
A Proofs

A.1 Learning Dmat-random networks is harder than SCATAnd(Dmat)

Theorem A.1. Let Dmat be a distribution over matrices. Assume that there is an algorithm that
learns Dmat-random neural networks where the distribution D is supported on A ⊆ Rn. Then, there
is a fixed d and an efficient algorithm that solves SCATAnd(Dmat).

Proof. Let L be an efficient learning algorithm that learns Dmat-random neural networks where the
distribution D is supported on A. Let m(n) be such that L uses a sample of size at most m(n). Let
p(n) = 9m(n) + n. Let S = {(xi, yi)}p(n)i=1 ∈ (Rn × {0, 1})p(n) be a sample that is contained in A.
We will show an efficient algorithm A that distinguishes whether S is scattered or Dmat-realizable.
This implies that the theorem holds for d such that nd ≥ p(n).

Given S, the algorithm A learns a function h : Rn → R by running L with an examples oracle that
generates examples by choosing a random (uniformly distributed) example (xi, yi) ∈ S. We denote
`S(h) = 1

p(n)

∑
i∈[p(n)] (h(xi)− yi)2. Now, if `S(h) ≤ 1

10 , thenA returns that S isDmat-realizable,
and otherwise it returns that it is scattered. Clearly, the algorithm A runs in polynomial time. We
now show that if S is Dmat-realizable then A recognizes it with probability at least 3

4 , and that if S is
scattered then it also recognizes it with probability at least 3

4 .

Assume first that S is Dmat-realizable. Let DS be the uniform distribution over xi ∈ Rn from S. In
this case, since DS is supported on A, we are guaranteed that with probability at least 3

4 over the

choice of W and the internal randomness of L, we have `S(h) = Ex∼DS

[
(h(x)− hW (x))

2
]
≤ 1

10 .
Therefore, the algorithm returns “Dmat-realizable".

Now, assume that S is scattered. Let h : Rn → R be the function returned byL. Let h′ : Rn → {0, 1}
be the following function. For every x ∈ Rn, if h(x) ≥ 1

2 then h′(x) = 1, and otherwise h′(x) = 0.
Note that for every (xi, yi) ∈ S, if h′(xi) 6= yi then (h(xi)− yi)2 ≥ 1

4 . Therefore, `S(h) ≥ 1
4`S(h′).

Let C ⊆ [p(n)] be the set of indices of S that were not observed by L. Note that given C, the events
{h′(xi) = yi}i∈C are independent from one another, and each has probability 1

2 . By the Hoefding

bound, we have that h′(xi) 6= yi for at most 1
2 −

√
ln(n)
n fraction of the indices in C with probability

at most

exp

(
−2|C| ln(n)

n

)
= exp

(
−2(8m(n) + n) ln(n)

n

)
≤ exp (−2 ln(n)) =

1

n2
.

Thus, h′(xi) 6= yi for at least 1
2−on(1) fraction of the indices in C with probability at least 1−on(1).

Hence,

`S(h) ≥ 1

4
`S(h′) ≥ 1

4
· |C|
p(n)

(
1

2
− on(1)

)
=

1

4
· 8m(n) + n

9m(n) + n

(
1

2
− on(1)

)
≥ 1

9
− on(1) .

Therefore, for large enough n, with probability at least 3
4 we have `S(h) > 1

10 , and thus the algorithm
returns “scattered".

A.2 SCATAnd(Hn,msign−cnn) is RSAT-hard

For a predicate P : {±1}K → {0, 1} we denote by CSP(P,¬P ) the problem whose instances are
collections, J , of constraints, each of which is either P or ¬P constraint, and the goal is to maximize
the number of satisfied constraints. Denote by CSPrand

m(n)(P,¬P ) the problem of distinguishing3

satisfiable from random formulas with n variables and m(n) constraints. Here, in a random formula,
each constraint is chosen w.p. 1

2 to be a uniform P constraint and w.p. 1
2 a uniform ¬P constraint.

We will consider the predicate TK,M : {0, 1}KM → {0, 1} defined by

TK,M (z) = (z1 ∨ . . . ∨ zK) ∧ (zK+1 ∨ . . . ∨ z2K) ∧ . . . ∧
(
z(M−1)K+1 ∨ . . . ∨ zMK

)
.

3As in CSPrand
m(n)(P ), in order to succeed, and algorithm must return “satisfiable" w.p. at least 3

4
− on(1) on

every satisfiable formula and “random" w.p. at least 3
4
− on(1) on random formulas.
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We will need the following lemma from [17]. For an overview of its proof, see Appendix B.
Lemma A.1. [17] Let q(n) = ω(log(n)) with q(n) ≤ n

log(n) , and let d and K be fixed integers. The

problem CSPrand
nd (SATK) can be efficiently reduced to the problem CSPrand

nd−1(TK,q(n),¬TK,q(n)).

In the following lemma, we use Lemma A.1 in order to show RSAT-hardness of SCATAnd(Hn,msign−cnn)
with some appropriate m and A.

Lemma A.2. Let n = (n′ + 1) log2(n′), and let d be a fixed integer. The problem

SCATAnd(Hn,log
2(n′)

sign−cnn ), where A is the ball of radius log2(n′) in Rn, is RSAT-hard.

Proof. By Assumption 2.1, there is K such that CSPrand
(n′)d+2(SATK) is hard, where the K-SAT for-

mula is over n′ variables. Then, by Lemma A.1, the problem CSPrand
(n′)d+1(TK,log2(n′),¬TK,log2(n′))

is also hard. We will reduce CSPrand
(n′)d+1(TK,log2(n′),¬TK,log2(n′)) to SCATA(n′)d+1(Hn,log

2(n′)
sign−cnn ).

Since (n′)d+1 > nd, it would imply that SCATAnd(Hn,log
2(n′)

sign−cnn ) is RSAT-hard.

Let J = {C1, . . . , C(n′)d+1} be an input for CSPrand
(n′)d+1(TK,log2(n′),¬TK,log2(n′)). Namely,

each constraint Ci is either a CNF or a DNF formula. Equivalently, J can be written as
J ′ = {(C ′1, y1), . . . , (C ′(n′)d+1 , y(n′)d+1)} where for every i, if Ci is a DNF formula then C ′i = Ci
and yi = 1, and if Ci is a CNF formula then C ′i is the DNF obtained by negating Ci, and yi = 0.
Given J ′ as above, we encode each DNF formula C ′i (with log2(n′) clauses) as a vector xi ∈ Rn
such that each clause [(α1, i1), . . . , (αK , iK)] in C ′i (a signed K-tuple) is encoded by a vector
z = (z1, . . . , zn′+1) as follows. First, we have zn′+1 = −(K − 1). Then, for every 1 ≤ j ≤ K we
have zij = αj , and for every variable l that does not appear in the clause we have zl = 0. Thus,
for every 1 ≤ l ≤ n′, the value of zl indicates whether the l-th variable appears in the clause as a
positive literal, a negative literal, or does not appear. The encoding xi of C ′i is the concatenation of
the encodings of its clauses.

Let S = {(x1, y1), . . . , (x(n′)d+1 , y(n′)d+1)}. If J is random then S is scattered, since each constraint
Ci is with probability 1

2 a DNF formula, and with probability 1
2 a CNF formula, and this choice is

independent of the choice of the literals in Ci. Assume now that J is satisfiable by an assignment
ψ ∈ {±1}n′ . Let w = (ψ, 1) ∈ {±1}n′+1. Note that S is realizable by the CNN hnw with log2(n′)

hidden neurons. Indeed, if z ∈ Rn′+1 is the encoding of a clause of C ′i, then 〈z,w〉 = 1 if all the K
literals in the clause are satisfied by ψ, and otherwise 〈z,w〉 ≤ −1. Therefore, hnw(xi) = yi.

Note that by our construction, for every i ∈ [(n′)d+1] we have for large enough n′

‖xi‖ =

√
log2(n′) (K + (K − 1)2) ≤ log(n′) ·K ≤ log2(n′) .

A.3 Hardness of learning random fully-connected neural networks

Let n = (n′ + 1) log2(n′). We say that a matrix M of size n× n is a diagonal-blocks matrix if

M =

 B11 . . . B1 log2(n′)

...
. . .

...
Blog2(n′)1 . . . Blog2(n′) log2(n′)


where each block Bij is a diagonal matrix diag(zij1 , . . . , z

ij
n′+1). For every 1 ≤ i ≤ n′ + 1 let

Si = {i+ j(n′ + 1) : 0 ≤ j ≤ log2(n′)− 1}. Let MSi be the submatrix of M obtained by selecting
the rows and columns in Si. Thus, MSi is a matrix of size log2(n′) × log2(n′). For x ∈ Rn let
xSi ∈ Rlog2(n′) be the restriction of x to the coordinates Si.
Lemma A.3. Let M be a diagonal-blocks matrix. Then,

smin(M) ≥ min
1≤i≤n′+1

smin(MSi) .
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Proof. For every x ∈ Rn with ‖x‖ = 1 we have

‖Mx‖2 =
∑

1≤i≤n′+1

‖MSixSi‖
2 ≥

∑
1≤i≤n′+1

(smin(MSi) ‖xSi‖)
2

≥ min
1≤i≤n′+1

(smin(MSi))
2

∑
1≤i≤n′+1

‖xSi‖
2

=

(
min

1≤i≤n′+1
(smin(MSi))

2

)
‖x‖2

= min
1≤i≤n′+1

(smin(MSi))
2
.

Hence, smin(M) ≥ min1≤i≤n′+1 smin(MSi).

A.3.1 Proof of Theorem 3.1

Let M be a diagonal-blocks matrix, where each block Bij is a diagonal matrix diag(zij1 , . . . , z
ij
n′+1).

Assume that for all i, j, l the entries zijl are i.i.d. copies of a random variable z that has a symmetric
distribution Dz with variance σ2. Also, assume that the random variable z′ = z

σ is b-subgaussian for
some fixed b.
Lemma A.4.

Pr

(
smin(M) ≤ σ

n′ log2(n′)

)
= on(1) .

Proof. Let M ′ = 1
σM . By Lemma A.3, we have

smin(M ′) ≥ min
1≤i≤n′+1

smin(M ′Si) . (1)

Note that for every i, all entries of the matrix M ′Si are i.i.d. copies of z′.

Now, we need the following theorem:

Theorem A.2. [42] Let ξ be a real random variable with expectation 0 and variance 1, and assume
that ξ is b-subgaussian for some b > 0. Let A be an n× n matrix whose entries are i.i.d. copies of ξ.
Then, for every t ≥ 0 we have

Pr

(
smin(A) ≤ t√

n

)
≤ Ct+ cn

where C > 0 and c ∈ (0, 1) depend only on b.

By Theorem A.2, since each matrixM ′Si is of size log2(n′)× log2(n′), we have for every i ∈ [n′+1]
that

Pr

(
smin(M ′Si) ≤

t

log(n′)

)
≤ Ct+ clog

2(n′) .

By choosing t = 1
n′ log(n′) we have

Pr

(
smin(M ′Si) ≤

1

n′ log2(n′)

)
≤ C

n′ log(n′)
+ clog

2(n′) .

Then, by the union bound we have

Pr

(
min

1≤i≤n′+1

(
smin(M ′Si)

)
≤ 1

n′ log2(n′)

)
≤ C(n′ + 1)

n′ log(n′)
+ clog

2(n′)(n′ + 1) = on(1) .

Combining this with smin(M) = σ · smin(M ′) and with Eq. 1, we have

Pr

(
smin(M) ≤ σ

n′ log2(n′)

)
= Pr

(
smin(M ′) ≤ 1

n′ log2(n′)

)
≤ Pr

(
min

1≤i≤n′+1

(
smin(M ′Si)

)
≤ 1

n′ log2(n′)

)
= on(1) .
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Lemma A.5. Let Dmat be a distribution over Rn×log2(n′) such that each entry is drawn i.i.d. from
Dz . Note that a Dmat-random network hW has log2(n′) = O(log2(n)) hidden neurons. Let d be a
fixed integer. Then, SCATAnd(Dmat) is RSAT-hard, where A is the ball of radius n log2(n)

σ in Rn.

Proof. By Lemma A.2, the problem SCATA
′

nd(Hn,log
2(n′)

sign−cnn ) where A′ is the ball of radius log2(n′)

in Rn, is RSAT-hard. We will reduce this problem to SCATAnd(Dmat). Given a sample S =

{(xi, yi)}n
d

i=1 ∈ (Rn × {0, 1})nd with ‖xi‖ ≤ log2(n′) for every i ∈ [nd], we will, with probability
1− on(1), construct a sample S′ that is contained in A, such that if S is scattered then S′ is scattered,
and if S is Hn,log

2(n′)
sign−cnn -realizable then S′ is Dmat-realizable. Note that our reduction is allowed to

fail with probability on(1). Indeed, distinguishing scattered from realizable requires success with
probability 3

4 − on(1) and therefore reductions between such problems are not sensitive to a failure
with probability on(1).

Assuming that M is invertible (note that by Lemma A.4 it holds with probability 1 − on(1)), let
S′ = {(x′1, y1), . . . , (x′nd , ynd)} where for every i ∈ [nd] we have x′i = (M>)−1xi. Note that if S
is scattered then S′ is also scattered.

Assume that S is realizable by the CNN hnw with w ∈ {±1}n′+1. Let W be the matrix of size
n× log2(n′) such that hW = hnw. Thus, W = (w1, . . . ,wlog2(n′)) where for every i ∈ [log2(n′)]
we have (wi

(i−1)(n′+1)+1, . . . ,w
i
i(n′+1)) = w, and wi

j = 0 for every other j ∈ [n]. Let W ′ = MW .
Note that S′ is realizable by hW ′ . Indeed, for every i ∈ [nd] we have yi = hnw(xi) = hW (xi), and
W>xi = W>M>(M>)−1xi = (W ′)>x′i. Also, note that the entries of W ′ are i.i.d. copies of z.
Indeed, denote M> = (v1, . . . ,vn). Then, for every line i ∈ [n] we denote i = (b− 1)(n′ + 1) + r,
where b, r are integers and 1 ≤ r ≤ n′+1. Thus, b is the line index of the block inM that correspond
to the i-th line in M , and r is the line index within the block. Now, note that

W ′ij = 〈vi,wj〉 = 〈
(
vi(j−1)(n′+1)+1, . . . ,v

i
j(n′+1)

)
,w〉 = 〈(Bbjr1, . . . , B

bj
r(n′+1)),w〉

= Bbjrr ·wr = zbjr ·wr .

Since Dz is symmetric and wr ∈ {±1}, we have W ′ij ∼ Dz independently from the other entries.
Thus, W ′ ∼ Dmat. Therefore, hW ′ is a Dmat-random network.

By Lemma A.4, we have with probability 1− on(1) that for every i ∈ [nd],

‖x′i‖ =
∥∥(M>)−1xi

∥∥ ≤ smax

(
(M>)−1

)
‖xi‖ =

1

smin(M>)
‖xi‖ =

1

smin(M)
‖xi‖

≤ n′ log2(n′)

σ
log2(n′) ≤ n log2(n)

σ
.

Finally, Theorem 3.1 follows immediately from Theorem A.1 and the following lemma.

Lemma A.6. Let Dmat be a distribution over Rñ×m with m = O(log2(ñ)), such that each entry is
drawn i.i.d. fromDz . Let d be a fixed integer, and let ε > 0 be a small constant. Then, SCATAñd(Dmat)

is RSAT-hard, where A is the ball of radius ñε

σ in Rñ.

Proof. For integers k, l we denote by Dk,lmat the distribution over Rk×l such that each entry is drawn
i.i.d. from Dz . Let c = 2

ε , and let ñ = nc. By Lemma A.5, the problem SCATA
′

ncd(Dn,mmat ) is RSAT-

hard, where m = O(log2(n)), and A′ is the ball of radius n log2(n)
σ in Rn. We reduce this problem to

SCATAñd(Dñ,mmat ), where A is the ball of radius ñε

σ in Rñ. Note that m = O(log2(n)) = O(log2(ñ)).

Let S = {(xi, yi)}n
cd

i=1 ∈ (Rn × {0, 1})ncd with ‖xi‖ ≤ n log2(n)
σ . For every i ∈ [ncd], let x′i ∈ Rñ

be the vector obtained from xi by padding it with zeros. Thus, x′i = (xi, 0, . . . , 0). Note that
ncd = ñd. Let S′ = {(x′i, yi)}ñ

d

i=1. If S is scattered then S′ is also scattered. Note that if S is
realizable by hW then S′ is realizable by hW ′ where W ′ is obtained from W by appending ñ− n
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arbitrary lines. Assume that S is Dn,mmat -realizable, that is, W ∼ Dn,mmat . Then, S′ is realizable by hW ′
where W ′ is obtained from W by appending lines such that each component is drawn i.i.d. from Dz ,
and therefore, S′ is Dñ,mmat -realizable. Finally, for every i ∈ ñd we have

‖x′i‖ = ‖xi‖ ≤
n log2(n)

σ
=
ñ

1
c log2(ñ

1
c )

σ
≤ ñ

2
c

σ
=
ñε

σ
.

A.3.2 Proof of Theorem 3.2

Let Dmat be a distribution over Rn×m with m = log2(n), such that each entry is drawn i.i.d. from
N (0, 1). Let d be a fixed integer. By Lemma A.6, we have that SCATAnd(Dmat) is RSAT-hard, where
A is the ball of radius nε in Rn. Let (N (0, 1))n be the distribution over Rn where each component is
drawn i.i.d. from N (0, 1). Recall that (N (0, 1))n = N (0, In) ([46]). Therefore, in the distribution
Dmat, the columns are drawn i.i.d. from N (0, In). Let D′mat be a distribution over Rn×m, such that
each column is drawn i.i.d. from N (0,Σ). By Theorem A.1, we need to show that SCATA

′

nd(D′mat)

is RSAT-hard, whereA′ is the ball of radius nε√
λmin

in Rn. We show a reduction from SCATAnd(Dmat)

to SCATA
′

nd(D′mat).

Let S = {(xi, yi)}n
d

i=1 ∈ (Rn×{0, 1})nd be a sample. Let Σ = UΛU> be the spectral decomposition
of Σ, and let M = UΛ

1
2 . Recall that if w ∼ N (0, In) then Mw ∼ N (0,Σ) ([46]). For every i ∈

[nd], let x′i = (M>)−1xi, and let S′ = {(x′1, y1), . . . , (x′nd , ynd)}. Note that if S is scattered then S′

is also scattered. If S is realizable by aDmat-random network hW , then let W ′ = MW . Note that S′
is realizable by hW ′ . Indeed, for every i ∈ [nd] we have (W ′)>x′i = W>M>(M>)−1xi = W>xi.
Let W = (w1, . . . ,wm) and let W ′ = (w′1, . . . ,w

′
m). Since W ′ = MW then w′j = Mwj for

every j ∈ [m]. Now, since W ∼ Dmat, we have for every j that wj ∼ N (0, In) (i.i.d.). Therefore,
w′j = Mwj ∼ N (0,Σ), and thus W ′ ∼ D′mat. Hence, S′ is D′mat-realizable.

We now bound the norms of the vectors x′i in S′. Note that for every i ∈ [nd] we have

‖x′i‖ =
∥∥(M>)−1xi

∥∥ =
∥∥∥UΛ−

1
2xi

∥∥∥ =
∥∥∥Λ−

1
2xi

∥∥∥ ≤ λ− 1
2

min ‖xi‖ ≤ λ
− 1

2

minn
ε .

A.3.3 Proof of Theorem 3.3

Let n = (n′+1) log2(n′), and letM be a diagonal-blocks matrix, where each blockBij is a diagonal
matrix diag(zij1 , . . . , z

ij
n′+1). We denote zij = (zij1 , . . . , z

ij
n′+1), and zj = (z1j , . . . , zlog

2(n′)j) ∈
Rn. Note that for every j ∈ [log2(n′)], the vector zj contains all the entries on the diagonals of
blocks in the j-th column of blocks in M . Assume that the vectors zj are drawn i.i.d. according to
the uniform distribution on r · Sn−1.
Lemma A.7. For some universal constant c′ > 0 we have

Pr

(
smin(M) ≤ c′r

n′
√
n′ log5(n′)

)
= on(1) .

Proof. Let M ′ =
√
n
r M . For every j ∈ [log2(n′)], let z̃j ∈ Rn be the vector that contains all the

entries on the diagonals of blocks in the j-th column of blocks in M ′. That is, z̃j =
√
n
r zj . Note that

the vectors z̃j are i.i.d. copies from the uniform distribution on
√
n · Sn−1. By Lemma A.3, we have

smin(M ′) ≥ min
1≤i≤n′+1

smin(M ′Si) . (2)

Note that for every i, all columns of the matrix M ′Si are projections of the vectors z̃j on the Si
coordinated. That is, the j-th column in M ′Si is obtained by drawing z̃j from the uniform distribution
on
√
n · Sn−1 and projecting on the coordinates Si.

We say that a distribution is isotropic if it has mean zero and its covariance matrix is the identity. The
covariance matrix of the uniform distribution on Sn−1 is 1

nIn. Therefore, the uniform distribution on√
n · Sn−1 is isotropic. We will need the following theorem.
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Theorem A.3. [1] Let m ≥ 1 and let A be an m×m matrix with independent columns drawn from
an isotropic log-concave distribution. For every ε ∈ (0, 1) we have

Pr

(
smin(A) ≤ cε√

m

)
≤ Cmε

where c and C are positive universal constants.

We show that the distribution of the columns of M ′Si is isotropic and log-concave. First, since the
uniform distribution on

√
n · Sn−1 is isotropic, then its projection on a subset of coordinates is also

isotropic, and thus the distribution of the columns of M ′Si is isotropic. In order to show that it is
log-concave, we analyze its density. Let x ∈ Rn be a random variable whose distribution is the
projection of a uniform distribution on Sn−1 on k coordinates. It is known that the probability density
of x is (see [25])

fx(x1, . . . , xk) =
Γ(n/2)

Γ((n− k)/2)πk/2

1−
∑

1≤i≤k

x2i


n−k

2 −1

,

where
∑

1≤i≤k x
2
i < 1. Recall that the columns of M ′Si are projections of the uniform distribution

over
√
n · Sn−1, namely, the sphere of radius

√
n and not the unit sphere. Thus, let x′ =

√
nx. The

probability density of x′ is

fx′(x
′
1, . . . , x

′
k) =

1

(
√
n)k

fx

(
x′1√
n
, . . . ,

x′k√
n

)

=
1

nk/2
· Γ(n/2)

Γ((n− k)/2)πk/2

1−
∑

1≤i≤k

(
x′i√
n

)2


n−k
2 −1

,

where
∑

1≤i≤k(x′i)
2 < n. We denote

g(n, k) =
1

nk/2
· Γ(n/2)

Γ((n− k)/2)πk/2
.

By replacing k with log2(n′) we have

fx′(x
′
1, . . . , x

′
log2(n′)) = g(n, log2(n′))

1− 1

n

∑
1≤i≤log2(n′)

(x′i)
2


n−log2(n′)

2 −1

.

Hence, we have

log fx′(x
′
1, . . . , x

′
log2(n′)) =

log
(
g(n, log2(n′))

)
+

(
n− log2(n′)

2
− 1

)
· log

1− 1

n

∑
1≤i≤log2(n′)

(x′i)
2

 .

Since n−log2(n′)
2 − 1 > 0, we need to show that the function

log

1− 1

n

∑
1≤i≤log2(n′)

(x′i)
2

 (3)

(where
∑

1≤i≤log2(n′)(x
′
i)

2 < n) is concave. This function can be written as h(f(x1, . . . , xlog2(n′))),
where

h(x) = log (1 + x) ,

f(x′1, . . . , x
′
log2(n′)) = − 1

n

∑
1≤i≤log2(n′)

(x′i)
2 .
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Recall that if h is concave and non-decreasing, and f is concave, then their composition is also
concave. Clearly, h and f satisfy these conditions, and thus the function in Eq. 3 is concave. Hence
fx′ is log-concave.

We now apply Theorem A.3 on M ′Si , and obtain that for every ε ∈ (0, 1) we have

Pr

(
smin(M ′Si) ≤

cε

log(n′)

)
≤ C log2(n′)ε .

By choosing ε = 1
n′ log3(n′)

we have

Pr

(
smin(M ′Si) ≤

c

n′ log4(n′)

)
≤ C

n′ log(n′)
.

Now, by the union bound

Pr

(
min

1≤i≤n′+1
(smin(M ′Si)) ≤

c

n′ log4(n′)

)
≤ C

n′ log(n′)
· (n′ + 1) = on(1) .

Combining this with smin(M) = r√
n
smin(M ′) and with Eq. 2, we have

Pr

(
smin(M) ≤ cr

√
n · n′ log4(n′)

)
= Pr

(
smin(M ′) ≤ c

n′ log4(n′)

)
≤ Pr

(
min

1≤i≤n′+1
(smin(M ′Si)) ≤

c

n′ log4(n′)

)
= on(1) .

Note that

cr
√
n · n′ log4(n′)

=
cr√

n′ + 1 · n′ log5(n′)
≥ cr

2
√
n′ · n′ log5(n′)

=
c′r√

n′ · n′ log5(n′)
,

where c′ = c
2 . Thus,

Pr

(
smin(M) ≤ c′r√

n′ · n′ log5(n′)

)
≤ Pr

(
smin(M) ≤ cr

√
n · n′ log4(n′)

)
= on(1) .

Let Dmat be a distribution over Rn×log2(n′) such that each column is drawn i.i.d. from the uniform
distribution on r · Sn−1. Note that a Dmat-random network hW has log2(n′) = O(log2(n)) hidden
neurons. Now, Theorem 3.3 follows immediately from Theorem A.1 and the following lemma.

Lemma A.8. Let d be a fixed integer. Then, SCATAnd(Dmat) is RSAT-hard, where A is a ball of

radius O
(
n
√
n log4(n)
r

)
in Rn.

Proof. By Lemma A.2, the problem SCATA
′

nd(Hn,log
2(n′)

sign−cnn ) where A′ is the ball of radius log2(n′)

in Rn, is RSAT-hard. We will reduce this problem to SCATAnd(Dmat). Given a sample S =

{(xi, yi)}n
d

i=1 ∈ (Rn × {0, 1})nd with ‖xi‖ ≤ log2(n′) for every i ∈ [nd], we will, with probability
1− on(1), construct a sample S′ that is contained in A, such that if S is scattered then S′ is scattered,
and if S is Hn,log

2(n′)
sign−cnn -realizable then S′ is Dmat-realizable. Note that our reduction is allowed to

fail with probability on(1). Indeed, distinguishing scattered from realizable requires success with
probability 3

4 − on(1) and therefore reductions between such problems are not sensitive to a failure
with probability on(1).

Assuming that M is invertible (by Lemma A.7 it holds with probability 1 − on(1)), let S′ =
{(x′1, y1), . . . , (x′nd , ynd)} where for every i we have x′i = (M>)−1xi. Note that if S is scattered
then S′ is also scattered.

Assume that S is realizable by the CNN hnw with w ∈ {±1}n′+1. Let W be the matrix of size
n× log2(n′) such that hW = hnw. Thus, W = (w1, . . . ,wlog2(n′)) where for every i ∈ [log2(n′)]
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we have (wi
(i−1)(n′+1)+1, . . . ,w

i
i(n′+1)) = w, and wi

j = 0 for every other j ∈ [n]. Let W ′ = MW .
Note that S′ is realizable by hW ′ . Indeed, for every i ∈ [nd] we have yi = hnw(xi) = hW (xi), and
W>xi = W>M>(M>)−1xi = (W ′)>x′i. Also, note that the columns of W ′ are i.i.d. copies from
the uniform distribution on r · Sn−1. Indeed, denote M> = (v1, . . . ,vn). Then, for every line index
i ∈ [n] we denote i = (b− 1)(n′ + 1) + r, where b, r are integers and 1 ≤ r ≤ n′ + 1. Thus, b is the
line index of the block in M that correspond to the i-th line in M , and r is the line index within the
block. Now, note that

W ′ij = 〈vi,wj〉 = 〈
(
vi(j−1)(n′+1)+1, . . . ,v

i
j(n′+1)

)
,w〉 = 〈(Bbjr1, . . . , B

bj
r(n′+1)),w〉

= Bbjrr ·wr = zbjr ·wr .

Since wr ∈ {±1}, and since the uniform distribution on a sphere does not change by multiplying a
subset of component by −1, then the j-th column of W ′ has the same distribution as zj , namely, the
uniform distribution over r · Sn−1. Also, the columns of W ′ are independent. Thus, W ′ ∼ Dmat,
and therefore hW ′ is a Dmat-random network.

By Lemma A.7, we have with probability 1− on(1) that for every i,

‖x′i‖ =
∥∥(M>)−1xi

∥∥ ≤ smax

(
(M>)−1

)
‖xi‖ =

1

smin(M>)
‖xi‖ =

1

smin(M)
‖xi‖

≤ n′
√
n′ log5(n′)

c′r
· log2(n′) ≤ n

√
n log4(n)

c′r
.

Thus, ‖x′i‖ = O
(
n
√
n log4(n)
r

)
.

A.4 Hardness of learning random convolutional neural networks

A.4.1 Proof of Theorem 3.4

Theorem 3.4 follows immediately from Theorem A.1 and the following lemma:

Lemma A.9. Let d be a fixed integer. Then, SCATAnd(Dn′+1
z , n) is RSAT-hard, where A is the ball

of radius log2(n′)
f(n′) in Rn.

Proof. By Lemma A.2, the problem SCATA
′

nd(Hn,log
2(n′)

sign−cnn ) where A′ is the ball of radius log2(n′)

in Rn, is RSAT-hard. We will reduce this problem to SCATAnd(Dn′+1
z , n). Given a sample S =

{(xi, yi)}n
d

i=1 ∈ (Rn × {0, 1})nd with ‖xi‖ ≤ log2(n′) for every i ∈ [nd], we will, with probability
1− on(1), construct a sample S′ that is contained in A, such that if S is scattered then S′ is scattered,
and if S isHn,log

2(n′)
sign−cnn -realizable then S′ is Dn′+1

z -realizable. Note that our reduction is allowed to
fail with probability on(1). Indeed, distinguishing scattered from realizable requires success with
probability 3

4 − on(1) and therefore reductions between such problems are not sensitive to a failure
with probability on(1).

Let z = (z1, . . . , zn′+1) where each zi is drawn i.i.d. from Dz . Let M = diag(z) be a diagonal
matrix. Note that M is invertible with probability 1− on(1), since for every i ∈ [n′ + 1] we have
Przi∼Dz (zi = 0) ≤ Przi∼Dz (|zi| < f(n′)) = o( 1

n′ ). Now, for every xi from S, denote xi =

(xi1, . . . ,x
i
log2(n′)

) where for every j we have xij ∈ Rn′+1. Let x′i = (M−1xi1, . . . ,M
−1xi

log2(n′)
),

and let S′ = {(x′1, y1), . . . , (x′nd , ynd)}. Note that if S is scattered then S′ is also scattered. If S is

realizable by a CNN hnw ∈ H
n,log2(n′)
sign−cnn , then let w′ = Mw. Note that S′ is realizable by hnw′ . Indeed,

for every i and j we have 〈w′,M−1xij〉 = w>M>M−1xij = w>MM−1xij = 〈w,xij〉. Also, note
that since w ∈ {±1}n′+1 and Dz is symmetric, then w′ has the distribution Dn′+1

z , and thus hnw′ is
a Dn′+1

z -random CNN.
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The probability that z ∼ Dn′+1
z has some component zi with |zi| < f(n′), is at most (n′+1)·o( 1

n′ ) =

on(1). Therefore, with probability 1− on(1) we have for every i ∈ [nd] that

‖x′i‖
2

=
∑

1≤j≤log2(n′)

∥∥M−1xij∥∥2 ≤ ∑
1≤j≤log2(n′)

(
1

f(n′)

∥∥xij∥∥)2

=
1

(f(n′))2

∑
1≤j≤log2(n′)

∥∥xij∥∥2
=

1

(f(n′))2
‖xi‖2 ≤

log4(n′)

(f(n′))2
.

Thus, ‖x′i‖ ≤
log2(n′)
f(n′) .

A.4.2 Proof of Theorem 3.5

Assume that the covariance matrix Σ is of size (n′ + 1)× (n′ + 1), and let n = (n′ + 1) log2(n′).
Note that a N (0,Σ)-random CNN hnw has log2(n′) = O(log2(n)) hidden neurons. Let Dvec be a
distribution over Rn′+1 such that each component is drawn i.i.d. from N (0, 1). Let d be a fixed
integer. By Lemma A.9 and by choosing f(n′) = 1

n′ log(n′) , we have that SCATAnd(Dvec, n) is RSAT-

hard, where A is the ball of radius n′ log3(n′) ≤ n log(n) in Rn. Note that Dvec = N (0, In′+1)

([46]). By Theorem A.1, we need to show that SCATA
′

nd(N (0,Σ), n) is RSAT-hard, where A′ is

the ball of radius λ−
1
2

minn log(n) in Rn. We show a reduction from SCATAnd(N (0, In′+1), n) to
SCATA

′

nd(N (0,Σ), n).

Let S = {(xi, yi)}n
d

i=1 ∈ (Rn × {0, 1})nd be a sample. For every xi from S, denote xi =

(xi1, . . . ,x
i
log2(n′)

) where for every j we have xij ∈ Rn′+1. Let Σ = UΛU> be the spectral

decomposition of Σ, and let M = UΛ
1
2 . Recall that if w ∼ N (0, In′+1) then Mw ∼ N (0,Σ)

([46]). Let x′i = ((M>)−1xi1, . . . , (M
>)−1xi

log2(n′)
), and let S′ = {(x′1, y1), . . . , (x′nd , ynd)}.

Note that if S is scattered then S′ is also scattered. If S is realizable by a N (0, In′+1)-random
CNN hnw, then let w′ = Mw. Note that S′ is realizable by hnw′ . Indeed, for every i and j we have
〈w′, (M>)−1xij〉 = w>M>(M>)−1xij = 〈w,xij〉. Since w′ = Mw ∼ N (0,Σ), the sample S′ is
N (0,Σ)-realizable.

We now bound the norms of x′i in S′. Note that for every i ∈ [nd] we have

‖x′i‖
2

=
∑

1≤j≤log2(n′)

∥∥(M>)−1xij
∥∥2 =

∑
1≤j≤log2(n′)

∥∥∥UΛ−
1
2xij

∥∥∥2 =
∑

1≤j≤log2(n′)

∥∥∥Λ−
1
2xij

∥∥∥2
≤

∑
1≤j≤log2(n′)

∥∥∥λ− 1
2

minx
i
j

∥∥∥2 = λ−1min

∑
1≤j≤log2(n′)

∥∥xij∥∥2 = λ−1min ‖xi‖
2
.

Hence, ‖x′i‖ ≤ λ
− 1

2

min ‖xi‖ ≤ λ
− 1

2

minn log(n).

A.4.3 Proof of Theorem 3.6

Let n = (n′ + 1) log2(n′). Let Dvec be the uniform distribution on r · Sn′ . Note that a Dvec-random
CNN hnw has log2(n′) = O(log2(n)) hidden neurons. Let d be a fixed integer. By Theorem A.1,
we need to show that SCATAnd(Dvec, n) is RSAT-hard, where A is the ball of radius

√
n log(n)
r in Rn.

By Lemma A.2, the problem SCATA
′

nd(Hn,log
2(n′)

sign−cnn ) where A′ is the ball of radius log2(n′) in Rn,

is RSAT-hard. We reduce this problem to SCATAnd(Dvec, n). Given a sample S = {(xi, yi)}n
d

i=1 ∈
(Rn × {0, 1})nd with ‖xi‖ ≤ log2(n′) for every i ∈ [nd], we construct a sample S′ that is contained
in A, such that if S is scattered then S′ is scattered, and if S is Hn,log

2(n′)
sign−cnn -realizable then S′ is

Dvec-realizable.

Let M be a random orthogonal matrix of size (n′ + 1) × (n′ + 1). For every i ∈ [nd] denote
xi = (xi1, . . . ,x

i
log2(n′)

) where for every j we have xij ∈ Rn′+1. For every i ∈ [nd] let x′i =
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(
√
n′+1
r Mxi1, . . . ,

√
n′+1
r Mxi

log2(n′)
), and let S′ = {(x′1, y1), . . . , (x′nd , ynd)}. Note that if S is

scattered then S′ is also scattered. If S is realizable by a CNN hnw ∈ H
n,log2(n′)
sign−cnn , then let w′ =

r√
n′+1

Mw. Note that S′ is realizable by hnw′ . Indeed, for every i and j we have

〈w′,
√
n′ + 1

r
Mxij〉 = w>

r√
n′ + 1

M>
√
n′ + 1

r
Mxij = 〈w,xij〉 .

Also, note that since ‖w‖ =
√
n′ + 1 and M is orthogonal, w′ is a random vector on the sphere of

radius r in Rn′+1, and thus hnw′ is a Dvec-random CNN.

Since M is orthogonal then for every i ∈ [nd] we have

‖x′i‖
2

=
∑

1≤j≤log2(n′)

∥∥∥∥√n′ + 1

r
Mxij

∥∥∥∥2 =
n′ + 1

r2

∑
1≤j≤log2(n′)

∥∥xij∥∥2
=

n′ + 1

r2
· ‖xi‖2 ≤

(n′ + 1) log4(n′)

r2
≤ n log2(n)

r2
.

Hence ‖x′i‖ ≤
√
n log(n)
r .

B From CSPrand
nd (SATK) to CSPrand

nd−1(TK,q(n),¬TK,q(n)) ([17])

We outline the main ideas of the reduction.

First, we reduce CSPrand
nd (SATK) to CSPrand

nd−1(TK,q(n)). This is done as follows. Given an instance
J = {C1, . . . , Cnd} to CSP(SATK), by a simple greedy procedure, we try to find nd−1 disjoint
subsets J ′1, . . . , J

′
nd−1 ⊂ J , such that for every t, the subset J ′t consists of q(n) constraints and

each variable appears in at most one of the constraints in J ′t. Now, from every J ′t we construct a
TK,q(n)-constraint that is the conjunction of all constraints in J ′t . If J is random, this procedure will
succeed w.h.p. and will produce a random TK,q(n)-formula. If J is satisfiable, this procedure will
either fail or produce a satisfiable TK,q(n)-formula.

Now, we reduce CSPrand
nd−1(TK,q(n)) to CSPrand

nd−1(TK,q(n),¬TK,q(n)). This is done by replacing
each constraint, with probability 1

2 , with a random ¬P constraint. Clearly, if the original instance
is a random instance of CSPrand

nd−1(TK,q(n)), then the produced instance is a random instance of
CSPrand

nd−1(TK,q(n),¬TK,q(n)). Furthermore, if the original instance is satisfied by the assignment
ψ ∈ {±1}n, the same ψ, w.h.p., will satisfy all the new constraints. The reason is that the probability
that a random ¬TK,q(n)-constraint is satisfied by ψ is 1−

(
1− 2−K

)q(n)
, and hence, the probability

that all new constraints are satisfied by ψ is at least 1 − nd−1
(
1− 2−K

)q(n)
. Now, since q(n) =

ω(log(n)), the last probability is 1− on(1).

For the full proof see [17].

C Improving the bounds on the support of D in the convolutional networks

We show that by increasing the number of hidden neurons from O(log2(n)) to O(n) we can improve
the bounds on the support of D. Note that our results so far on learning random CNNs, are for CNNs
with input dimension n = O(t log2(t)) where t is the size of the patches. We now consider CNNs
with input dimension ñ = tc for some integer c > 1. Note that such CNNs have tc−1 = O(ñ) hidden
neurons.

Assume that there is an efficient algorithms L′ for learning Dvec-random CNNs with input di-
mension ñ = tc, where Dvec is a distribution over Rt. Assume that L′ uses samples with
at most ñd = tcd inputs. We show an algorithm L for learning a Dvec-random CNN hnw
with n = O(t log2(t)). Let S = {(x1, h

n
w(x1)), . . . , (xncd , h

n
w(xncd))} be a sample, and let

S′ = {(x′1, hnw(x1)), . . . , (x′ncd , h
n
w(xncd))} where for every vector x ∈ Rn, the vector x′ ∈ Rñ is

obtained from x by padding it with zeros. Thus, x′ = (x, 0, . . . , 0). Note that ncd > ñd. Also, note
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that for every i we have hnw(xi) = hñw(x′i). Hence, S′ is realizable by the CNN hñw. Now, given S,
the algorithm L runs L′ on S′ and returns an hypothesis h(x) = L′(S′)(x′).

Therefore, if learning Dvec-random CNNs with input dimension n = O(t log2(t)) is hard already
if the distribution D is over vectors of norm at most g(n), then learning Dvec-random CNNs with
input dimension ñ = tc is hard already if the distribution D is over vectors of norm at most
g(n) < g(t2) = g(ñ

2
c ). Hence we have the following corollaries.

Corollary C.1. Let Dvec be a distribution over Rt such that each component is drawn i.i.d. from a
distribution Dz over R. Let n = tc for some integer c > 1, and let ε = 3

c .

1. If Dz = U([−r, r]), then learning a Dvec-random CNN hnw (with O(n) hidden neurons) is
RSAT-hard, already if D is over vectors of norm at most n

ε

r .

2. If Dz = N (0, σ2), then learning a Dvec-random CNN hnw (with O(n) hidden neurons) is
RSAT-hard, already if D is over vectors of norm at most n

ε

σ .

Corollary C.2. Let Σ be a positive definite matrix of size t×t, and let λmin be its minimal eigenvalue.
Let n = tc for some integer c > 1, and let ε = 3

c . Then, learning a N (0,Σ)-random CNN hnw (with
O(n) hidden neurons) is RSAT-hard, already if the distribution D is over vectors of norm at most
nε√
λmin

.

Corollary C.3. Let Dvec be the uniform distribution over the sphere of radius r in Rt. Let n = tc

for some integer c > 1, and let ε = 2
c . Then, learning a Dvec-random CNN hnw (with O(n) hidden

neurons) is RSAT-hard, already if the distribution D is over vectors of norm at most n
ε

r .

As an example, consider a CNN hnw with n = tc. Note that since the patch size is t, then each
hidden neuron has t input neurons feeding into it. Consider a distribution Dvec over Rt such that
each component is drawn i.i.d. by a normal distribution with σ = 1√

t
. This distribution corresponds

to the standard Xavier initialization. Then, by Corollary C.1, learning a Dvec-random CNN hnw
is RSAT-hard, already if D is over vectors of norm at most n

3
c

√
t = n

3
c · n 1

2c . By choosing an
appropriate c, we have that learning a Dvec-random CNN hnw is RSAT-hard, already if D is over
vectors of norm at most

√
n.

Finally, note that Corollary 3.4 holds also for the values of n and the bounds on the support of D
from Corollaries C.1, C.2 and C.3.
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