,M},{A,B}f̃{A,M}W̃ +
∑

N∈NB\{A}

α̃{B,N},{A,B}f̃{B,N}W̃

 . (5)

7

The attention coefficient α̃{A,M},{A,B} defined on the generic dual edge {A,M} → {A,B}, with
M ∈ NA\{B}, can be found as follows:

α̃{A,M},{A,B} =
eη̃(ã

T [f̃{A,M}W̃‖f̃{A,B}W̃])∑
K∈NA\{B}

eη̃(ã
T [f̃{A,K}W̃‖f̃{A,B}W̃]) +

∑
N∈NB\{A}

eη̃(ã
T [f̃{B,N}W̃‖f̃{A,B}W̃])

.

(6)
Similarly, the attention coefficient α̃{B,N},{A,B} defined on the generic dual edge {B,N} → {A,B},
with N ∈ NB\{A}, can be computed as:

α̃{B,N},{A,B} =
eη̃(ã

T [f̃{B,N}W̃‖f̃{A,B}W̃])∑
M∈NA\{B}

eη̃(ã
T [f̃{A,M}W̃‖f̃{A,B}W̃]) +

∑
K∈NB\{A}

eη̃(ã
T [f̃{B,K}W̃‖f̃{A,B}W̃])

.

(7)

D.1.2 Dual-graph configuration B©

For the generic dual node A→ B, the layer outputs the following feature:

f̃
′

A→B = ξ̃

 ∑
M∈NA\{B}

α̃M→A,A→Bf̃M→AW̃ +
∑

N∈NB\{A}

α̃B→N,A→Bf̃B→NW̃

 . (8)

The attention coefficient α̃M→A,A→B defined on the generic dual edge (M → A) → (A → B),
with M ∈ NA\{B}, can be found as follows:

α̃M→A,A→B =
eη̃(ã

T [f̃M→AW̃ ‖f̃A→BW̃])∑
K∈NA\{B}

eη̃(ã
T [f̃K→AW̃ ‖f̃A→BW̃]) +

∑
N∈NB\{A}

eη̃(ã
T [f̃B→NW̃ ‖f̃A→BW̃])

.

(9)
Similarly, the attention coefficient α̃B→N,A→B defined on the generic dual edge (B → N)→ (A→
B), with N ∈ NB\{A}, can be computed as:

α̃B→N,A→B =
eη̃(ã

T [f̃B→NW̃ ‖f̃A→BW̃])∑
M∈NA\{B}

eη̃(ã
T [f̃M→AW̃ ‖f̃A→BW̃]) +

∑
K∈NB\{A}

eη̃(ã
T [f̃B→KW̃ ‖f̃A→BW̃])

.

(10)

D.1.3 Dual-graph configuration C©

For the generic dual node A→ B, the layer outputs the following feature:

f̃
′

A→B = ξ̃

 ∑
M∈NA\{B}

α̃M→A,A→Bf̃M→AW̃

 . (11)

The attention coefficient α̃M→A,A→B defined on the generic dual edge (M → A) → (A → B),
with M ∈ NA\{B}, can be found as follows:

α̃M→A,A→B =
eη̃(ã

T [f̃M→AW̃ ‖f̃A→BW̃])∑
K∈NA\{B}

eη̃(ã
T [f̃K→AW̃ ‖f̃A→BW̃])

. (12)

D.2 Primal convolution

For all dual-graph configurations, the output feature of a generic primal node A can simply be found
as:

f ′
A = ξ

 ∑
M∈NA

αM,AfMW

 . (13)

8

What varies across the different dual-graph configurations is the attention coefficient αM,A associated
to each generic primal edge M → A, with M ∈ NA, as we detail below.

Dual-graph configuration A©.

αM,A =
eη(a

T f̃ ′
{A,M})∑

B∈NA

eη(a
T f̃ ′

{A,B})
. (14)

Dual-graph configuration B© and C©.

αM,A =
e
η
(
aT f̃

′
M→A

)
∑
B∈NA

e
η
(
aT f̃

′
B→A

) . (15)

E Further details on pooling

E.1 Implementation details

As shown in Sec. 3.3, contracting edges in the primal graph according to the quantity (1) in the main
paper causes the formation of clusters of faces that belong in general to a triangle fan. One special
case that can occur is the one in which a single primal edge not selected for contraction according
to (1) from the main paper prevents the formation of a closed triangle fan. Consider the example
of Fig. E.4: the edges between the pairs of faces (A,B), (B,E), (C,D), and (D,E) are selected
for contraction according to (1) from the main paper, but the one before faces A and C is not. As a
consequence, one would have the formation of a new primal node (cluster of faces) ABCDE with a
self-loop corresponding to the edge originally between primal nodes A and C. To avoid generating
such self-loop, we force the single edge that prevents the formation of a closed triangle fan (between
nodes A and C in the example) to also be collapsed.

Figure E.4: Example of contraction of a primal edge performed even though the quantity (1) from
the main paper is not among the largest K. The edges selected for contraction according to (1) from
the main paper are shown in green on the left side. The primal edge between faces A and C is also
contracted because it is the only one that prevents the faces A,B,C,D and E from forming a closed
triangle fan after pooling.

F Architectures and training details

F.1 Classification

The results reported for the classification experiments are obtained using the architecture shown
in Fig. F.5, with input graphs of dual-graph configuration A©, and using 3 attention heads with
concatenation of the output features across the different heads. Each residual convolutional block
contains two stacked convolutional layers with a single skip connection and each followed by group
normalization (GN) [25] and ReLU activation. The network is trained for 200 epochs using cross-
entropy loss and a fixed learning rate of 2e−4. A batch size of 16 is used.
A summary of the architecture parameters can be found in Tab. F.4.

9

Figure F.5: Classification architecture. The graphs constructed from an example input mesh (from
the SHREC dataset [26]) are passed through 2 stacked residual convolutional blocks each followed
by a pooling layer; average pooling is then applied on the output of the last pooling layer, followed
by two fully-connected layers that predict the class of the input mesh.

Figure F.6: U-Net architecture used for segmentation. The graphs constructed from an example input
mesh (from the COSEG dataset [27]) are passed through an encoder, which consists of 3 stacked
residual convolutional blocks each followed by a pooling layer; the decoder consists of unpooling
layers mirroring the pooling layers – each with skip connections from the encoder and preceded
and followed by a convolutional layer – and brings the graphs to their original resolution. A final
convolutional layer predicts a class label on each face of the input mesh (i.e., on each primal node).
The number in the top-right and bottom-right corners of each layer indicate the number of output
primal and dual channels respectively, while those in the top-left and bottom-left corners represent
the number of input primal/dual channels.

F.2 Segmentation

Figure F.6 shows the U-Net architecture used for the segmentation experiments. Similarly to
the classification experiment, the results reported in the main paper are obtained with dual-graph
configuration A©, and each residual convolutional block contains two stacked convolutional layers
with a single skip connection, both followed by group normalization and ReLU activation. The
architecture is composed of an encoder with three levels of convolutional blocks each followed by a
pooling layer; a single convolutional layer connects the encoder to the decoder, which is made of
three levels that mirror the layers in the decoder. Each decoder level is made of a convolutional layer,
an unpooling layer and a second convolutional layer. At the output of each unpooling layer, skip
connections are inserted from the encoder to the decoder: the encoder features are averaged over

10

Module type #in channels (primal/dual) #out channels (primal/dual) Fract. primal edges pooled

Conv+GN+ReLU 1 / 7 64 ∗H / 64 ∗H –
SC+Conv+GN+ReLU 64 ∗H / 64 ∗H 64 ∗H / 64 ∗H –

Pooling – – 0.2

Conv+GN+ReLU 64 ∗H / 64 ∗H 128 ∗H / 128 ∗H –
SC+Conv+GN+ReLU 128 ∗H / 128 ∗H 128 ∗H / 128 ∗H –

Pooling – – 0.2

Avg pool 128 ∗H / 128 ∗H – / 128 ∗H –
Linear – / 128 ∗H – / 100 –
Linear – / 100 – / C –

Table F.4: Parameters of the architecture used for the classification experiments (cf Fig. F.5). H de-
notes the number of attention heads (3 in our experiments), while C is the number of classes in
the dataset (30 for the SHREC dataset, 22 for the Cube Engraving dataset). SC indicates a skip
connection from the previous module.

the attention heads and concatenated to the feature outputted by the unpooling layer. The second
convolutional layer in each decoder level returns the output for the subsequent decoder level. A final
convolutional layer predicts per-class labels for each class of the input mesh. We use 3 attention heads
in each convolutional block of the encoder and 1 in each block of the decoder. We train the network
for 1000 epochs with a learning rate of 1e−3 using cross-entropy loss on the per-face class labels.
We use a batch size of 16 for the COSEG experiments and a batch size of 12 for the experiments on
the Human Body dataset.
A summary of the architecture parameters can be found in Tab. F.5.

Level Level type Module type #in channels (primal/dual) #out channels (primal/dual) Fract. primal edges pooled

1 Encoder Conv+GN+ReLU 1 / 7 32 ∗He / 32 ∗He –
1 Encoder SC.+Conv+GN+ReLU 32 ∗He / 32 ∗He 32 ∗He / 32 ∗He –
1 Encoder Pooling – – 0.3

2 Encoder Conv+GN+ReLU 32 ∗He / 32 ∗He 64 ∗He / 64 ∗He –
2 Encoder SC.+Conv+GN+ReLU 64 ∗He / 64 ∗He 64 ∗He / 64 ∗He –
2 Encoder Pooling – – 0.3

3 Encoder Conv+GN+ReLU 64 ∗He / 64 ∗He 128 ∗He / 128 ∗He –
3 Encoder SC.+Conv+GN+ReLU 128 ∗He / 128 ∗He 128 ∗He / 128 ∗He –
3 Encoder Pooling – – 0.3
4 Single Conv Conv+BN+ReLU 128 ∗He / 128 ∗He 256 ∗He / 256 ∗He –
4 Single Conv Average att. heads 256 ∗He / 256 ∗He 256 / 256 –
3 Decoder Conv+BN+ReLU 256 / 256 128 / 128 –
3 Decoder Unpooling – – 0.3 (unpooling)
3 Decoder SCE 128 / 128 128 ∗ 2 / 128 ∗ 2 –
3 Decoder Conv+BN+ReLU 256 / 256 128 / 128 –

2 Decoder Conv+BN+ReLU 128 / 128 64 / 64 –
2 Decoder Unpooling – – 0.3 (unpooling)
2 Decoder SCE 64 / 64 64 ∗ 2 / 64 ∗ 2 –
2 Decoder Conv+BN+ReLU 128 / 128 64 / 64 –

1 Decoder Conv+BN+ReLU 64 / 64 32 / 32 –
1 Decoder Unpooling – – 0.3 (unpooling)
1 Decoder SCE 32 / 32 32 ∗ 2 / 32 ∗ 2 –
1 Decoder Conv+BN+ReLU 64 / 64 32 / 32 –

1 Final Conv+BN 32 / 32 C / – –

Table F.5: Parameters of the architecture used for the segmentation experiments (cf Fig. F.6). He

denotes the number of attention heads in the encoder (3 in our experiments). C is the number of
classes in the dataset (4 for the categories aliens and vases of the COSEG dataset, 3 for the category
chairs of the COSEG dataset, 8 for the Human Body dataset). BN denotes batch normalization.
SC indicates a skip connection from the previous module. SCE indicates a skip connection from
the corresponding block in the encoder: the attention heads from the encoder are averaged and the
feature is concatenated to the feature outputted by the decoder module. The attention heads are also
averaged at the output of the single convolutional layer in Level 4.

11

Superpixel-like segmentation

We evaluate our method on the mesh segmentation task using also an encoder-only, alternative
architecture, that we detail in the following. PD-MeshNet naturally forms clusters of faces through
its task-driven pooling operation; therefore, by learning to form clusters of faces that all have the
same ground-truth class label, the network could in principle predict a single class label for each
cluster rather than a separate label for each face in the mesh. This idea relates to the concept of
superpixels used in the context of image segmentation. Superpixels are sets of contiguous pixels that
share common characteristics and that can be used to segment an image, by assigning them a class
label. Usually, superpixels are formed through a clustering algorithm [28] based on pixel intensities
and are later classified using learning-based techniques, but some works [29] have demonstrated
the possibility of training a neural network to both form clusters of pixels and predict their class
labels, in an end-to-end fashion. Similarly, we train PD-MeshNet to concurrently form clusters
of faces – using its task-driven pooling operation – and label them, in an end-to-end fashion. We
perform a small ablation study of this alternative method on the COSEG dataset. Fig. F.7 shows
the superpixel-like architecture that we use in our additional evaluation. An encoder, made of 5
stacked residual convolutional blocks each with a single internal skip connection and each followed
by a pooling layer, reduces the resolution of the input mesh by identifying face clusters (the mesh
equivalent of superpixels in images). A final residual convolutional block predicts a class label
for each cluster. The network is trained for 1000 epochs, using a fixed learning rate of 1e−3 and
optimizing a cross-entropy loss function computed on the labels of each of the faces of the input
mesh. These are retrieved from the labels predicted on the face clusters by simply mapping each face
of the input mesh to its corresponding cluster in the output mesh. Each convolutional block uses 3
attention heads; for the experiments on the aliens and vases categories, we contract 10% of the
primal edges in each pooling layer, while for the chairs category we set the fraction of primal edges
to contract in each pooling layer to 5%. Dual-graph configuration A© is used. As shown in Tab. F.6,

Figure F.7: Superpixel-like architecture used for segmentation. An encoder, made of a series of
stacked residual convolutional blocks each followed by a pooling layer, identifies clusters of faces in
the input mesh (example from the COSEG dataset [27]). A final convolutional block assigns a class
label to each cluster. The label of each face in the original mesh can be retrieved as the label of the
corresponding cluster.

the accuracy on the test set is slightly inferior (∼ 2.7% to ∼ 3.3%) to the one obtained using the
U-Net architecture (cf. Tab. 3 in the main paper). We believe that this difference in performance w.r.t.
the U-Net architecture can be attributed to: (i) the lack of skip connections between the different
blocks, (ii) more importantly, to the difficulty of the network in forming face clusters by contracting a
predefined number of primal edges, without any auxiliary supervision on the formation of clusters.
Possible future directions include adding an auxiliary loss to guide the formation of the clusters,
incorporating skip connections between the blocks of the architecture, and investigating more flexible
approaches w.r.t. the number of primal edges to collapse.

12

Category Face-label accuracy

aliens 94.75%
chairs 93.74%
vases 92.79%

Table F.6: Segmentation accuracy on the COSEG test dataset using the superpixel-like architecture.

G Ablation study on components

In the following, we evaluate the contribution of the components of our method by performing
an ablation study. We use the Humany Body dataset with the same network parameters as the
experiments from the main paper (cf. previous section), and train for 300 epochs, without data
augmentation.

Table G.7 shows the result of the experiments. When pooling is removed, taking away the convolution
on the dual graph (Primal-only no Pool) worsens performance by ∼ 31% w.r.t. doing primal-dual
convolution (Ours no Pool). Adding pooling significantly increases performance (by 6.74%, cf.
Ours mean). We ablate the reduction function of the pooling layer and notice a small performance
improvement when changing the aggregation from mean to sum (Ours add); for a more extensive
evaluation of the influence of this factor, please cf. also Tab. H.8, which reports a comparison
according also the edge-based labels.

Primal-only no Pool Ours no Pool Ours mean Ours add

45.67% 77.53% 84.27% 84.52%

Table G.7: Face-label accuracy on the Human Body dataset for the ablation study on the contributions
of the network components.

Finally, we ablate the importance of the primal graph by removing pooling and predicting labels on
dual nodes (mesh edges). Note that this accuracy is not comparable to the one in Tab. G.7. Using
only the dual graph results in edge-label accuracy of 80.16%; on the other hand, adding the primal
graph (while keeping the training/testing procedure still on edges) produces an accuracy of 80.39%.

H Metrics

For completeness, we report below the accuracy obtained by our approach according to two segmen-
tation metrics that the method of Hanocka et al. [15] can be evaluated on, and that are different from
the one based on face labels. The metrics below both require to predict class labels on the edges;
therefore, it should be stressed that the results obtained on PD-MeshNet are not fully comparable
with those obtained by [15], since our method predicts labels on faces, and the latter can at most be
converted to soft labels on the edges, as shown in Fig. H.8. We denote the class label predicted on a
generic mesh face A as lA, and the soft label of the edge between two generic adjacent mesh faces A
and B as l{A,B},soft. Since in an edge-manifold mesh each non-boundary edge is shared by exactly
two faces, the soft label of the edge between two faces A and B can be expressed as a pair, with its
element being the labels of the two faces A and B, i.e., l{A,B},soft = (lA, lB).

Accuracy based on ground-truth edge hard labels. This is the metric denoted as Edge labels in
the main paper, and simply consists in evaluating the percentage of edges whose predicted label
coincides with its single (hard) ground-truth label. Denoting the set of edges of a generic meshM as
E(M), the ground-truth label of a generic edge {A,B} ∈ E(M) as l∗{A,B}, and its predicted class
label as l{A,B}, the accuracy can be found as:

acchard_gt_edge_labels =

∑
{A,B}∈E(M)

Jl{A,B} = l∗{A,B}K

|E(M)|
· 100, (16)

13

Figure H.8: Example conversion of face labels to edge soft labels. Assuming three possible class
labels (corresponding to the red, green and blue colors on the left side), each edge is assigned a soft
label by equally weighting the contributions of the two faces that share the edge (cf. right side).

where J·K denotes the Iverson bracket. Since, as detailed above, the predictions of our method can
only be converted to soft edge labels, for our approach we evaluate the accuracy (16) by separately
assuming for each edge {A,B} ∈ E(M) the predicted hard label to coincide with the label predicted
on the two faces A and B, and equally weighing the two contributions, i.e.,:

acchard_gt_edge_labels, ours =

∑
{A,B}∈E(M)

(
0.5 · JlA = l∗{A,B}K + 0.5 · JlB = l∗{A,B}K

)
|E(M)|

·100. (17)

Accuracy based on ground-truth edge soft labels. We further evaluate our method on the accuracy
defined by [15]. This metric is based on ground-truth soft labels on the edges, and further weighs
the contribution of each edge {A,B} ∈ E(M) by its length, which we denote as length{A,B}. We
refer the reader to the official code of [15] for the exact implementation details; for our purposes, we
will just consider the accuracy as being, for each edge {A,B}, a generic function f of the predicted
hard label l{A,B}, of the ground-truth soft label l∗{A,B},soft, and of the edge length length{A,B}. The
metric can therefore be expressed as:

accsoft_gt_edge_labels =

∑
{A,B}∈E(M)

f
(
l{A,B}, l

∗
{A,B},soft, length{A,B}

)
|E(M)|

· 100, (18)

Similarly to (16), the problem with evaluating our method on the above metric is that the latter is a
function, for each edge {A,B} of the ground-truth hard label l{A,B}. Also in this case, we therefore
separately assume l{A,B} to coincide with the labels predicted on the two faces A and B, and we
equally weigh the two contributions, i.e.,:

accsoft_gt_edge_labels, ours =
100

|E(M)|
·

∑
{A,B}∈E(M)

[
0.5 · f

(
lA, l

∗
{A,B},soft, length{A,B}

)
+

0.5 · f
(
lB , l

∗
{A,B},soft, length{A,B}

)]
.

(19)

For the computation of the accuracy, we use the official code and ground-truth soft labels provided
by [15]. We run our experiments using dual-graph configuration A© and the architecture detailed in
Sec. F.2. Similarly to the main paper, we run each of the experiments of [15] 4 times – using the
official code and parameters provided – and we report the best results obtained.

14

Metric

Dataset Method Edge labels (hard ground-truth) Edge labels (soft ground-truth) Face labels

COSEG aliens
MeshCNN [15] 95.35% 97.14% 96.26%

Ours mean 96.51% 98.53% 97.63%
Ours add 97.06% 99.03% 98.18%

COSEG chairs
MeshCNN [15] 92.65% 94.66% 92.99%

Ours mean 96.26% 97.93% 97.08%
Ours add 96.44% 98.21% 97.23%

COSEG vases
MeshCNN [15] 91.96% 96.91% 92.38%

Ours mean 94.70% 97.96% 95.47%
Ours add 94.57% 97.83% 95.36%

Human Body
MeshCNN [15] 84.05% 92.05% 85.39%

Ours mean 84.13% 90.44% 84.78%
Ours add 85.09% 91.11% 85.61%

Table H.8: Test accuracy on the mesh segmentation task according to the metrics defined in the paper.
"Ours mean" and "Ours add" denote our method respectively with averaging and summation pooling
aggregation, cf. Sec. 3.3 in the main paper.

I Runtime

We perform our experiments using a single NVIDIA Quadro RTX 8000 GPU. Using the architectures
detailed in Sec. F, one training epoch on the Split 16 of the SHREC dataset takes approximately 70s,
while one training epoch on the aliens category of the COSEG dataset lasts for around 64s. The
average time for a forward pass on a single mesh (i.e., batch size 1) is ∼ 175ms for the experiment
on the SHREC dataset, ∼ 390ms for the one on the COSEG aliens (1500 faces per mesh) dataset,
and ∼ 279ms for the experiments on the COSEG chairs/vases (1000 faces per mesh) dataset.

References
[1] J. Masci, D. Boscaini, M. M. Bronstein, and P. Vandergheynst, “Geodesic convolutional neural networks

on Riemannian manifolds,” in Intl. Conf. on Computer Vision (ICCV), 2015.

[2] D. Boscaini, J. Masci, E. Rodolà, and M. M. Bronstein, “Learning shape correspondence with anisotropic
convolutional neural networks,” in Advances in Neural Information Processing Systems (NIPS), 2016.

[3] F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and M. M. Bronstein, “Geometric deep learning
on graphs and manifolds using mixture model CNNs,” in IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2017.

[4] N. Verma, E. Boyer, and J. Verbeek, “FeaStNet: Feature-Steered Graph Convolutions for 3D Shape
Analysis,” in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2018.

[5] I. S. Dhillon, Y. Guan, and K. Brian, “Weighted Graph Cuts without Eigenvectors: A Multilevel Approach,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 29, no. 11, pp. 1944–1957, 2007.

[6] P. de Haan, M. Weiler, T. Cohen, and M. Welling, “Gauge Equivariant Mesh CNNs: Anisotropic convolu-
tions on geometric graphs,” CoRR abs/2003.05425, 2020.

[7] J. Schult, F. Engelmann, T. Kontogianni, and B. Leibe, “DualConvMesh-Net: Joint Geodesic and Euclidean
Convolutions on 3D Meshes,” CoRR abs/2004.01002, 2020.

[8] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic Graph CNN for
Learning on Point Clouds,” ACM Trans. Graph., vol. 38, no. 5, p. 146, 2019.

[9] M. Garland and P. S. Heckbert, “Surface Simplification using Quadric Error Metrics,” in ACM SIGGRAPH
Intl. Conf. on Computer Graphics and Interactive Techniques (SIGGRAPH), 1997.

[10] J. R. Rossignac and P. Borrel, “Multi-resolution 3D approximations for rendering complex scenes,”
Modeling in Computer Graphics, pp. 455–465, 1993.

[11] I. Kostrikov, Z. Jiang, D. Panozzo, D. Zorin, and J. Bruna, “Surface Networks,” in IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2018.

15

[12] A. Ranjan, T. Bolkart, S. Sanyal, and M. J. Black, “Generating 3D faces using Convolutional Mesh
Autoencoders,” in European Conf. on Computer Vision (ECCV), 2018.

[13] M. Tatarchenko, J. Park, V. Koltun, and Q.-Y. Zhou, “Tangent Convolutions for Dense Prediction in 3D,”
in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2018.

[14] J. Huang, H. Zhang, L. Yi, T. Funkhouser, M. Niessner, and L. J. Guibas, “TextureNet: Consistent Local
Parametrizations for Learning From High-Resolution Signals on Meshes,” in IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2019.

[15] R. Hanocka, A. Hertz, N. Fish, R. Giryes, S. Fleishman, and D. Cohen-Or, “MeshCNN: A Network with
an Edge,” ACM Trans. Graph., vol. 38, no. 4, p. 90, 2019.

[16] Y. Feng, Y. Feng, H. You, X. Zhao, and Y. Gao, “MeshNet: Mesh Neural Network for 3D Shape
Representation,” in AAAI Conf. on Artificial Intelligence (AAAI), 2019.

[17] L. Yi, H. Su, X. Guo, and L. Guibas, “SyncSpecCNN: Synchronized Spectral CNN for 3D Shape
Segmentation,” in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2017.

[18] S. Gong, L. Chen, M. Bronstein, and S. Zafeiriou, “SpiralNet++: A Fast and Highly Efficient Mesh
Convolution Operation,” 2019.

[19] J. L. Gross and J. Yellen, Handbook of Graph Theory. CRC Press, 2003.

[20] B. Bollobas, Modern Graph Theory. Springer, 2013, ch. X, p. 368.

[21] O. Ore, Ed., The four-color problem, ser. Pure and Applied Mathematics. Academic Press, 1967, vol. 27,
ch. 9, p. 126.

[22] H. Delingette, “Simplex Meshes: a General Representation for 3D Shape Reconstruction,” INRIA, Tech.
Rep. 2214, Mar 1994.

[23] T. Dey, H. Edelsbrunner, S. Guha, and D. V. Nekhayev, “Topology Preserving Edge Contraction,” Publica-
tions de l’Institut Mathématique, vol. 66, no. 80, pp. 23–45, 1999.

[24] F. Monti, O. Shchur, A. Bojchevski, O. Litany, S. Günnemann, and M. M. Bronstein, “Dual-Primal
Graph Convolutional Networks,” in European Conf. on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML-PKDD), 2018.

[25] Y. Wu and K. He, “Group Normalization,” in European Conf. on Computer Vision (ECCV), 2018.

[26] Z. Lian, A. Godil, B. Bustos, M. Daoudi, J. Hermans, S. Kawamura, Y. Kurita, G. Lavoua, H. Nguyen,
R. Ohbuchi, Y. Ohikita, Y. Ohishi, F. Porikli, M. Reuter, I. Sipiran, D. Smeets, P. Suetens, H. Tabia, and
D. Vandermeulen, “Shape Retrieval on Non-rigid 3D Watertight Meshes,” in Eurographics Workshop on
3D Object Retrieval, 2011.

[27] Y. Wang, S. Asafi, O. van Kaick, H. Zhang, D. Cohen-Or, and B. Chen, “Active co-analysis of a set of
shapes,” ACM Trans. Graph., vol. 31, no. 6, p. 165, 2012.

[28] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “SLIC Superpixels,” IEEE Trans.
Pattern Anal. Machine Intell., vol. 34, no. 11, pp. 2274–2282, 2012.

[29] V. Jampani, D. Sun, M.-Y. Liu, M.-H. Yang, and J. Kautz, “Superpixel Sampling Networks,” in European
Conf. on Computer Vision (ECCV), 2018.

16

	Classification of related work
	Forms of dynamic aggregation

	Analogy between line graph and medial graph
	Further details on graphs
	Handling non-manifoldness
	Dual-graph features
	Dual-graph configurations
	Ablation study

	Further details on convolution
	Dual convolution
	Dual-graph configuration A
	Dual-graph configuration B
	Dual-graph configuration C

	Primal convolution

	Further details on pooling
	Implementation details

	Architectures and training details
	Classification
	Segmentation

	Ablation study on components
	Metrics
	Runtime

