A Proofs

A. 1 Learning $\mathcal{D}_{\text {mat }}$-random networks is harder than $\operatorname{SCAT}_{n^{d}}^{A}\left(\mathcal{D}_{\text {mat }}\right)$

Theorem A.1. Let $\mathcal{D}_{\text {mat }}$ be a distribution over matrices. Assume that there is an algorithm that learns $\mathcal{D}_{\text {mat }}$-random neural networks where the distribution \mathcal{D} is supported on $A \subseteq \mathbb{R}^{n}$. Then, there is a fixed d and an efficient algorithm that solves $\operatorname{SCAT}_{n^{d}}^{A}\left(\mathcal{D}_{\text {mat }}\right)$.

Proof. Let \mathcal{L} be an efficient learning algorithm that learns $\mathcal{D}_{\text {mat }}$-random neural networks where the distribution \mathcal{D} is supported on A. Let $m(n)$ be such that \mathcal{L} uses a sample of size at most $m(n)$. Let $p(n)=9 m(n)+n$. Let $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{p(n)} \in\left(\mathbb{R}^{n} \times\{0,1\}\right)^{p(n)}$ be a sample that is contained in A. We will show an efficient algorithm \mathcal{A} that distinguishes whether S is scattered or $\mathcal{D}_{\text {mat }}$-realizable. This implies that the theorem holds for d such that $n^{d} \geq p(n)$.

Given S, the algorithm \mathcal{A} learns a function $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by running \mathcal{L} with an examples oracle that generates examples by choosing a random (uniformly distributed) example $\left(\mathbf{x}_{i}, y_{i}\right) \in S$. We denote $\ell_{S}(h)=\frac{1}{p(n)} \sum_{i \in[p(n)]}\left(h\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}$. Now, if $\ell_{S}(h) \leq \frac{1}{10}$, then \mathcal{A} returns that S is $\mathcal{D}_{\text {mat }}$-realizable, and otherwise it returns that it is scattered. Clearly, the algorithm \mathcal{A} runs in polynomial time. We now show that if S is $\mathcal{D}_{\text {mat }}-$ realizable then \mathcal{A} recognizes it with probability at least $\frac{3}{4}$, and that if S is scattered then it also recognizes it with probability at least $\frac{3}{4}$.
Assume first that S is $\mathcal{D}_{\text {mat }}$-realizable. Let \mathcal{D}_{S} be the uniform distribution over $\mathbf{x}_{i} \in \mathbb{R}^{n}$ from S. In this case, since \mathcal{D}_{S} is supported on A, we are guaranteed that with probability at least $\frac{3}{4}$ over the choice of W and the internal randomness of \mathcal{L}, we have $\ell_{S}(h)=\mathbb{E}_{\mathbf{x} \sim \mathcal{D}_{S}}\left[\left(h(\mathbf{x})-h_{W}(\mathbf{x})\right)^{2}\right] \leq \frac{1}{10}$. Therefore, the algorithm returns " $\mathcal{D}_{\text {mat }}$-realizable".

Now, assume that S is scattered. Let $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the function returned by \mathcal{L}. Let $h^{\prime}: \mathbb{R}^{n} \rightarrow\{0,1\}$ be the following function. For every $\mathbf{x} \in \mathbb{R}^{n}$, if $h(\mathbf{x}) \geq \frac{1}{2}$ then $h^{\prime}(\mathbf{x})=1$, and otherwise $h^{\prime}(\mathbf{x})=0$. Note that for every $\left(\mathbf{x}_{i}, y_{i}\right) \in S$, if $h^{\prime}\left(\mathbf{x}_{i}\right) \neq y_{i}$ then $\left(h\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2} \geq \frac{1}{4}$. Therefore, $\ell_{S}(h) \geq \frac{1}{4} \ell_{S}\left(h^{\prime}\right)$. Let $C \subseteq[p(n)]$ be the set of indices of S that were not observed by \mathcal{L}. Note that given C, the events $\left\{h^{\prime}\left(\mathbf{x}_{i}\right)=y_{i}\right\}_{i \in C}$ are independent from one another, and each has probability $\frac{1}{2}$. By the Hoefding bound, we have that $h^{\prime}\left(\mathbf{x}_{i}\right) \neq y_{i}$ for at most $\frac{1}{2}-\sqrt{\frac{\ln (n)}{n}}$ fraction of the indices in C with probability at most

$$
\exp \left(-\frac{2|C| \ln (n)}{n}\right)=\exp \left(-\frac{2(8 m(n)+n) \ln (n)}{n}\right) \leq \exp (-2 \ln (n))=\frac{1}{n^{2}} .
$$

Thus, $h^{\prime}\left(\mathbf{x}_{i}\right) \neq y_{i}$ for at least $\frac{1}{2}-o_{n}(1)$ fraction of the indices in C with probability at least $1-o_{n}(1)$. Hence,

$$
\ell_{S}(h) \geq \frac{1}{4} \ell_{S}\left(h^{\prime}\right) \geq \frac{1}{4} \cdot \frac{|C|}{p(n)}\left(\frac{1}{2}-o_{n}(1)\right)=\frac{1}{4} \cdot \frac{8 m(n)+n}{9 m(n)+n}\left(\frac{1}{2}-o_{n}(1)\right) \geq \frac{1}{9}-o_{n}(1) .
$$

Therefore, for large enough n, with probability at least $\frac{3}{4}$ we have $\ell_{S}(h)>\frac{1}{10}$, and thus the algorithm returns "scattered".

A. $2 \operatorname{SCAT}_{n^{d}}^{A}\left(\mathcal{H}_{\mathrm{sign}-\mathrm{cnn}}^{n, m}\right)$ is RSAT-hard

For a predicate $P:\{ \pm 1\}^{K} \rightarrow\{0,1\}$ we denote by $\operatorname{CSP}(P, \neg P)$ the problem whose instances are collections, J, of constraints, each of which is either P or $\neg P$ constraint, and the goal is to maximize the number of satisfied constraints. Denote by $\operatorname{CSP}_{m(n)}^{\text {rand }}(P, \neg P)$ the problem of distinguishing ${ }^{3}$ satisfiable from random formulas with n variables and $m(n)$ constraints. Here, in a random formula, each constraint is chosen w.p. $\frac{1}{2}$ to be a uniform P constraint and w.p. $\frac{1}{2}$ a uniform $\neg P$ constraint.

We will consider the predicate $T_{K, M}:\{0,1\}^{K M} \rightarrow\{0,1\}$ defined by

$$
T_{K, M}(z)=\left(z_{1} \vee \ldots \vee z_{K}\right) \wedge\left(z_{K+1} \vee \ldots \vee z_{2 K}\right) \wedge \ldots \wedge\left(z_{(M-1) K+1} \vee \ldots \vee z_{M K}\right)
$$

[^0]We will need the following lemma from [17]. For an overview of its proof, see Appendix B
Lemma A.1. [17] Let $q(n)=\omega(\log (n))$ with $q(n) \leq \frac{n}{\log (n)}$, and let d and K be fixed integers. The problem $\operatorname{CSP}_{n^{d}}^{\mathrm{rand}}\left(\mathrm{SAT}_{K}\right)$ can be efficiently reduced to the problem $\operatorname{CSP}_{n^{d-1}}^{\mathrm{rand}}\left(T_{K, q(n)}, \neg T_{K, q(n)}\right)$.

In the following lemma, we use Lemma A.1 in order to show RSAT-hardness of $\operatorname{SCAT}_{n^{d}}^{A}\left(\mathcal{H}_{\mathrm{sign}-\mathrm{cnn}}^{n, m}\right)$ with some appropriate m and A.
Lemma A.2. Let $n=\left(n^{\prime}+1\right) \log ^{2}\left(n^{\prime}\right)$, and let d be a fixed integer. The problem $\operatorname{SCAT}_{n^{d}}^{A}\left(\mathcal{H}_{\mathrm{sign}-\mathrm{cnn}}^{n, \log ^{2}\left(n^{\prime}\right)}\right)$, where A is the ball of radius $\log ^{2}\left(n^{\prime}\right)$ in \mathbb{R}^{n}, is RSAT-hard.

Proof. By Assumption 2.1, there is K such that $\mathrm{CSP}_{\left(n^{\prime}\right)^{d+2}}^{\text {rand }}\left(\mathrm{SAT}_{K}\right)$ is hard, where the K-SAT formula is over n^{\prime} variables. Then, by Lemma A.1, the problem $\operatorname{CSP}_{\left(n^{\prime}\right) d+1}^{\text {rand }}\left(T_{K, \log ^{2}\left(n^{\prime}\right)}, \neg T_{K, \log ^{2}\left(n^{\prime}\right)}\right)$ is also hard. We will reduce $\operatorname{CSP}_{\left(n^{\prime}\right)^{d+1}}^{\mathrm{rand}}\left(T_{K, \log ^{2}\left(n^{\prime}\right)}, \neg T_{K, \log ^{2}\left(n^{\prime}\right)}\right)$ to $\operatorname{SCAT}_{\left(n^{\prime}\right)^{d+1}}^{A}\left(\mathcal{H}_{\text {sign-cnn }}^{n, \log ^{2}\left(n^{\prime}\right)}\right)$. Since $\left(n^{\prime}\right)^{d+1}>n^{d}$, it would imply that $\operatorname{SCAT}_{n^{d}}^{A}\left(\mathcal{H}_{\mathrm{sign}-\mathrm{cnn}}^{n, \log ^{2}\left(n^{\prime}\right)}\right)$ is RSAT-hard.
Let $J=\left\{C_{1}, \ldots, C_{\left(n^{\prime}\right)^{d+1}}\right\}$ be an input for $\operatorname{CSP}_{\left(n^{\prime}\right)^{d+1}}^{\mathrm{ran}}\left(T_{K, \log ^{2}\left(n^{\prime}\right)}, \neg T_{K, \log ^{2}\left(n^{\prime}\right)}\right)$. Namely, each constraint C_{i} is either a CNF or a DNF formula. Equivalently, J can be written as $J^{\prime}=\left\{\left(C_{1}^{\prime}, y_{1}\right), \ldots,\left(C_{\left(n^{\prime}\right)^{d+1}}^{\prime}, y_{\left(n^{\prime}\right)^{d+1}}\right)\right\}$ where for every i, if C_{i} is a DNF formula then $C_{i}^{\prime}=C_{i}$ and $y_{i}=1$, and if C_{i} is a CNF formula then C_{i}^{\prime} is the DNF obtained by negating C_{i}, and $y_{i}=0$. Given J^{\prime} as above, we encode each DNF formula C_{i}^{\prime} (with $\log ^{2}\left(n^{\prime}\right)$ clauses) as a vector $\mathbf{x}_{i} \in \mathbb{R}^{n}$ such that each clause $\left[\left(\alpha_{1}, i_{1}\right), \ldots,\left(\alpha_{K}, i_{K}\right)\right]$ in C_{i}^{\prime} (a signed K-tuple) is encoded by a vector $\mathbf{z}=\left(z_{1}, \ldots, z_{n^{\prime}+1}\right)$ as follows. First, we have $z_{n^{\prime}+1}=-(K-1)$. Then, for every $1 \leq j \leq K$ we have $z_{i_{j}}=\alpha_{j}$, and for every variable l that does not appear in the clause we have $z_{l}=\overline{0}$. Thus, for every $1 \leq l \leq n^{\prime}$, the value of z_{l} indicates whether the l-th variable appears in the clause as a positive literal, a negative literal, or does not appear. The encoding \mathbf{x}_{i} of C_{i}^{\prime} is the concatenation of the encodings of its clauses.
Let $S=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{\left(n^{\prime}\right)^{d+1}}, y_{\left(n^{\prime}\right)^{d+1}}\right)\right\}$. If J is random then S is scattered, since each constraint C_{i} is with probability $\frac{1}{2}$ a DNF formula, and with probability $\frac{1}{2}$ a CNF formula, and this choice is independent of the choice of the literals in C_{i}. Assume now that J is satisfiable by an assignment $\psi \in\{ \pm 1\}^{n^{\prime}}$. Let $\mathbf{w}=(\psi, 1) \in\{ \pm 1\}^{n^{\prime}+1}$. Note that S is realizable by the $\mathrm{CNN} h_{\mathbf{w}}^{n}$ with $\log ^{2}\left(n^{\prime}\right)$ hidden neurons. Indeed, if $\mathbf{z} \in \mathbb{R}^{n^{\prime}+1}$ is the encoding of a clause of C_{i}^{\prime}, then $\langle\mathbf{z}, \mathbf{w}\rangle=1$ if all the K literals in the clause are satisfied by ψ, and otherwise $\langle\mathbf{z}, \mathbf{w}\rangle \leq-1$. Therefore, $h_{\mathbf{w}}^{n}\left(\mathbf{x}_{i}\right)=y_{i}$.
Note that by our construction, for every $i \in\left[\left(n^{\prime}\right)^{d+1}\right]$ we have for large enough n^{\prime}

$$
\left\|\mathbf{x}_{i}\right\|=\sqrt{\log ^{2}\left(n^{\prime}\right)\left(K+(K-1)^{2}\right)} \leq \log \left(n^{\prime}\right) \cdot K \leq \log ^{2}\left(n^{\prime}\right)
$$

A. 3 Hardness of learning random fully-connected neural networks

Let $n=\left(n^{\prime}+1\right) \log ^{2}\left(n^{\prime}\right)$. We say that a matrix M of size $n \times n$ is a diagonal-blocks matrix if

$$
M=\left[\begin{array}{ccc}
B^{11} & \ldots & B^{1 \log ^{2}\left(n^{\prime}\right)} \\
\vdots & \ddots & \vdots \\
B^{\log ^{2}\left(n^{\prime}\right) 1} & \ldots & B^{\log ^{2}\left(n^{\prime}\right) \log ^{2}\left(n^{\prime}\right)}
\end{array}\right]
$$

where each block $B^{i j}$ is a diagonal matrix $\operatorname{diag}\left(z_{1}^{i j}, \ldots, z_{n^{\prime}+1}^{i j}\right)$. For every $1 \leq i \leq n^{\prime}+1$ let $S_{i}=\left\{i+j\left(n^{\prime}+1\right): 0 \leq j \leq \log ^{2}\left(n^{\prime}\right)-1\right\}$. Let $M_{S_{i}}$ be the submatrix of M obtained by selecting the rows and columns in S_{i}. Thus, $M_{S_{i}}$ is a matrix of size $\log ^{2}\left(n^{\prime}\right) \times \log ^{2}\left(n^{\prime}\right)$. For $\mathbf{x} \in \mathbb{R}^{n}$ let $\mathbf{x}_{S_{i}} \in \mathbb{R}^{\log ^{2}\left(n^{\prime}\right)}$ be the restriction of \mathbf{x} to the coordinates S_{i}.
Lemma A.3. Let M be a diagonal-blocks matrix. Then,

$$
s_{\min }(M) \geq \min _{1 \leq i \leq n^{\prime}+1} s_{\min }\left(M_{S_{i}}\right)
$$

Proof. For every $\mathbf{x} \in \mathbb{R}^{n}$ with $\|\mathbf{x}\|=1$ we have

$$
\begin{aligned}
\|M \mathbf{x}\|^{2} & =\sum_{1 \leq i \leq n^{\prime}+1}\left\|M_{S_{i}} \mathbf{x}_{S_{i}}\right\|^{2} \geq \sum_{1 \leq i \leq n^{\prime}+1}\left(s_{\min }\left(M_{S_{i}}\right)\left\|\mathbf{x}_{S_{i}}\right\|\right)^{2} \\
& \geq \min _{1 \leq i \leq n^{\prime}+1}\left(s_{\min }\left(M_{S_{i}}\right)\right)^{2} \sum_{1 \leq i \leq n^{\prime}+1}\left\|\mathbf{x}_{S_{i}}\right\|^{2}=\left(\min _{1 \leq i \leq n^{\prime}+1}\left(s_{\min }\left(M_{S_{i}}\right)\right)^{2}\right)\|\mathbf{x}\|^{2} \\
& =\min _{1 \leq i \leq n^{\prime}+1}\left(s_{\min }\left(M_{S_{i}}\right)\right)^{2}
\end{aligned}
$$

Hence, $s_{\min }(M) \geq \min _{1 \leq i \leq n^{\prime}+1} s_{\min }\left(M_{S_{i}}\right)$.

A.3.1 Proof of Theorem 3.1

Let M be a diagonal-blocks matrix, where each block $B^{i j}$ is a diagonal matrix $\operatorname{diag}\left(z_{1}^{i j}, \ldots, z_{n^{\prime}+1}^{i j}\right)$. Assume that for all i, j, l the entries $z_{l}^{i j}$ are i.i.d. copies of a random variable z that has a symmetric distribution \mathcal{D}_{z} with variance σ^{2}. Also, assume that the random variable $z^{\prime}=\frac{z}{\sigma}$ is b-subgaussian for some fixed b.
Lemma A.4.

$$
\operatorname{Pr}\left(s_{\min }(M) \leq \frac{\sigma}{n^{\prime} \log ^{2}\left(n^{\prime}\right)}\right)=o_{n}(1)
$$

Proof. Let $M^{\prime}=\frac{1}{\sigma} M$. By Lemma A.3. we have

$$
\begin{equation*}
s_{\min }\left(M^{\prime}\right) \geq \min _{1 \leq i \leq n^{\prime}+1} s_{\min }\left(M_{S_{i}}^{\prime}\right) \tag{1}
\end{equation*}
$$

Note that for every i, all entries of the matrix $M_{S_{i}}^{\prime}$ are i.i.d. copies of z^{\prime}.
Now, we need the following theorem:
Theorem A.2. [42] Let ξ be a real random variable with expectation 0 and variance 1, and assume that ξ is b-subgaussian for some $b>0$. Let A be an $n \times n$ matrix whose entries are i.i.d. copies of ξ. Then, for every $t \geq 0$ we have

$$
\operatorname{Pr}\left(s_{\min }(A) \leq \frac{t}{\sqrt{n}}\right) \leq C t+c^{n}
$$

where $C>0$ and $c \in(0,1)$ depend only on b.
By Theorem A.2, since each matrix $M_{S_{i}}^{\prime}$ is of size $\log ^{2}\left(n^{\prime}\right) \times \log ^{2}\left(n^{\prime}\right)$, we have for every $i \in\left[n^{\prime}+1\right]$ that

$$
\operatorname{Pr}\left(s_{\min }\left(M_{S_{i}}^{\prime}\right) \leq \frac{t}{\log \left(n^{\prime}\right)}\right) \leq C t+c^{\log ^{2}\left(n^{\prime}\right)}
$$

By choosing $t=\frac{1}{n^{\prime} \log \left(n^{\prime}\right)}$ we have

$$
\operatorname{Pr}\left(s_{\min }\left(M_{S_{i}}^{\prime}\right) \leq \frac{1}{n^{\prime} \log ^{2}\left(n^{\prime}\right)}\right) \leq \frac{C}{n^{\prime} \log \left(n^{\prime}\right)}+c^{\log ^{2}\left(n^{\prime}\right)}
$$

Then, by the union bound we have

$$
\operatorname{Pr}\left(\min _{1 \leq i \leq n^{\prime}+1}\left(s_{\min }\left(M_{S_{i}}^{\prime}\right)\right) \leq \frac{1}{n^{\prime} \log ^{2}\left(n^{\prime}\right)}\right) \leq \frac{C\left(n^{\prime}+1\right)}{n^{\prime} \log \left(n^{\prime}\right)}+c^{\log ^{2}\left(n^{\prime}\right)}\left(n^{\prime}+1\right)=o_{n}(1) .
$$

Combining this with $s_{\min }(M)=\sigma \cdot s_{\min }\left(M^{\prime}\right)$ and with Eq. 1 , we have

$$
\begin{aligned}
\operatorname{Pr}\left(s_{\min }(M) \leq \frac{\sigma}{n^{\prime} \log ^{2}\left(n^{\prime}\right)}\right) & =\operatorname{Pr}\left(s_{\min }\left(M^{\prime}\right) \leq \frac{1}{n^{\prime} \log ^{2}\left(n^{\prime}\right)}\right) \\
& \leq \operatorname{Pr}\left(\min _{1 \leq i \leq n^{\prime}+1}\left(s_{\min }\left(M_{S_{i}}^{\prime}\right)\right) \leq \frac{1}{n^{\prime} \log ^{2}\left(n^{\prime}\right)}\right)=o_{n}(1)
\end{aligned}
$$

Lemma A.5. Let $\mathcal{D}_{\text {mat }}$ be a distribution over $\mathbb{R}^{n \times \log ^{2}\left(n^{\prime}\right)}$ such that each entry is drawn i.i.d. from \mathcal{D}_{z}. Note that a $\mathcal{D}_{\text {mat }}$-random network h_{W} has $\log ^{2}\left(n^{\prime}\right)=\mathcal{O}\left(\log ^{2}(n)\right)$ hidden neurons. Let d be a fixed integer. Then, $\operatorname{SCAT}_{n^{d}}^{A}\left(\mathcal{D}_{\text {mat }}\right)$ is RSAT-hard, where A is the ball of radius $\frac{n \log ^{2}(n)}{\sigma}$ in \mathbb{R}^{n}.

Proof. By Lemma A.2 the problem $\operatorname{SCAT}_{n^{d}}^{A^{\prime}}\left(\mathcal{H}_{\mathrm{sign}-\mathrm{cnn}}^{n, \log ^{2}\left(n^{\prime}\right)}\right)$ where A^{\prime} is the ball of radius $\log ^{2}\left(n^{\prime}\right)$ in \mathbb{R}^{n}, is RSAT-hard. We will reduce this problem to $\operatorname{SCAT}_{n^{d}}^{A}\left(\mathcal{D}_{\text {mat }}\right)$. Given a sample $S=$ $\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{n^{d}} \in\left(\mathbb{R}^{n} \times\{0,1\}\right)^{n^{d}}$ with $\left\|\mathbf{x}_{i}\right\| \leq \log ^{2}\left(n^{\prime}\right)$ for every $i \in\left[n^{d}\right]$, we will, with probability $1-o_{n}(1)$, construct a sample S^{\prime} that is contained in A, such that if S is scattered then S^{\prime} is scattered, and if S is $\mathcal{H}_{\text {sign-cnn }}^{n, \log ^{2}\left(n^{\prime}\right)}$-realizable then S^{\prime} is $\mathcal{D}_{\text {mat }}$-realizable. Note that our reduction is allowed to fail with probability $o_{n}(1)$. Indeed, distinguishing scattered from realizable requires success with probability $\frac{3}{4}-o_{n}(1)$ and therefore reductions between such problems are not sensitive to a failure with probability $o_{n}(1)$.
Assuming that M is invertible (note that by Lemma A. 4 it holds with probability $1-o_{n}(1)$), let $S^{\prime}=\left\{\left(\mathbf{x}_{1}^{\prime}, y_{1}\right), \ldots,\left(\mathbf{x}_{n^{d}}^{\prime}, y_{n^{d}}\right)\right\}$ where for every $i \in\left[n^{d}\right]$ we have $\mathbf{x}_{i}^{\prime}=\left(M^{\top}\right)^{-1} \mathbf{x}_{i}$. Note that if S is scattered then S^{\prime} is also scattered.
Assume that S is realizable by the $\mathrm{CNN} h_{\mathbf{w}}^{n}$ with $\mathbf{w} \in\{ \pm 1\}^{n^{\prime}+1}$. Let W be the matrix of size $n \times \log ^{2}\left(n^{\prime}\right)$ such that $h_{W}=h_{\mathbf{w}}^{n}$. Thus, $W=\left(\mathbf{w}^{1}, \ldots, \mathbf{w}^{\log ^{2}\left(n^{\prime}\right)}\right)$ where for every $i \in\left[\log ^{2}\left(n^{\prime}\right)\right]$ we have $\left(\mathbf{w}_{(i-1)\left(n^{\prime}+1\right)+1}^{i}, \ldots, \mathbf{w}_{i\left(n^{\prime}+1\right)}^{i}\right)=\mathbf{w}$, and $\mathbf{w}_{j}^{i}=0$ for every other $j \in[n]$. Let $W^{\prime}=M W$. Note that S^{\prime} is realizable by $h_{W^{\prime}}$. Indeed, for every $i \in\left[n^{d}\right]$ we have $y_{i}=h_{\mathbf{w}}^{n}\left(\mathbf{x}_{i}\right)=h_{W}\left(\mathbf{x}_{i}\right)$, and $W^{\top} \mathbf{x}_{i}=W^{\top} M^{\top}\left(M^{\top}\right)^{-1} \mathbf{x}_{i}=\left(W^{\prime}\right)^{\top} \mathbf{x}_{i}^{\prime}$. Also, note that the entries of W^{\prime} are i.i.d. copies of z. Indeed, denote $M^{\top}=\left(\mathbf{v}^{1}, \ldots, \mathbf{v}^{n}\right)$. Then, for every line $i \in[n]$ we denote $i=(b-1)\left(n^{\prime}+1\right)+r$, where b, r are integers and $1 \leq r \leq n^{\prime}+1$. Thus, b is the line index of the block in M that correspond to the i-th line in M, and r is the line index within the block. Now, note that

$$
\begin{aligned}
W_{i j}^{\prime} & =\left\langle\mathbf{v}^{i}, \mathbf{w}^{j}\right\rangle=\left\langle\left(\mathbf{v}_{(j-1)\left(n^{\prime}+1\right)+1}^{i}, \ldots, \mathbf{v}_{j\left(n^{\prime}+1\right)}^{i}\right), \mathbf{w}\right\rangle=\left\langle\left(B_{r 1}^{b j}, \ldots, B_{r\left(n^{\prime}+1\right)}^{b j}\right), \mathbf{w}\right\rangle \\
& =B_{r r}^{b j} \cdot \mathbf{w}_{r}=z_{r}^{b j} \cdot \mathbf{w}_{r}
\end{aligned}
$$

Since \mathcal{D}_{z} is symmetric and $\mathbf{w}_{r} \in\{ \pm 1\}$, we have $W_{i j}^{\prime} \sim \mathcal{D}_{z}$ independently from the other entries. Thus, $W^{\prime} \sim \mathcal{D}_{\text {mat }}$. Therefore, $h_{W^{\prime}}$ is a $\mathcal{D}_{\text {mat }}$-random network.
By Lemma A.4, we have with probability $1-o_{n}(1)$ that for every $i \in\left[n^{d}\right]$,

$$
\begin{aligned}
\left\|\mathbf{x}_{i}^{\prime}\right\| & =\left\|\left(M^{\top}\right)^{-1} \mathbf{x}_{i}\right\| \leq s_{\max }\left(\left(M^{\top}\right)^{-1}\right)\left\|\mathbf{x}_{i}\right\|=\frac{1}{s_{\min }\left(M^{\top}\right)}\left\|\mathbf{x}_{i}\right\|=\frac{1}{s_{\min }(M)}\left\|\mathbf{x}_{i}\right\| \\
& \leq \frac{n^{\prime} \log ^{2}\left(n^{\prime}\right)}{\sigma} \log ^{2}\left(n^{\prime}\right) \leq \frac{n \log ^{2}(n)}{\sigma}
\end{aligned}
$$

Finally, Theorem 3.1 follows immediately from Theorem A.1 and the following lemma.
Lemma A.6. Let $\mathcal{D}_{\text {mat }}$ be a distribution over $\mathbb{R}^{\tilde{n} \times m}$ with $m=\mathcal{O}\left(\log ^{2}(\tilde{n})\right)$, such that each entry is drawn i.i.d. from \mathcal{D}_{z}. Let d be a fixed integer, and let $\epsilon>0$ be a small constant. Then, $\operatorname{SCAT}_{\tilde{n}^{d}}^{A}\left(\mathcal{D}_{\text {mat }}\right)$ is RSAT-hard, where A is the ball of radius $\frac{\tilde{n}^{\epsilon}}{\sigma}$ in $\mathbb{R}^{\tilde{n}}$.

Proof. For integers k, l we denote by $\mathcal{D}_{\text {mat }}^{k, l}$ the distribution over $\mathbb{R}^{k \times l}$ such that each entry is drawn i.i.d. from \mathcal{D}_{z}. Let $c=\frac{2}{\epsilon}$, and let $\tilde{n}=n^{c}$. By Lemma A.5, the problem $\operatorname{SCAT}_{n^{c d}}^{A^{\prime}\left(\mathcal{D}_{\text {mat }}^{n, m}\right) \text { is RSAT- }}$ hard, where $m=\mathcal{O}\left(\log ^{2}(n)\right)$, and A^{\prime} is the ball of radius $\frac{n \log ^{2}(n)}{\sigma}$ in \mathbb{R}^{n}. We reduce this problem to $\operatorname{SCAT}_{\tilde{n}^{d}}^{A}\left(\mathcal{D}_{\text {mat }}^{\tilde{n}, m}\right)$, where A is the ball of radius $\frac{\tilde{n}^{\epsilon}}{\sigma}$ in $\mathbb{R}^{\tilde{n}}$. Note that $m=\mathcal{O}\left(\log ^{2}(n)\right)=\mathcal{O}\left(\log ^{2}(\tilde{n})\right)$.
Let $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{n^{c d}} \in\left(\mathbb{R}^{n} \times\{0,1\}\right)^{n^{c d}}$ with $\left\|\mathbf{x}_{i}\right\| \leq \frac{n \log ^{2}(n)}{\sigma}$. For every $i \in\left[n^{c d}\right]$, let $\mathbf{x}_{i}^{\prime} \in \mathbb{R}^{\tilde{n}}$ be the vector obtained from \mathbf{x}_{i} by padding it with zeros. Thus, $\mathbf{x}_{i}^{\prime}=\left(\mathbf{x}_{i}, 0, \ldots, 0\right)$. Note that $n^{c d}=\tilde{n}^{d}$. Let $S^{\prime}=\left\{\left(\mathbf{x}_{i}^{\prime}, y_{i}\right)\right\}_{i=1}^{\tilde{n}^{d}}$. If S is scattered then S^{\prime} is also scattered. Note that if S is realizable by h_{W} then S^{\prime} is realizable by $h_{W^{\prime}}$ where W^{\prime} is obtained from W by appending $\tilde{n}-n$
arbitrary lines. Assume that S is $\mathcal{D}_{\text {mat }}^{n, m}$-realizable, that is, $W \sim \mathcal{D}_{\text {mat }}^{n, m}$. Then, S^{\prime} is realizable by $h_{W^{\prime}}$ where W^{\prime} is obtained from W by appending lines such that each component is drawn i.i.d. from \mathcal{D}_{z}, and therefore, S^{\prime} is $\mathcal{D}_{\text {mat }}^{\tilde{n}, m}$-realizable. Finally, for every $i \in \tilde{n}^{d}$ we have

$$
\left\|\mathbf{x}_{i}^{\prime}\right\|=\left\|\mathbf{x}_{i}\right\| \leq \frac{n \log ^{2}(n)}{\sigma}=\frac{\tilde{n}^{\frac{1}{c}} \log ^{2}\left(\tilde{n}^{\frac{1}{c}}\right)}{\sigma} \leq \frac{\tilde{n}^{\frac{2}{c}}}{\sigma}=\frac{\tilde{n}^{\epsilon}}{\sigma}
$$

A.3.2 Proof of Theorem 3.2

Let $\mathcal{D}_{\text {mat }}$ be a distribution over $\mathbb{R}^{n \times m}$ with $m=\log ^{2}(n)$, such that each entry is drawn i.i.d. from $\mathcal{N}(0,1)$. Let d be a fixed integer. By Lemma A.6, we have that $\mathrm{SCAT}_{n^{d}}^{A}\left(\mathcal{D}_{\text {mat }}\right)$ is RSAT-hard, where A is the ball of radius n^{ϵ} in \mathbb{R}^{n}. Let $(\mathcal{N}(0,1))^{n}$ be the distribution over \mathbb{R}^{n} where each component is drawn i.i.d. from $\mathcal{N}(0,1)$. Recall that $(\mathcal{N}(0,1))^{n}=\mathcal{N}\left(\mathbf{0}, I_{n}\right)$ ([46]). Therefore, in the distribution $\mathcal{D}_{\text {mat }}$, the columns are drawn i.i.d. from $\mathcal{N}\left(\mathbf{0}, I_{n}\right)$. Let $\mathcal{D}_{\text {mat }}^{\prime}$ be a distribution over $\mathbb{R}^{n \times m}$, such that each column is drawn i.i.d. from $\mathcal{N}(\mathbf{0}, \Sigma)$. By Theorem A.1. we need to show that $\operatorname{SCAT}_{n^{d}}^{A^{\prime}}\left(\mathcal{D}_{\text {mat }}^{\prime}\right)$ is RSAT-hard, where A^{\prime} is the ball of radius $\frac{n^{\epsilon}}{\sqrt{\lambda_{\min }}}$ in \mathbb{R}^{n}. We show a reduction from $\operatorname{SCAT}_{n^{d}}^{A}\left(\mathcal{D}_{\text {mat }}\right)$ to $\operatorname{SCAT}_{n^{d}}^{A^{\prime}}\left(\mathcal{D}_{\text {mat }}^{\prime}\right)$.
Let $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{n^{d}} \in\left(\mathbb{R}^{n} \times\{0,1\}\right)^{n^{d}}$ be a sample. Let $\Sigma=U \Lambda U^{\top}$ be the spectral decomposition of Σ, and let $M=U \Lambda^{\frac{1}{2}}$. Recall that if $\mathbf{w} \sim \mathcal{N}\left(\mathbf{0}, I_{n}\right)$ then $M \mathbf{w} \sim \mathcal{N}(\mathbf{0}, \Sigma)$ ([46]). For every $i \in$ $\left[n^{d}\right]$, let $\mathbf{x}_{i}^{\prime}=\left(M^{\top}\right)^{-1} \mathbf{x}_{i}$, and let $S^{\prime}=\left\{\left(\mathbf{x}_{1}^{\prime}, y_{1}\right), \ldots,\left(\mathbf{x}_{n^{d}}^{\prime}, y_{n^{d}}\right)\right\}$. Note that if S is scattered then S^{\prime} is also scattered. If S is realizable by a $\mathcal{D}_{\text {mat }}$-random network h_{W}, then let $W^{\prime}=M W$. Note that S^{\prime} is realizable by $h_{W^{\prime}}$. Indeed, for every $i \in\left[n^{d}\right]$ we have $\left(W^{\prime}\right)^{\top} \mathbf{x}_{i}^{\prime}=W^{\top} M^{\top}\left(M^{\top}\right)^{-1} \mathbf{x}_{i}=W^{\top} \mathbf{x}_{i}$. Let $W=\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right)$ and let $W^{\prime}=\left(\mathbf{w}_{1}^{\prime}, \ldots, \mathbf{w}_{m}^{\prime}\right)$. Since $W^{\prime}=M W$ then $\mathbf{w}_{j}^{\prime}=M \mathbf{w}_{j}$ for every $j \in[m]$. Now, since $W \sim \mathcal{D}_{\text {mat }}$, we have for every j that $\mathbf{w}_{j} \sim \mathcal{N}\left(\mathbf{0}, I_{n}\right)$ (i.i.d.). Therefore, $\mathbf{w}_{j}^{\prime}=M \mathbf{w}_{j} \sim \mathcal{N}(\mathbf{0}, \Sigma)$, and thus $W^{\prime} \sim \mathcal{D}_{\text {mat }}^{\prime}$. Hence, S^{\prime} is $\mathcal{D}_{\text {mat }}^{\prime}$-realizable.
We now bound the norms of the vectors \mathbf{x}_{i}^{\prime} in S^{\prime}. Note that for every $i \in\left[n^{d}\right]$ we have

$$
\left\|\mathbf{x}_{i}^{\prime}\right\|=\left\|\left(M^{\top}\right)^{-1} \mathbf{x}_{i}\right\|=\left\|U \Lambda^{-\frac{1}{2}} \mathbf{x}_{i}\right\|=\left\|\Lambda^{-\frac{1}{2}} \mathbf{x}_{i}\right\| \leq \lambda_{\min }^{-\frac{1}{2}}\left\|\mathbf{x}_{i}\right\| \leq \lambda_{\min }^{-\frac{1}{2}} n^{\epsilon}
$$

A.3.3 Proof of Theorem 3.3

Let $n=\left(n^{\prime}+1\right) \log ^{2}\left(n^{\prime}\right)$, and let M be a diagonal-blocks matrix, where each block $B^{i j}$ is a diagonal matrix $\operatorname{diag}\left(z_{1}^{i j}, \ldots, z_{n^{\prime}+1}^{i j}\right)$. We denote $\mathbf{z}^{i j}=\left(z_{1}^{i j}, \ldots, z_{n^{\prime}+1}^{i j}\right)$, and $\mathbf{z}^{j}=\left(\mathbf{z}^{1 j}, \ldots, \mathbf{z}^{\log ^{2}\left(n^{\prime}\right) j}\right) \in$ \mathbb{R}^{n}. Note that for every $j \in\left[\log ^{2}\left(n^{\prime}\right)\right]$, the vector \mathbf{z}^{j} contains all the entries on the diagonals of blocks in the j-th column of blocks in M. Assume that the vectors \mathbf{z}^{j} are drawn i.i.d. according to the uniform distribution on $r \cdot \mathbb{S}^{n-1}$.
Lemma A.7. For some universal constant $c^{\prime}>0$ we have

$$
\operatorname{Pr}\left(s_{\min }(M) \leq \frac{c^{\prime} r}{n^{\prime} \sqrt{n^{\prime}} \log ^{5}\left(n^{\prime}\right)}\right)=o_{n}(1)
$$

Proof. Let $M^{\prime}=\frac{\sqrt{n}}{r} M$. For every $j \in\left[\log ^{2}\left(n^{\prime}\right)\right]$, let $\tilde{\mathbf{z}}^{j} \in \mathbb{R}^{n}$ be the vector that contains all the entries on the diagonals of blocks in the j-th column of blocks in M^{\prime}. That is, $\tilde{\mathbf{z}}^{j}=\frac{\sqrt{n}}{r} \mathbf{z}^{j}$. Note that the vectors $\tilde{\mathbf{z}}^{j}$ are i.i.d. copies from the uniform distribution on $\sqrt{n} \cdot \mathbb{S}^{n-1}$. By Lemma A.3 we have

$$
\begin{equation*}
s_{\min }\left(M^{\prime}\right) \geq \min _{1 \leq i \leq n^{\prime}+1} s_{\min }\left(M_{S_{i}}^{\prime}\right) \tag{2}
\end{equation*}
$$

Note that for every i, all columns of the matrix $M_{S_{i}}^{\prime}$ are projections of the vectors $\tilde{\mathbf{z}}^{j}$ on the S_{i} coordinated. That is, the j-th column in $M_{S_{i}}^{\prime}$ is obtained by drawing $\tilde{\mathbf{z}}^{j}$ from the uniform distribution on $\sqrt{n} \cdot \mathbb{S}^{n-1}$ and projecting on the coordinates S_{i}.
We say that a distribution is isotropic if it has mean zero and its covariance matrix is the identity. The covariance matrix of the uniform distribution on \mathbb{S}^{n-1} is $\frac{1}{n} I_{n}$. Therefore, the uniform distribution on $\sqrt{n} \cdot \mathbb{S}^{n-1}$ is isotropic. We will need the following theorem.

Theorem A.3. [1] Let $m \geq 1$ and let A be an $m \times m$ matrix with independent columns drawn from an isotropic log-concave distribution. For every $\epsilon \in(0,1)$ we have

$$
\operatorname{Pr}\left(s_{\min }(A) \leq \frac{c \epsilon}{\sqrt{m}}\right) \leq C m \epsilon
$$

where c and C are positive universal constants.
We show that the distribution of the columns of $M_{S_{i}}^{\prime}$ is isotropic and log-concave. First, since the uniform distribution on $\sqrt{n} \cdot \mathbb{S}^{n-1}$ is isotropic, then its projection on a subset of coordinates is also isotropic, and thus the distribution of the columns of $M_{S_{i}}^{\prime}$ is isotropic. In order to show that it is log-concave, we analyze its density. Let $\mathbf{x} \in \mathbb{R}^{n}$ be a random variable whose distribution is the projection of a uniform distribution on \mathbb{S}^{n-1} on k coordinates. It is known that the probability density of \mathbf{x} is (see [25])

$$
f_{\mathbf{x}}\left(x_{1}, \ldots, x_{k}\right)=\frac{\Gamma(n / 2)}{\Gamma((n-k) / 2) \pi^{k / 2}}\left(1-\sum_{1 \leq i \leq k} x_{i}^{2}\right)^{\frac{n-k}{2}-1}
$$

where $\sum_{1 \leq i \leq k} x_{i}^{2}<1$. Recall that the columns of $M_{S_{i}}^{\prime}$ are projections of the uniform distribution over $\sqrt{n} \cdot \mathbb{S}^{n-1}$, namely, the sphere of radius \sqrt{n} and not the unit sphere. Thus, let $\mathbf{x}^{\prime}=\sqrt{n} \mathbf{x}$. The probability density of \mathbf{x}^{\prime} is

$$
\begin{aligned}
f_{\mathbf{x}^{\prime}}\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right) & =\frac{1}{(\sqrt{n})^{k}} f_{\mathbf{x}}\left(\frac{x_{1}^{\prime}}{\sqrt{n}}, \ldots, \frac{x_{k}^{\prime}}{\sqrt{n}}\right) \\
& =\frac{1}{n^{k / 2}} \cdot \frac{\Gamma(n / 2)}{\Gamma((n-k) / 2) \pi^{k / 2}}\left(1-\sum_{1 \leq i \leq k}\left(\frac{x_{i}^{\prime}}{\sqrt{n}}\right)^{2}\right)^{\frac{n-k}{2}-1}
\end{aligned}
$$

where $\sum_{1 \leq i \leq k}\left(x_{i}^{\prime}\right)^{2}<n$. We denote

$$
g(n, k)=\frac{1}{n^{k / 2}} \cdot \frac{\Gamma(n / 2)}{\Gamma((n-k) / 2) \pi^{k / 2}}
$$

By replacing k with $\log ^{2}\left(n^{\prime}\right)$ we have

$$
f_{\mathbf{x}^{\prime}}\left(x_{1}^{\prime}, \ldots, x_{\log ^{2}\left(n^{\prime}\right)}^{\prime}\right)=g\left(n, \log ^{2}\left(n^{\prime}\right)\right)\left(1-\frac{1}{n} \sum_{1 \leq i \leq \log ^{2}\left(n^{\prime}\right)}\left(x_{i}^{\prime}\right)^{2}\right)^{\frac{n-\log ^{2}\left(n^{\prime}\right)}{2}-1}
$$

Hence, we have

$$
\begin{aligned}
\log f_{\mathbf{x}^{\prime}}\left(x_{1}^{\prime}, \ldots, x_{\log ^{2}\left(n^{\prime}\right)}^{\prime}\right) & = \\
\log \left(g\left(n, \log ^{2}\left(n^{\prime}\right)\right)\right) & +\left(\frac{n-\log ^{2}\left(n^{\prime}\right)}{2}-1\right) \cdot \log \left(1-\frac{1}{n} \sum_{1 \leq i \leq \log ^{2}\left(n^{\prime}\right)}\left(x_{i}^{\prime}\right)^{2}\right)
\end{aligned}
$$

Since $\frac{n-\log ^{2}\left(n^{\prime}\right)}{2}-1>0$, we need to show that the function

$$
\begin{equation*}
\log \left(1-\frac{1}{n} \sum_{1 \leq i \leq \log ^{2}\left(n^{\prime}\right)}\left(x_{i}^{\prime}\right)^{2}\right) \tag{3}
\end{equation*}
$$

(where $\left.\sum_{1 \leq i \leq \log ^{2}\left(n^{\prime}\right)}\left(x_{i}^{\prime}\right)^{2}<n\right)$ is concave. This function can be written as $h\left(f\left(x_{1}, \ldots, x_{\log ^{2}\left(n^{\prime}\right)}\right)\right)$, where

$$
\begin{aligned}
h(x) & =\log (1+x) \\
f\left(x_{1}^{\prime}, \ldots, x_{\log ^{2}\left(n^{\prime}\right)}^{\prime}\right) & =-\frac{1}{n} \sum_{1 \leq i \leq \log ^{2}\left(n^{\prime}\right)}\left(x_{i}^{\prime}\right)^{2} .
\end{aligned}
$$

Recall that if h is concave and non-decreasing, and f is concave, then their composition is also concave. Clearly, h and f satisfy these conditions, and thus the function in Eq. 3 is concave. Hence $f_{\mathbf{x}^{\prime}}$ is log-concave.
We now apply Theorem A.3 on $M_{S_{i}}^{\prime}$, and obtain that for every $\epsilon \in(0,1)$ we have

$$
\operatorname{Pr}\left(s_{\min }\left(M_{S_{i}}^{\prime}\right) \leq \frac{c \epsilon}{\log \left(n^{\prime}\right)}\right) \leq C \log ^{2}\left(n^{\prime}\right) \epsilon
$$

By choosing $\epsilon=\frac{1}{n^{\prime} \log ^{3}\left(n^{\prime}\right)}$ we have

$$
\operatorname{Pr}\left(s_{\min }\left(M_{S_{i}}^{\prime}\right) \leq \frac{c}{n^{\prime} \log ^{4}\left(n^{\prime}\right)}\right) \leq \frac{C}{n^{\prime} \log \left(n^{\prime}\right)}
$$

Now, by the union bound

$$
\operatorname{Pr}\left(\min _{1 \leq i \leq n^{\prime}+1}\left(s_{\min }\left(M_{S_{i}}^{\prime}\right)\right) \leq \frac{c}{n^{\prime} \log ^{4}\left(n^{\prime}\right)}\right) \leq \frac{C}{n^{\prime} \log \left(n^{\prime}\right)} \cdot\left(n^{\prime}+1\right)=o_{n}(1)
$$

Combining this with $s_{\min }(M)=\frac{r}{\sqrt{n}} s_{\min }\left(M^{\prime}\right)$ and with Eq. 2 , we have

$$
\begin{aligned}
\operatorname{Pr}\left(s_{\min }(M) \leq \frac{c r}{\sqrt{n} \cdot n^{\prime} \log ^{4}\left(n^{\prime}\right)}\right) & =\operatorname{Pr}\left(s_{\min }\left(M^{\prime}\right) \leq \frac{c}{n^{\prime} \log ^{4}\left(n^{\prime}\right)}\right) \\
& \leq \operatorname{Pr}\left(\min _{1 \leq i \leq n^{\prime}+1}\left(s_{\min }\left(M_{S_{i}}^{\prime}\right)\right) \leq \frac{c}{n^{\prime} \log ^{4}\left(n^{\prime}\right)}\right)=o_{n}(1)
\end{aligned}
$$

Note that

$$
\frac{c r}{\sqrt{n} \cdot n^{\prime} \log ^{4}\left(n^{\prime}\right)}=\frac{c r}{\sqrt{n^{\prime}+1} \cdot n^{\prime} \log ^{5}\left(n^{\prime}\right)} \geq \frac{c r}{2 \sqrt{n^{\prime}} \cdot n^{\prime} \log ^{5}\left(n^{\prime}\right)}=\frac{c^{\prime} r}{\sqrt{n^{\prime}} \cdot n^{\prime} \log ^{5}\left(n^{\prime}\right)}
$$

where $c^{\prime}=\frac{c}{2}$. Thus,

$$
\operatorname{Pr}\left(s_{\min }(M) \leq \frac{c^{\prime} r}{\sqrt{n^{\prime}} \cdot n^{\prime} \log ^{5}\left(n^{\prime}\right)}\right) \leq \operatorname{Pr}\left(s_{\min }(M) \leq \frac{c r}{\sqrt{n} \cdot n^{\prime} \log ^{4}\left(n^{\prime}\right)}\right)=o_{n}(1)
$$

Let $\mathcal{D}_{\text {mat }}$ be a distribution over $\mathbb{R}^{n \times \log ^{2}\left(n^{\prime}\right)}$ such that each column is drawn i.i.d. from the uniform distribution on $r \cdot \mathbb{S}^{n-1}$. Note that a $\mathcal{D}_{\text {mat }}$-random network h_{W} has $\log ^{2}\left(n^{\prime}\right)=\mathcal{O}\left(\log ^{2}(n)\right)$ hidden neurons. Now, Theorem 3.3 follows immediately from Theorem A. 1 and the following lemma.
Lemma A.8. Let d be a fixed integer. Then, $\operatorname{SCAT}_{n^{d}}^{A}\left(\mathcal{D}_{\mathrm{mat}}\right)$ is RSAT-hard, where A is a ball of radius $\mathcal{O}\left(\frac{n \sqrt{n} \log ^{4}(n)}{r}\right)$ in \mathbb{R}^{n}.

Proof. By Lemma A.2. the problem $\operatorname{SCAT}_{n^{d}}^{A^{\prime}}\left(\mathcal{H}_{\mathrm{sign}-\mathrm{cnn}}^{n, \log ^{2}\left(n^{\prime}\right)}\right)$ where A^{\prime} is the ball of radius $\log ^{2}\left(n^{\prime}\right)$ in \mathbb{R}^{n}, is RSAT-hard. We will reduce this problem to $\operatorname{SCAT}_{n^{d}}^{A}\left(\mathcal{D}_{\text {mat }}\right)$. Given a sample $S=$ $\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{n^{d}} \in\left(\mathbb{R}^{n} \times\{0,1\}\right)^{n^{d}}$ with $\left\|\mathbf{x}_{i}\right\| \leq \log ^{2}\left(n^{\prime}\right)$ for every $i \in\left[n^{d}\right]$, we will, with probability $1-o_{n}(1)$, construct a sample S^{\prime} that is contained in A, such that if S is scattered then S^{\prime} is scattered, and if S is $\mathcal{H}_{\text {sign-cnn }}^{n, \log ^{2}\left(n^{\prime}\right)}$-realizable then S^{\prime} is $\mathcal{D}_{\text {mat }}$-realizable. Note that our reduction is allowed to fail with probability $o_{n}(1)$. Indeed, distinguishing scattered from realizable requires success with probability $\frac{3}{4}-o_{n}(1)$ and therefore reductions between such problems are not sensitive to a failure with probability $o_{n}(1)$.
Assuming that M is invertible (by Lemma A. 7 it holds with probability $1-o_{n}(1)$), let $S^{\prime}=$ $\left\{\left(\mathbf{x}_{1}^{\prime}, y_{1}\right), \ldots,\left(\mathbf{x}_{n^{d}}^{\prime}, y_{n^{d}}\right)\right\}$ where for every i we have $\mathbf{x}_{i}^{\prime}=\left(M^{\top}\right)^{-1} \mathbf{x}_{i}$. Note that if S is scattered then S^{\prime} is also scattered.
Assume that S is realizable by the $\mathrm{CNN} h_{\mathbf{w}}^{n}$ with $\mathbf{w} \in\{ \pm 1\}^{n^{\prime}+1}$. Let W be the matrix of size $n \times \log ^{2}\left(n^{\prime}\right)$ such that $h_{W}=h_{\mathbf{w}}^{n}$. Thus, $W=\left(\mathbf{w}^{1}, \ldots, \mathbf{w}^{\log ^{2}\left(n^{\prime}\right)}\right)$ where for every $i \in\left[\log ^{2}\left(n^{\prime}\right)\right]$
we have $\left(\mathbf{w}_{(i-1)\left(n^{\prime}+1\right)+1}^{i}, \ldots, \mathbf{w}_{i\left(n^{\prime}+1\right)}^{i}\right)=\mathbf{w}$, and $\mathbf{w}_{j}^{i}=0$ for every other $j \in[n]$. Let $W^{\prime}=M W$. Note that S^{\prime} is realizable by $h_{W^{\prime}}$. Indeed, for every $i \in\left[n^{d}\right]$ we have $y_{i}=h_{\mathbf{w}}^{n}\left(\mathbf{x}_{i}\right)=h_{W}\left(\mathbf{x}_{i}\right)$, and $W^{\top} \mathbf{x}_{i}=W^{\top} M^{\top}\left(M^{\top}\right)^{-1} \mathbf{x}_{i}=\left(W^{\prime}\right)^{\top} \mathbf{x}_{i}^{\prime}$. Also, note that the columns of W^{\prime} are i.i.d. copies from the uniform distribution on $r \cdot \mathbb{S}^{n-1}$. Indeed, denote $M^{\top}=\left(\mathbf{v}^{1}, \ldots, \mathbf{v}^{n}\right)$. Then, for every line index $i \in[n]$ we denote $i=(b-1)\left(n^{\prime}+1\right)+r$, where b, r are integers and $1 \leq r \leq n^{\prime}+1$. Thus, b is the line index of the block in M that correspond to the i-th line in M, and r is the line index within the block. Now, note that

$$
\begin{aligned}
W_{i j}^{\prime} & =\left\langle\mathbf{v}^{i}, \mathbf{w}^{j}\right\rangle=\left\langle\left(\mathbf{v}_{(j-1)\left(n^{\prime}+1\right)+1}^{i}, \ldots, \mathbf{v}_{j\left(n^{\prime}+1\right)}^{i}\right), \mathbf{w}\right\rangle=\left\langle\left(B_{r 1}^{b j}, \ldots, B_{r\left(n^{\prime}+1\right)}^{b j}\right), \mathbf{w}\right\rangle \\
& =B_{r r}^{b j} \cdot \mathbf{w}_{r}=z_{r}^{b j} \cdot \mathbf{w}_{r}
\end{aligned}
$$

Since $\mathbf{w}_{r} \in\{ \pm 1\}$, and since the uniform distribution on a sphere does not change by multiplying a subset of component by -1 , then the j-th column of W^{\prime} has the same distribution as \mathbf{z}^{j}, namely, the uniform distribution over $r \cdot \mathbb{S}^{n-1}$. Also, the columns of W^{\prime} are independent. Thus, $W^{\prime} \sim \mathcal{D}_{\text {mat }}$, and therefore $h_{W^{\prime}}$ is a $\mathcal{D}_{\text {mat }}$-random network.
By Lemma A.7, we have with probability $1-o_{n}(1)$ that for every i,

$$
\begin{aligned}
\left\|\mathbf{x}_{i}^{\prime}\right\| & =\left\|\left(M^{\top}\right)^{-1} \mathbf{x}_{i}\right\| \leq s_{\max }\left(\left(M^{\top}\right)^{-1}\right)\left\|\mathbf{x}_{i}\right\|=\frac{1}{s_{\min }\left(M^{\top}\right)}\left\|\mathbf{x}_{i}\right\|=\frac{1}{s_{\min }(M)}\left\|\mathbf{x}_{i}\right\| \\
& \leq \frac{n^{\prime} \sqrt{n^{\prime}} \log ^{5}\left(n^{\prime}\right)}{c^{\prime} r} \cdot \log ^{2}\left(n^{\prime}\right) \leq \frac{n \sqrt{n} \log ^{4}(n)}{c^{\prime} r}
\end{aligned}
$$

Thus, $\left\|\mathbf{x}_{i}^{\prime}\right\|=\mathcal{O}\left(\frac{n \sqrt{n} \log ^{4}(n)}{r}\right)$.

A. 4 Hardness of learning random convolutional neural networks

A.4.1 Proof of Theorem 3.4

Theorem 3.4 follows immediately from Theorem A.1 and the following lemma:
Lemma A.9. Let d be a fixed integer. Then, $\operatorname{SCAT}_{n^{d}}^{A}\left(\mathcal{D}_{z}^{n^{\prime}+1}, n\right)$ is RSAT-hard, where A is the ball of radius $\frac{\log ^{2}\left(n^{\prime}\right)}{f\left(n^{\prime}\right)}$ in \mathbb{R}^{n}.

Proof. By Lemma A.2, the problem $\operatorname{SCAT}_{n^{d}}^{A^{\prime}}\left(\mathcal{H}_{\mathrm{sign}-\mathrm{cnn}}^{n, \log ^{2}\left(n^{\prime}\right)}\right)$ where A^{\prime} is the ball of radius $\log ^{2}\left(n^{\prime}\right)$ in \mathbb{R}^{n}, is RSAT-hard. We will reduce this problem to $\operatorname{SCAT}_{n^{d}}^{A}\left(\mathcal{D}_{z}^{n^{\prime}+1}, n\right)$. Given a sample $S=$ $\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{n^{d}} \in\left(\mathbb{R}^{n} \times\{0,1\}\right)^{n^{d}}$ with $\left\|\mathbf{x}_{i}\right\| \leq \log ^{2}\left(n^{\prime}\right)$ for every $i \in\left[n^{d}\right]$, we will, with probability $1-o_{n}(1)$, construct a sample S^{\prime} that is contained in A, such that if S is scattered then S^{\prime} is scattered, and if S is $\mathcal{H}_{\mathrm{sign}-\mathrm{cnn}}^{n, \log ^{2}\left(n^{\prime}\right)}$-realizable then S^{\prime} is $\mathcal{D}_{z}^{n^{\prime}+1}$-realizable. Note that our reduction is allowed to fail with probability $o_{n}(1)$. Indeed, distinguishing scattered from realizable requires success with probability $\frac{3}{4}-o_{n}(1)$ and therefore reductions between such problems are not sensitive to a failure with probability $o_{n}(1)$.

Let $\mathbf{z}=\left(z_{1}, \ldots, z_{n^{\prime}+1}\right)$ where each z_{i} is drawn i.i.d. from \mathcal{D}_{z}. Let $M=\operatorname{diag}(\mathbf{z})$ be a diagonal matrix. Note that M is invertible with probability $1-o_{n}(1)$, since for every $i \in\left[n^{\prime}+1\right]$ we have $\operatorname{Pr}_{z_{i} \sim \mathcal{D}_{z}}\left(z_{i}=0\right) \leq \operatorname{Pr}_{z_{i} \sim \mathcal{D}_{z}}\left(\left|z_{i}\right|<f\left(n^{\prime}\right)\right)=o\left(\frac{1}{n^{\prime}}\right)$. Now, for every \mathbf{x}_{i} from S, denote $\mathbf{x}_{i}=$ $\left(\mathbf{x}_{1}^{i}, \ldots, \mathbf{x}_{\log ^{2}\left(n^{\prime}\right)}^{i}\right)$ where for every j we have $\mathbf{x}_{j}^{i} \in \mathbb{R}^{n^{\prime}+1}$. Let $\mathbf{x}_{i}^{\prime}=\left(M^{-1} \mathbf{x}_{1}^{i}, \ldots, M^{-1} \mathbf{x}_{\log ^{2}\left(n^{\prime}\right)}^{i}\right)$, and let $S^{\prime}=\left\{\left(\mathbf{x}_{1}^{\prime}, y_{1}\right), \ldots,\left(\mathbf{x}_{n^{d}}^{\prime}, y_{n^{d}}\right)\right\}$. Note that if S is scattered then S^{\prime} is also scattered. If S is realizable by a CNN $h_{\mathbf{w}}^{n} \in \mathcal{H}_{\mathrm{sign}-\mathrm{cnn}}^{n, \log ^{2}\left(n^{\prime}\right)}$, then let $\mathbf{w}^{\prime}=M \mathbf{w}$. Note that S^{\prime} is realizable by $h_{\mathbf{w}^{\prime}}^{n}$. Indeed, for every i and j we have $\left\langle\mathbf{w}^{\prime}, M^{-1} \mathbf{x}_{j}^{i}\right\rangle=\mathbf{w}^{\top} M^{\top} M^{-1} \mathbf{x}_{j}^{i}=\mathbf{w}^{\top} M M^{-1} \mathbf{x}_{j}^{i}=\left\langle\mathbf{w}, \mathbf{x}_{j}^{i}\right\rangle$. Also, note that since $\mathbf{w} \in\{ \pm 1\}^{n^{\prime}+1}$ and \mathcal{D}_{z} is symmetric, then \mathbf{w}^{\prime} has the distribution $\mathcal{D}_{z}^{n^{\prime}+1}$, and thus $h_{\mathbf{w}^{\prime}}^{n}$ is a $\mathcal{D}_{z}^{n^{\prime}+1}$-random CNN.

The probability that $\mathbf{z} \sim \mathcal{D}_{z}^{n^{\prime}+1}$ has some component z_{i} with $\left|z_{i}\right|<f\left(n^{\prime}\right)$, is at most $\left(n^{\prime}+1\right) \cdot o\left(\frac{1}{n^{\prime}}\right)=$ $o_{n}(1)$. Therefore, with probability $1-o_{n}(1)$ we have for every $i \in\left[n^{d}\right]$ that

$$
\begin{aligned}
& \begin{aligned}
\left\|\mathbf{x}_{i}^{\prime}\right\|^{2} & =\sum_{1 \leq j \leq \log ^{2}\left(n^{\prime}\right)}\left\|M^{-1} \mathbf{x}_{j}^{i}\right\|^{2} \leq \sum_{1 \leq j \leq \log ^{2}\left(n^{\prime}\right)}\left(\frac{1}{f\left(n^{\prime}\right)}\left\|\mathbf{x}_{j}^{i}\right\|\right)^{2}=\frac{1}{\left(f\left(n^{\prime}\right)\right)^{2}} \sum_{1 \leq j \leq \log ^{2}\left(n^{\prime}\right)}\left\|\mathbf{x}_{j}^{i}\right\|^{2} \\
& =\frac{1}{\left(f\left(n^{\prime}\right)\right)^{2}}\left\|\mathbf{x}_{i}\right\|^{2} \leq \frac{\log ^{4}\left(n^{\prime}\right)}{\left(f\left(n^{\prime}\right)\right)^{2}}
\end{aligned} \\
& \text { Thus, }\left\|\mathbf{x}_{i}^{\prime}\right\| \leq \frac{\log ^{2}\left(n^{\prime}\right)}{f\left(n^{\prime}\right)}
\end{aligned}
$$

A.4.2 Proof of Theorem 3.5

Assume that the covariance matrix Σ is of size $\left(n^{\prime}+1\right) \times\left(n^{\prime}+1\right)$, and let $n=\left(n^{\prime}+1\right) \log ^{2}\left(n^{\prime}\right)$. Note that a $\mathcal{N}(\mathbf{0}, \Sigma)$-random $\mathrm{CNN} h_{\mathbf{w}}^{n}$ has $\log ^{2}\left(n^{\prime}\right)=\mathcal{O}\left(\log ^{2}(n)\right)$ hidden neurons. Let $\mathcal{D}_{\text {vec }}$ be a distribution over $\mathbb{R}^{n^{\prime}+1}$ such that each component is drawn i.i.d. from $\mathcal{N}(0,1)$. Let d be a fixed integer. By Lemma A. 9 and by choosing $f\left(n^{\prime}\right)=\frac{1}{n^{\prime} \log \left(n^{\prime}\right)}$, we have that $\mathrm{SCAT}_{n^{d}}^{A}\left(\mathcal{D}_{\text {vec }}, n\right)$ is RSAThard, where A is the ball of radius $n^{\prime} \log ^{3}\left(n^{\prime}\right) \leq n \log (n)$ in \mathbb{R}^{n}. Note that $\mathcal{D}_{\text {vec }}=\mathcal{N}\left(\mathbf{0}, I_{n^{\prime}+1}\right)$ ([46]). By Theorem A.1, we need to show that $\operatorname{SCAT}_{n^{d}}^{A^{\prime}}(\mathcal{N}(\mathbf{0}, \Sigma), n)$ is RSAT-hard, where A^{\prime} is the ball of radius $\lambda_{\min }^{-\frac{1}{2}} n \log (n)$ in \mathbb{R}^{n}. We show a reduction from $\operatorname{SCAT}_{n^{d}}^{A}\left(\mathcal{N}\left(\mathbf{0}, I_{n^{\prime}+1}\right), n\right)$ to $\operatorname{SCAT}_{n^{d}}^{A^{\prime}}(\mathcal{N}(\mathbf{0}, \Sigma), n)$.
Let $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{n^{d}} \in\left(\mathbb{R}^{n} \times\{0,1\}\right)^{n^{d}}$ be a sample. For every \mathbf{x}_{i} from S, denote $\mathbf{x}_{i}=$ $\left(\mathbf{x}_{1}^{i}, \ldots, \mathbf{x}_{\log ^{2}\left(n^{\prime}\right)}^{i}\right)$ where for every j we have $\mathbf{x}_{j}^{i} \in \mathbb{R}^{n^{\prime}+1}$. Let $\Sigma=U \Lambda U^{\top}$ be the spectral decomposition of Σ, and let $M=U \Lambda^{\frac{1}{2}}$. Recall that if $\mathbf{w} \sim \mathcal{N}\left(\mathbf{0}, I_{n^{\prime}+1}\right)$ then $M \mathbf{w} \sim \mathcal{N}(\mathbf{0}, \Sigma)$ ([46]). Let $\mathbf{x}_{i}^{\prime}=\left(\left(M^{\top}\right)^{-1} \mathbf{x}_{1}^{i}, \ldots,\left(M^{\top}\right)^{-1} \mathbf{x}_{\log ^{2}\left(n^{\prime}\right)}^{i}\right)$, and let $S^{\prime}=\left\{\left(\mathbf{x}_{1}^{\prime}, y_{1}\right), \ldots,\left(\mathbf{x}_{n^{d}}^{\prime}, y_{n^{d}}\right)\right\}$. Note that if S is scattered then S^{\prime} is also scattered. If S is realizable by a $\mathcal{N}\left(\mathbf{0}, I_{n^{\prime}+1}\right)$-random $\operatorname{CNN} h_{\mathbf{w}}^{n}$, then let $\mathbf{w}^{\prime}=M \mathbf{w}$. Note that S^{\prime} is realizable by $h_{\mathbf{w}^{\prime}}^{n}$. Indeed, for every i and j we have $\left\langle\mathbf{w}^{\prime},\left(M^{\top}\right)^{-1} \mathbf{x}_{j}^{i}\right\rangle=\mathbf{w}^{\top} M^{\top}\left(M^{\top}\right)^{-1} \mathbf{x}_{j}^{i}=\left\langle\mathbf{w}, \mathbf{x}_{j}^{i}\right\rangle$. Since $\mathbf{w}^{\prime}=M \mathbf{w} \sim \mathcal{N}(\mathbf{0}, \Sigma)$, the sample S^{\prime} is $\mathcal{N}(\mathbf{0}, \Sigma)$-realizable.
We now bound the norms of \mathbf{x}_{i}^{\prime} in S^{\prime}. Note that for every $i \in\left[n^{d}\right]$ we have

$$
\begin{aligned}
\left\|\mathbf{x}_{i}^{\prime}\right\|^{2} & =\sum_{1 \leq j \leq \log ^{2}\left(n^{\prime}\right)}\left\|\left(M^{\top}\right)^{-1} \mathbf{x}_{j}^{i}\right\|^{2}=\sum_{1 \leq j \leq \log ^{2}\left(n^{\prime}\right)}\left\|U \Lambda^{-\frac{1}{2}} \mathbf{x}_{j}^{i}\right\|^{2}=\sum_{1 \leq j \leq \log ^{2}\left(n^{\prime}\right)}\left\|\Lambda^{-\frac{1}{2}} \mathbf{x}_{j}^{i}\right\|^{2} \\
& \leq \sum_{1 \leq j \leq \log ^{2}\left(n^{\prime}\right)}\left\|\lambda_{\min }^{-\frac{1}{2}} \mathbf{x}_{j}^{i}\right\|^{2}=\lambda_{\min }^{-1} \sum_{1 \leq j \leq \log ^{2}\left(n^{\prime}\right)}\left\|\mathbf{x}_{j}^{i}\right\|^{2}=\lambda_{\min }^{-1}\left\|\mathbf{x}_{i}\right\|^{2} .
\end{aligned}
$$

Hence, $\left\|\mathbf{x}_{i}^{\prime}\right\| \leq \lambda_{\text {min }}^{-\frac{1}{2}}\left\|\mathbf{x}_{i}\right\| \leq \lambda_{\text {min }}^{-\frac{1}{2}} n \log (n)$.

A.4.3 Proof of Theorem 3.6

Let $n=\left(n^{\prime}+1\right) \log ^{2}\left(n^{\prime}\right)$. Let $\mathcal{D}_{\text {vec }}$ be the uniform distribution on $r \cdot \mathbb{S}^{n^{\prime}}$. Note that a $\mathcal{D}_{\text {vec }}$-random $\mathrm{CNN} h_{\mathrm{w}}^{n}$ has $\log ^{2}\left(n^{\prime}\right)=\mathcal{O}\left(\log ^{2}(n)\right)$ hidden neurons. Let d be a fixed integer. By Theorem A. 1 . we need to show that $\operatorname{SCAT}_{n^{d}}^{A}\left(\mathcal{D}_{\text {vec }}, n\right)$ is RSAT-hard, where A is the ball of radius $\frac{\sqrt{n} \log (n)}{r}$ in \mathbb{R}^{n}.
 is RSAT-hard. We reduce this problem to $\operatorname{SCAT}_{n^{d}}^{A}\left(\mathcal{D}_{\text {vec }}, n\right)$. Given a sample $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{n^{d}} \in$ $\left(\mathbb{R}^{n} \times\{0,1\}\right)^{n^{d}}$ with $\left\|\mathbf{x}_{i}\right\| \leq \log ^{2}\left(n^{\prime}\right)$ for every $i \in\left[n^{d}\right]$, we construct a sample S^{\prime} that is contained in A, such that if S is scattered then S^{\prime} is scattered, and if S is $\mathcal{H}_{\operatorname{sign}-\operatorname{cnn}}^{n, \log ^{2}\left(n^{\prime}\right)}$-realizable then S^{\prime} is $\mathcal{D}_{\text {vec }}$-realizable.
Let M be a random orthogonal matrix of size $\left(n^{\prime}+1\right) \times\left(n^{\prime}+1\right)$. For every $i \in\left[n^{d}\right]$ denote $\mathbf{x}_{i}=\left(\mathbf{x}_{1}^{i}, \ldots, \mathbf{x}_{\log ^{2}\left(n^{\prime}\right)}^{i}\right)$ where for every j we have $\mathbf{x}_{j}^{i} \in \mathbb{R}^{n^{\prime}+1}$. For every $i \in\left[n^{d}\right]$ let $\mathbf{x}_{i}^{\prime}=$
$\left(\frac{\sqrt{n^{\prime}+1}}{r} M \mathbf{x}_{1}^{i}, \ldots, \frac{\sqrt{n^{\prime}+1}}{r} M \mathbf{x}_{\log ^{2}\left(n^{\prime}\right)}^{i}\right)$, and let $S^{\prime}=\left\{\left(\mathbf{x}_{1}^{\prime}, y_{1}\right), \ldots,\left(\mathbf{x}_{n^{d}}^{\prime}, y_{n^{d}}\right)\right\}$. Note that if S is scattered then S^{\prime} is also scattered. If S is realizable by a CNN $h_{\mathbf{w}}^{n} \in \mathcal{H}_{\mathrm{sign}-\mathrm{cnn}}^{n, \log ^{2}\left(n^{\prime}\right)}$, then let $\mathbf{w}^{\prime}=$ $\frac{r}{\sqrt{n^{\prime}+1}} M \mathbf{w}$. Note that S^{\prime} is realizable by $h_{\mathbf{w}^{\prime}}^{n}$. Indeed, for every i and j we have

$$
\left\langle\mathbf{w}^{\prime}, \frac{\sqrt{n^{\prime}+1}}{r} M \mathbf{x}_{j}^{i}\right\rangle=\mathbf{w}^{\top} \frac{r}{\sqrt{n^{\prime}+1}} M^{\top} \frac{\sqrt{n^{\prime}+1}}{r} M \mathbf{x}_{j}^{i}=\left\langle\mathbf{w}, \mathbf{x}_{j}^{i}\right\rangle .
$$

Also, note that since $\|\mathbf{w}\|=\sqrt{n^{\prime}+1}$ and M is orthogonal, \mathbf{w}^{\prime} is a random vector on the sphere of radius r in $\mathbb{R}^{n^{\prime}+1}$, and thus $h_{\mathbf{w}^{\prime}}^{n}$ is a $\mathcal{D}_{\text {vec }}$-random CNN.
Since M is orthogonal then for every $i \in\left[n^{d}\right]$ we have

$$
\begin{aligned}
\left\|\mathbf{x}_{i}^{\prime}\right\|^{2} & =\sum_{1 \leq j \leq \log ^{2}\left(n^{\prime}\right)}\left\|\frac{\sqrt{n^{\prime}+1}}{r} M \mathbf{x}_{j}^{i}\right\|^{2}=\frac{n^{\prime}+1}{r^{2}} \sum_{1 \leq j \leq \log ^{2}\left(n^{\prime}\right)}\left\|\mathbf{x}_{j}^{i}\right\|^{2} \\
& =\frac{n^{\prime}+1}{r^{2}} \cdot\left\|\mathbf{x}_{i}\right\|^{2} \leq \frac{\left(n^{\prime}+1\right) \log ^{4}\left(n^{\prime}\right)}{r^{2}} \leq \frac{n \log ^{2}(n)}{r^{2}}
\end{aligned}
$$

Hence $\left\|\mathbf{x}_{i}^{\prime}\right\| \leq \frac{\sqrt{n} \log (n)}{r}$.

B From $\operatorname{CSP}_{n^{d}}^{\text {rand }}\left(\mathrm{SAT}_{K}\right)$ to $\operatorname{CSP}_{n^{d-1}}^{\mathrm{rand}}\left(T_{K, q(n)}, \neg T_{K, q(n)}\right)$ ([17])

We outline the main ideas of the reduction.
First, we reduce $\mathrm{CSP}_{n^{d}}^{\mathrm{rand}}\left(\mathrm{SAT}_{K}\right)$ to $\operatorname{CSP}_{n^{d-1}}^{\mathrm{rand}}\left(T_{K, q(n)}\right)$. This is done as follows. Given an instance $J=\left\{C_{1}, \ldots, C_{n^{d}}\right\}$ to $\operatorname{CSP}\left(\operatorname{SAT}_{K}\right)$, by a simple greedy procedure, we try to find n^{d-1} disjoint subsets $J_{1}^{\prime}, \ldots, J_{n^{d-1}}^{\prime} \subset J$, such that for every t, the subset J_{t}^{\prime} consists of $q(n)$ constraints and each variable appears in at most one of the constraints in J_{t}^{\prime}. Now, from every J_{t}^{\prime} we construct a $T_{K, q(n)}$-constraint that is the conjunction of all constraints in J_{t}^{\prime}. If J is random, this procedure will succeed w.h.p. and will produce a random $T_{K, q(n)}$-formula. If J is satisfiable, this procedure will either fail or produce a satisfiable $T_{K, q(n)}$-formula.
Now, we reduce $\operatorname{CSP}_{n^{d-1}}^{\mathrm{rand}}\left(T_{K, q(n)}\right)$ to $\operatorname{CSP}_{n^{d-1}}^{\mathrm{rand}}\left(T_{K, q(n)}, \neg T_{K, q(n)}\right)$. This is done by replacing each constraint, with probability $\frac{1}{2}$, with a random $\neg P$ constraint. Clearly, if the original instance is a random instance of $\operatorname{CSP}_{n^{d-1}}^{\mathrm{rand}}\left(T_{K, q(n)}\right)$, then the produced instance is a random instance of $\operatorname{CSP}_{n^{d-1}}^{\text {rand }}\left(T_{K, q(n)}, \neg T_{K, q(n)}\right)$. Furthermore, if the original instance is satisfied by the assignment $\psi \in\{ \pm 1\}^{n}$, the same ψ, w.h.p., will satisfy all the new constraints. The reason is that the probability that a random $\neg T_{K, q(n)}$-constraint is satisfied by ψ is $1-\left(1-2^{-K}\right)^{q(n)}$, and hence, the probability that all new constraints are satisfied by ψ is at least $1-n^{d-1}\left(1-2^{-K}\right)^{q(n)}$. Now, since $q(n)=$ $\omega(\log (n))$, the last probability is $1-o_{n}(1)$.
For the full proof see [17].

C Improving the bounds on the support of \mathcal{D} in the convolutional networks

We show that by increasing the number of hidden neurons from $\mathcal{O}\left(\log ^{2}(n)\right)$ to $\mathcal{O}(n)$ we can improve the bounds on the support of \mathcal{D}. Note that our results so far on learning random CNNs, are for CNNs with input dimension $n=\mathcal{O}\left(t \log ^{2}(t)\right)$ where t is the size of the patches. We now consider CNNs with input dimension $\tilde{n}=t^{c}$ for some integer $c>1$. Note that such CNNs have $t^{c-1}=\mathcal{O}(\tilde{n})$ hidden neurons.

Assume that there is an efficient algorithms \mathcal{L}^{\prime} for learning $\mathcal{D}_{\text {vec }}$-random CNNs with input dimension $\tilde{n}=t^{c}$, where $\mathcal{D}_{\text {vec }}$ is a distribution over \mathbb{R}^{t}. Assume that \mathcal{L}^{\prime} uses samples with at most $\tilde{n}^{d}=t^{c d}$ inputs. We show an algorithm \mathcal{L} for learning a $\mathcal{D}_{\text {vec }}$-random CNN $h_{\mathbf{w}}^{n}$ with $n=\mathcal{O}\left(t \log ^{2}(t)\right)$. Let $S=\left\{\left(\mathbf{x}_{1}, h_{\mathbf{w}}^{n}\left(\mathbf{x}_{1}\right)\right), \ldots,\left(\mathbf{x}_{n^{c d}}, h_{\mathbf{w}}^{n}\left(\mathbf{x}_{n^{c d}}\right)\right)\right\}$ be a sample, and let $S^{\prime}=\left\{\left(\mathbf{x}_{1}^{\prime}, h_{\mathbf{w}}^{n}\left(\mathbf{x}_{1}\right)\right), \ldots,\left(\mathbf{x}_{n^{c d}}^{\prime}, h_{\mathbf{w}}^{n}\left(\mathbf{x}_{n^{c d}}\right)\right)\right\}$ where for every vector $\mathbf{x} \in \mathbb{R}^{n}$, the vector $\mathbf{x}^{\prime} \in \mathbb{R}^{\tilde{n}}$ is obtained from \mathbf{x} by padding it with zeros. Thus, $\mathbf{x}^{\prime}=(\mathbf{x}, 0, \ldots, 0)$. Note that $n^{c d}>\tilde{n}^{d}$. Also, note
that for every i we have $h_{\mathbf{w}}^{n}\left(\mathbf{x}_{i}\right)=h_{\mathbf{w}}^{\tilde{n}}\left(\mathbf{x}_{i}^{\prime}\right)$. Hence, S^{\prime} is realizable by the CNN $h_{\mathbf{w}}^{\tilde{n}}$. Now, given S, the algorithm \mathcal{L} runs \mathcal{L}^{\prime} on S^{\prime} and returns an hypothesis $h(\mathbf{x})=\mathcal{L}^{\prime}\left(S^{\prime}\right)\left(\mathbf{x}^{\prime}\right)$.
Therefore, if learning $\mathcal{D}_{\text {vec }}$-random CNNs with input dimension $n=\mathcal{O}\left(t \log ^{2}(t)\right)$ is hard already if the distribution \mathcal{D} is over vectors of norm at most $g(n)$, then learning $\mathcal{D}_{\text {vec }}$-random CNNs with input dimension $\tilde{n}=t^{c}$ is hard already if the distribution \mathcal{D} is over vectors of norm at most $g(n)<g\left(t^{2}\right)=g\left(\tilde{n}^{\frac{2}{c}}\right)$. Hence we have the following corollaries.
Corollary C.1. Let $\mathcal{D}_{\mathrm{vec}}$ be a distribution over \mathbb{R}^{t} such that each component is drawn i.i.d. from a distribution \mathcal{D}_{z} over \mathbb{R}. Let $n=t^{c}$ for some integer $c>1$, and let $\epsilon=\frac{3}{c}$.

1. If $\mathcal{D}_{z}=\mathcal{U}([-r, r])$, then learning a $\mathcal{D}_{\mathrm{vec}}$-random CNN h_{w}^{n} (with $\mathcal{O}(n)$ hidden neurons) is RSAT-hard, already if \mathcal{D} is over vectors of norm at most $\frac{n^{\epsilon}}{r}$.
2. If $\mathcal{D}_{z}=\mathcal{N}\left(0, \sigma^{2}\right)$, then learning a $\mathcal{D}_{\mathrm{vec}^{-} \text {-random } C N N} h_{\mathbf{w}_{\epsilon}}^{n}$ (with $\mathcal{O}(n)$ hidden neurons) is RSAT-hard, already if \mathcal{D} is over vectors of norm at most $\frac{n^{\epsilon}}{\sigma}$.
Corollary C.2. Let Σ be a positive definite matrix of size $t \times t$, and let $\lambda_{\min }$ be its minimal eigenvalue. Let $n=t^{c}$ for some integer $c>1$, and let $\epsilon=\frac{3}{c}$. Then, learning a $\mathcal{N}(\mathbf{0}, \Sigma)$-random CNN $h_{\mathbf{w}}^{n}$ (with $\mathcal{O}(n)$ hidden neurons) is RSAT-hard, already if the distribution \mathcal{D} is over vectors of norm at most $\frac{n^{\epsilon}}{\sqrt{\lambda_{\text {min }}}}$.
Corollary C.3. Let $\mathcal{D}_{\mathrm{vec}}$ be the uniform distribution over the sphere of radius r in \mathbb{R}^{t}. Let $n=t^{c}$ for some integer $c>1$, and let $\epsilon=\frac{2}{c}$. Then, learning a $\mathcal{D}_{\mathrm{vec}}$-random CNN $h_{\mathbf{w}}^{n}$ (with $\mathcal{O}(n)$ hidden neurons) is RSAT-hard, already if the distribution \mathcal{D} is over vectors of norm at most $\frac{n^{\epsilon}}{r}$.

As an example, consider a CNN h_{w}^{n} with $n=t^{c}$. Note that since the patch size is t, then each hidden neuron has t input neurons feeding into it. Consider a distribution $\mathcal{D}_{\text {vec }}$ over \mathbb{R}^{t} such that each component is drawn i.i.d. by a normal distribution with $\sigma=\frac{1}{\sqrt{t}}$. This distribution corresponds to the standard Xavier initialization. Then, by Corollary C. 1 , learning a $\mathcal{D}_{\text {vec }}$-random CNN $h_{\mathbf{w}}^{n}$ is RSAT-hard, already if \mathcal{D} is over vectors of norm at most $n^{\frac{3}{c}} \sqrt{t}=n^{\frac{3}{c}} \cdot n^{\frac{1}{2 c}}$. By choosing an appropriate c, we have that learning a $\mathcal{D}_{\text {vec }}$-random $\mathrm{CNN} h_{\mathrm{w}}^{n}$ is RSAT-hard, already if \mathcal{D} is over vectors of norm at most \sqrt{n}.
Finally, note that Corollary 3.4 holds also for the values of n and the bounds on the support of \mathcal{D} from Corollaries C.1, C. 2 and C. 3 .

[^0]: ${ }^{3}$ As in $\operatorname{CSP}_{m(n)}^{\text {rand }}(P)$, in order to succeed, and algorithm must return "satisfiable" w.p. at least $\frac{3}{4}-o_{n}(1)$ on every satisfiable formula and "random" w.p. at least $\frac{3}{4}-o_{n}(1)$ on random formulas.

