A Proofs

A.1 Learning \mathcal{D}_{mat} -random networks is harder than $SCAT^A_{n^d}(\mathcal{D}_{mat})$

Theorem A.1. Let \mathcal{D}_{mat} be a distribution over matrices. Assume that there is an algorithm that learns \mathcal{D}_{mat} -random neural networks where the distribution \mathcal{D} is supported on $A \subseteq \mathbb{R}^n$. Then, there is a fixed d and an efficient algorithm that solves $\operatorname{SCAT}_{n^d}^A(\mathcal{D}_{mat})$.

Proof. Let \mathcal{L} be an efficient learning algorithm that learns \mathcal{D}_{mat} -random neural networks where the distribution \mathcal{D} is supported on A. Let m(n) be such that \mathcal{L} uses a sample of size at most m(n). Let p(n) = 9m(n) + n. Let $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^{p(n)} \in (\mathbb{R}^n \times \{0, 1\})^{p(n)}$ be a sample that is contained in A. We will show an efficient algorithm \mathcal{A} that distinguishes whether S is scattered or \mathcal{D}_{mat} -realizable. This implies that the theorem holds for d such that $n^d \ge p(n)$.

Given S, the algorithm \mathcal{A} learns a function $h : \mathbb{R}^n \to \mathbb{R}$ by running \mathcal{L} with an examples oracle that generates examples by choosing a random (uniformly distributed) example $(\mathbf{x}_i, y_i) \in S$. We denote $\ell_S(h) = \frac{1}{p(n)} \sum_{i \in [p(n)]} (h(\mathbf{x}_i) - y_i)^2$. Now, if $\ell_S(h) \leq \frac{1}{10}$, then \mathcal{A} returns that S is \mathcal{D}_{mat} -realizable, and otherwise it returns that it is scattered. Clearly, the algorithm \mathcal{A} runs in polynomial time. We now show that if S is \mathcal{D}_{mat} -realizable then \mathcal{A} recognizes it with probability at least $\frac{3}{4}$, and that if S is scattered then it also recognizes it with probability at least $\frac{3}{4}$.

Assume first that S is \mathcal{D}_{mat} -realizable. Let \mathcal{D}_S be the uniform distribution over $\mathbf{x}_i \in \mathbb{R}^n$ from S. In this case, since \mathcal{D}_S is supported on A, we are guaranteed that with probability at least $\frac{3}{4}$ over the choice of W and the internal randomness of \mathcal{L} , we have $\ell_S(h) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_S} \left[(h(\mathbf{x}) - h_W(\mathbf{x}))^2 \right] \leq \frac{1}{10}$. Therefore, the algorithm returns " \mathcal{D}_{mat} -realizable".

Now, assume that S is scattered. Let $h : \mathbb{R}^n \to \mathbb{R}$ be the function returned by \mathcal{L} . Let $h' : \mathbb{R}^n \to \{0, 1\}$ be the following function. For every $\mathbf{x} \in \mathbb{R}^n$, if $h(\mathbf{x}) \ge \frac{1}{2}$ then $h'(\mathbf{x}) = 1$, and otherwise $h'(\mathbf{x}) = 0$. Note that for every $(\mathbf{x}_i, y_i) \in S$, if $h'(\mathbf{x}_i) \neq y_i$ then $(h(\mathbf{x}_i) - y_i)^2 \ge \frac{1}{4}$. Therefore, $\ell_S(h) \ge \frac{1}{4}\ell_S(h')$. Let $C \subseteq [p(n)]$ be the set of indices of S that were not observed by \mathcal{L} . Note that given C, the events $\{h'(\mathbf{x}_i) = y_i\}_{i \in C}$ are independent from one another, and each has probability $\frac{1}{2}$. By the Hoefding

bound, we have that $h'(\mathbf{x}_i) \neq y_i$ for at most $\frac{1}{2} - \sqrt{\frac{\ln(n)}{n}}$ fraction of the indices in C with probability at most

$$\exp\left(-\frac{2|C|\ln(n)}{n}\right) = \exp\left(-\frac{2(8m(n)+n)\ln(n)}{n}\right) \le \exp\left(-2\ln(n)\right) = \frac{1}{n^2}.$$

Thus, $h'(\mathbf{x}_i) \neq y_i$ for at least $\frac{1}{2} - o_n(1)$ fraction of the indices in C with probability at least $1 - o_n(1)$. Hence,

$$\ell_S(h) \ge \frac{1}{4}\ell_S(h') \ge \frac{1}{4} \cdot \frac{|C|}{p(n)} \left(\frac{1}{2} - o_n(1)\right) = \frac{1}{4} \cdot \frac{8m(n) + n}{9m(n) + n} \left(\frac{1}{2} - o_n(1)\right) \ge \frac{1}{9} - o_n(1) .$$

Therefore, for large enough n, with probability at least $\frac{3}{4}$ we have $\ell_S(h) > \frac{1}{10}$, and thus the algorithm returns "scattered".

A.2 SCAT $_{n^d}^A(\mathcal{H}_{sign-cnn}^{n,m})$ is RSAT-hard

For a predicate $P : \{\pm 1\}^K \to \{0, 1\}$ we denote by $\operatorname{CSP}(P, \neg P)$ the problem whose instances are collections, J, of constraints, each of which is either P or $\neg P$ constraint, and the goal is to maximize the number of satisfied constraints. Denote by $\operatorname{CSP}_{m(n)}^{\operatorname{rand}}(P, \neg P)$ the problem of distinguishing³ satisfiable from random formulas with n variables and m(n) constraints. Here, in a random formula, each constraint is chosen w.p. $\frac{1}{2}$ to be a uniform P constraint and w.p. $\frac{1}{2}$ a uniform $\neg P$ constraint.

We will consider the predicate $T_{K,M} : \{0,1\}^{KM} \to \{0,1\}$ defined by

$$T_{K,M}(z) = (z_1 \vee \ldots \vee z_K) \land (z_{K+1} \vee \ldots \vee z_{2K}) \land \ldots \land (z_{(M-1)K+1} \vee \ldots \vee z_{MK}) .$$

³As in $\text{CSP}_{m(n)}^{\text{rand}}(P)$, in order to succeed, and algorithm must return "satisfiable" w.p. at least $\frac{3}{4} - o_n(1)$ on every satisfiable formula and "random" w.p. at least $\frac{3}{4} - o_n(1)$ on random formulas.

We will need the following lemma from [17]. For an overview of its proof, see Appendix B.

Lemma A.1. [17] Let $q(n) = \omega(\log(n))$ with $q(n) \leq \frac{n}{\log(n)}$, and let d and K be fixed integers. The problem $\operatorname{CSP}_{n^d}^{\operatorname{rand}}(\operatorname{SAT}_K)$ can be efficiently reduced to the problem $\operatorname{CSP}_{n^{d-1}}^{\operatorname{rand}}(T_{K,q(n)}, \neg T_{K,q(n)})$.

In the following lemma, we use Lemma A.1 in order to show RSAT-hardness of $\text{SCAT}_{n^d}^A(\mathcal{H}_{\text{sign-cnn}}^{n,m})$ with some appropriate m and A.

Lemma A.2. Let $n = (n' + 1) \log^2(n')$, and let d be a fixed integer. The problem $\operatorname{SCAT}_{n^d}^A(\mathcal{H}^{n,\log^2(n')}_{\operatorname{sign-cnn}})$, where A is the ball of radius $\log^2(n')$ in \mathbb{R}^n , is RSAT-hard.

Proof. By Assumption 2.1, there is K such that $\text{CSP}_{(n')^{d+2}}^{\text{rand}}(\text{SAT}_K)$ is hard, where the K-SAT formula is over n' variables. Then, by Lemma A.1, the problem $\text{CSP}_{(n')^{d+1}}^{\text{rand}}(T_{K,\log^2(n')}, \neg T_{K,\log^2(n')})$ is also hard. We will reduce $\text{CSP}_{(n')^{d+1}}^{\text{rand}}(T_{K,\log^2(n')}, \neg T_{K,\log^2(n')})$ to $\text{SCAT}_{(n')^{d+1}}^A(\mathcal{H}_{\text{sign-cnn}}^{n,\log^2(n')})$. Since $(n')^{d+1} > n^d$, it would imply that $\text{SCAT}_{n^d}^A(\mathcal{H}_{\text{sign-cnn}}^{n,\log^2(n')})$ is RSAT-hard.

Let $J = \{C_1, \ldots, C_{(n')^{d+1}}\}$ be an input for $\operatorname{CSP}_{(n')^{d+1}}^{\operatorname{rand}}(T_{K,\log^2(n')}, \neg T_{K,\log^2(n')})$. Namely, each constraint C_i is either a CNF or a DNF formula. Equivalently, J can be written as $J' = \{(C'_1, y_1), \ldots, (C'_{(n')^{d+1}}, y_{(n')^{d+1}})\}$ where for every i, if C_i is a DNF formula then $C'_i = C_i$ and $y_i = 1$, and if C_i is a CNF formula then C'_i is the DNF obtained by negating C_i , and $y_i = 0$. Given J' as above, we encode each DNF formula C'_i (with $\log^2(n')$ clauses) as a vector $\mathbf{x}_i \in \mathbb{R}^n$ such that each clause $[(\alpha_1, i_1), \ldots, (\alpha_K, i_K)]$ in C'_i (a signed K-tuple) is encoded by a vector $\mathbf{z} = (z_1, \ldots, z_{n'+1})$ as follows. First, we have $z_{n'+1} = -(K-1)$. Then, for every $1 \leq j \leq K$ we have $z_{i_j} = \alpha_j$, and for every variable l that does not appear in the clause we have $z_l = 0$. Thus, for every $1 \leq l \leq n'$, the value of z_l indicates whether the l-th variable appears in the clause as a positive literal, a negative literal, or does not appear. The encoding \mathbf{x}_i of C'_i is the concatenation of the encodings of its clauses.

Let $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_{(n')^{d+1}}, y_{(n')^{d+1}})\}$. If J is random then S is scattered, since each constraint C_i is with probability $\frac{1}{2}$ a DNF formula, and with probability $\frac{1}{2}$ a CNF formula, and this choice is independent of the choice of the literals in C_i . Assume now that J is satisfiable by an assignment $\psi \in \{\pm 1\}^{n'}$. Let $\mathbf{w} = (\psi, 1) \in \{\pm 1\}^{n'+1}$. Note that S is realizable by the CNN $h_{\mathbf{w}}^n$ with $\log^2(n')$ hidden neurons. Indeed, if $\mathbf{z} \in \mathbb{R}^{n'+1}$ is the encoding of a clause of C'_i , then $\langle \mathbf{z}, \mathbf{w} \rangle = 1$ if all the K literals in the clause are satisfied by ψ , and otherwise $\langle \mathbf{z}, \mathbf{w} \rangle \leq -1$. Therefore, $h_{\mathbf{w}}^n(\mathbf{x}_i) = y_i$.

Note that by our construction, for every $i \in [(n')^{d+1}]$ we have for large enough n'

$$\|\mathbf{x}_i\| = \sqrt{\log^2(n') \left(K + (K-1)^2\right)} \le \log(n') \cdot K \le \log^2(n').$$

A.3 Hardness of learning random fully-connected neural networks

Let $n = (n'+1)\log^2(n')$. We say that a matrix M of size $n \times n$ is a diagonal-blocks matrix if

$$M = \begin{bmatrix} B^{11} & \dots & B^{1\log^2(n')} \\ \vdots & \ddots & \vdots \\ B^{\log^2(n')1} & \dots & B^{\log^2(n')\log^2(n')} \end{bmatrix}$$

where each block B^{ij} is a diagonal matrix $\operatorname{diag}(z_1^{ij}, \ldots, z_{n'+1}^{ij})$. For every $1 \leq i \leq n'+1$ let $S_i = \{i + j(n'+1) : 0 \leq j \leq \log^2(n') - 1\}$. Let M_{S_i} be the submatrix of M obtained by selecting the rows and columns in S_i . Thus, M_{S_i} is a matrix of size $\log^2(n') \times \log^2(n')$. For $\mathbf{x} \in \mathbb{R}^n$ let $\mathbf{x}_{S_i} \in \mathbb{R}^{\log^2(n')}$ be the restriction of \mathbf{x} to the coordinates S_i .

Lemma A.3. Let M be a diagonal-blocks matrix. Then,

$$s_{\min}(M) \ge \min_{1 \le i \le n'+1} s_{\min}(M_{S_i}) .$$

Proof. For every $\mathbf{x} \in \mathbb{R}^n$ with $\|\mathbf{x}\| = 1$ we have

$$\|M\mathbf{x}\|^{2} = \sum_{1 \le i \le n'+1} \|M_{S_{i}}\mathbf{x}_{S_{i}}\|^{2} \ge \sum_{1 \le i \le n'+1} (s_{\min}(M_{S_{i}}) \|\mathbf{x}_{S_{i}}\|)^{2}$$

$$\ge \min_{1 \le i \le n'+1} (s_{\min}(M_{S_{i}}))^{2} \sum_{1 \le i \le n'+1} \|\mathbf{x}_{S_{i}}\|^{2} = \left(\min_{1 \le i \le n'+1} (s_{\min}(M_{S_{i}}))^{2}\right) \|\mathbf{x}\|^{2}$$

$$= \min_{1 \le i \le n'+1} (s_{\min}(M_{S_{i}}))^{2}.$$

Hence, $s_{\min}(M) \ge \min_{1 \le i \le n'+1} s_{\min}(M_{S_i}).$

A.3.1 Proof of Theorem 3.1

Let M be a diagonal-blocks matrix, where each block B^{ij} is a diagonal matrix $\operatorname{diag}(z_1^{ij}, \ldots, z_{n'+1}^{ij})$. Assume that for all i, j, l the entries z_l^{ij} are i.i.d. copies of a random variable z that has a symmetric distribution \mathcal{D}_z with variance σ^2 . Also, assume that the random variable $z' = \frac{z}{\sigma}$ is *b*-subgaussian for some fixed *b*.

Lemma A.4.

$$Pr\left(s_{\min}(M) \le \frac{\sigma}{n'\log^2(n')}\right) = o_n(1)$$
.

Proof. Let $M' = \frac{1}{\sigma}M$. By Lemma A.3, we have

$$s_{\min}(M') \ge \min_{1 \le i \le n'+1} s_{\min}(M'_{S_i}) .$$
(1)

Note that for every *i*, all entries of the matrix M'_{S_i} are i.i.d. copies of z'.

Now, we need the following theorem:

Theorem A.2. [42] Let ξ be a real random variable with expectation 0 and variance 1, and assume that ξ is b-subgaussian for some b > 0. Let A be an $n \times n$ matrix whose entries are i.i.d. copies of ξ . Then, for every $t \ge 0$ we have

$$Pr\left(s_{\min}(A) \le \frac{t}{\sqrt{n}}\right) \le Ct + c^n$$

where C > 0 and $c \in (0, 1)$ depend only on b.

By Theorem A.2, since each matrix M'_{S_i} is of size $\log^2(n') \times \log^2(n')$, we have for every $i \in [n'+1]$ that

$$Pr\left(s_{\min}(M'_{S_i}) \le \frac{t}{\log(n')}\right) \le Ct + c^{\log^2(n')}.$$

By choosing $t = \frac{1}{n' \log(n')}$ we have

$$Pr\left(s_{\min}(M'_{S_i}) \le \frac{1}{n' \log^2(n')}\right) \le \frac{C}{n' \log(n')} + c^{\log^2(n')}$$

Then, by the union bound we have

$$Pr\left(\min_{1 \le i \le n'+1} \left(s_{\min}(M'_{S_i})\right) \le \frac{1}{n' \log^2(n')}\right) \le \frac{C(n'+1)}{n' \log(n')} + c^{\log^2(n')}(n'+1) = o_n(1)$$

Combining this with $s_{\min}(M) = \sigma \cdot s_{\min}(M')$ and with Eq. 1, we have

$$Pr\left(s_{\min}(M) \leq \frac{\sigma}{n'\log^2(n')}\right) = Pr\left(s_{\min}(M') \leq \frac{1}{n'\log^2(n')}\right)$$
$$\leq Pr\left(\min_{1 \leq i \leq n'+1}\left(s_{\min}(M'_{S_i})\right) \leq \frac{1}{n'\log^2(n')}\right) = o_n(1).$$

Lemma A.5. Let \mathcal{D}_{mat} be a distribution over $\mathbb{R}^{n \times \log^2(n')}$ such that each entry is drawn i.i.d. from \mathcal{D}_z . Note that a \mathcal{D}_{mat} -random network h_W has $\log^2(n') = \mathcal{O}(\log^2(n))$ hidden neurons. Let d be a fixed integer. Then, $\operatorname{SCAT}_{n^d}^A(\mathcal{D}_{mat})$ is RSAT-hard, where A is the ball of radius $\frac{n \log^2(n)}{\sigma}$ in \mathbb{R}^n .

Proof. By Lemma A.2, the problem $\operatorname{SCAT}_{n^d}^{A'}(\mathcal{H}_{\operatorname{sign-cnn}}^{n,\log^2(n')})$ where A' is the ball of radius $\log^2(n')$ in \mathbb{R}^n , is RSAT-hard. We will reduce this problem to $\operatorname{SCAT}_{n^d}^A(\mathcal{D}_{\operatorname{mat}})$. Given a sample $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^{n^d} \in (\mathbb{R}^n \times \{0, 1\})^{n^d}$ with $\|\mathbf{x}_i\| \leq \log^2(n')$ for every $i \in [n^d]$, we will, with probability $1 - o_n(1)$, construct a sample S' that is contained in A, such that if S is scattered then S' is scattered, and if S is $\mathcal{H}_{\operatorname{sign-cnn}}^{n,\log^2(n')}$ -realizable then S' is $\mathcal{D}_{\operatorname{mat}}$ -realizable. Note that our reduction is allowed to fail with probability $o_n(1)$. Indeed, distinguishing scattered from realizable requires success with probability $\frac{3}{4} - o_n(1)$ and therefore reductions between such problems are not sensitive to a failure with probability $o_n(1)$.

Assuming that M is invertible (note that by Lemma A.4 it holds with probability $1 - o_n(1)$), let $S' = \{(\mathbf{x}'_1, y_1), \dots, (\mathbf{x}'_{n^d}, y_{n^d})\}$ where for every $i \in [n^d]$ we have $\mathbf{x}'_i = (M^{\top})^{-1}\mathbf{x}_i$. Note that if S is scattered then S' is also scattered.

Assume that S is realizable by the CNN $h_{\mathbf{w}}^n$ with $\mathbf{w} \in \{\pm 1\}^{n'+1}$. Let W be the matrix of size $n \times \log^2(n')$ such that $h_W = h_{\mathbf{w}}^n$. Thus, $W = (\mathbf{w}^1, \ldots, \mathbf{w}^{\log^2(n')})$ where for every $i \in [\log^2(n')]$ we have $(\mathbf{w}_{(i-1)(n'+1)+1}^i, \ldots, \mathbf{w}_{i(n'+1)}^i) = \mathbf{w}$, and $\mathbf{w}_j^i = 0$ for every other $j \in [n]$. Let W' = MW. Note that S' is realizable by $h_{W'}$. Indeed, for every $i \in [n^d]$ we have $y_i = h_{\mathbf{w}}^n(\mathbf{x}_i) = h_W(\mathbf{x}_i)$, and $W^{\top}\mathbf{x}_i = W^{\top}M^{\top}(M^{\top})^{-1}\mathbf{x}_i = (W')^{\top}\mathbf{x}_i'$. Also, note that the entries of W' are i.i.d. copies of z. Indeed, denote $M^{\top} = (\mathbf{v}^1, \ldots, \mathbf{v}^n)$. Then, for every line $i \in [n]$ we denote i = (b-1)(n'+1)+r, where b, r are integers and $1 \le r \le n'+1$. Thus, b is the line index of the block in M that correspond to the *i*-th line in M, and r is the line index within the block. Now, note that

$$W'_{ij} = \langle \mathbf{v}^i, \mathbf{w}^j \rangle = \langle \left(\mathbf{v}^i_{(j-1)(n'+1)+1}, \dots, \mathbf{v}^i_{j(n'+1)} \right), \mathbf{w} \rangle = \langle (B^{bj}_{r1}, \dots, B^{bj}_{r(n'+1)}), \mathbf{w} \rangle$$
$$= B^{bj}_{rr} \cdot \mathbf{w}_r = z^{bj}_r \cdot \mathbf{w}_r .$$

Since \mathcal{D}_z is symmetric and $\mathbf{w}_r \in \{\pm 1\}$, we have $W'_{ij} \sim \mathcal{D}_z$ independently from the other entries. Thus, $W' \sim \mathcal{D}_{mat}$. Therefore, $h_{W'}$ is a \mathcal{D}_{mat} -random network.

By Lemma A.4, we have with probability $1 - o_n(1)$ that for every $i \in [n^d]$,

$$\|\mathbf{x}_{i}'\| = \|(M^{\top})^{-1}\mathbf{x}_{i}\| \leq s_{\max}\left((M^{\top})^{-1}\right)\|\mathbf{x}_{i}\| = \frac{1}{s_{\min}(M^{\top})}\|\mathbf{x}_{i}\| = \frac{1}{s_{\min}(M)}\|\mathbf{x}_{i}\|$$
$$\leq \frac{n'\log^{2}(n')}{\sigma}\log^{2}(n') \leq \frac{n\log^{2}(n)}{\sigma}.$$

Finally, Theorem 3.1 follows immediately from Theorem A.1 and the following lemma.

Lemma A.6. Let \mathcal{D}_{mat} be a distribution over $\mathbb{R}^{\tilde{n} \times m}$ with $m = \mathcal{O}(\log^2(\tilde{n}))$, such that each entry is drawn i.i.d. from \mathcal{D}_z . Let d be a fixed integer, and let $\epsilon > 0$ be a small constant. Then, $\operatorname{SCAT}^A_{\tilde{n}^d}(\mathcal{D}_{mat})$ is RSAT-hard, where A is the ball of radius $\frac{\tilde{n}^{\tilde{e}}}{\sigma}$ in $\mathbb{R}^{\tilde{n}}$.

Proof. For integers k, l we denote by $\mathcal{D}_{mat}^{k,l}$ the distribution over $\mathbb{R}^{k \times l}$ such that each entry is drawn i.i.d. from \mathcal{D}_z . Let $c = \frac{2}{\epsilon}$, and let $\tilde{n} = n^c$. By Lemma A.5, the problem $\operatorname{SCAT}_{n^{cd}}^{A'}(\mathcal{D}_{mat}^{n,m})$ is RSAT-hard, where $m = \mathcal{O}(\log^2(n))$, and A' is the ball of radius $\frac{n \log^2(n)}{\sigma}$ in \mathbb{R}^n . We reduce this problem to $\operatorname{SCAT}_{\tilde{n}^d}^A(\mathcal{D}_{mat}^{\tilde{n},m})$, where A is the ball of radius $\frac{\tilde{n}^{\epsilon}}{\sigma}$ in $\mathbb{R}^{\tilde{n}}$. Note that $m = \mathcal{O}(\log^2(n)) = \mathcal{O}(\log^2(\tilde{n}))$.

Let $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^{n^{cd}} \in (\mathbb{R}^n \times \{0, 1\})^{n^{cd}}$ with $\|\mathbf{x}_i\| \leq \frac{n \log^2(n)}{\sigma}$. For every $i \in [n^{cd}]$, let $\mathbf{x}'_i \in \mathbb{R}^{\tilde{n}}$ be the vector obtained from \mathbf{x}_i by padding it with zeros. Thus, $\mathbf{x}'_i = (\mathbf{x}_i, 0, \dots, 0)$. Note that $n^{cd} = \tilde{n}^d$. Let $S' = \{(\mathbf{x}'_i, y_i)\}_{i=1}^{\tilde{n}^d}$. If S is scattered then S' is also scattered. Note that if S is realizable by h_W then S' is realizable by $h_{W'}$ where W' is obtained from W by appending $\tilde{n} - n$

arbitrary lines. Assume that S is $\mathcal{D}_{mat}^{n,m}$ -realizable, that is, $W \sim \mathcal{D}_{mat}^{n,m}$. Then, S' is realizable by $h_{W'}$ where W' is obtained from W by appending lines such that each component is drawn i.i.d. from \mathcal{D}_z , and therefore, S' is $\mathcal{D}_{mat}^{\tilde{n},m}$ -realizable. Finally, for every $i \in \tilde{n}^d$ we have

$$\|\mathbf{x}_i'\| = \|\mathbf{x}_i\| \le \frac{n\log^2(n)}{\sigma} = \frac{\tilde{n}^{\frac{1}{c}}\log^2(\tilde{n}^{\frac{1}{c}})}{\sigma} \le \frac{\tilde{n}^{\frac{2}{c}}}{\sigma} = \frac{\tilde{n}^{\epsilon}}{\sigma} .$$

A.3.2 Proof of Theorem 3.2

Let \mathcal{D}_{mat} be a distribution over $\mathbb{R}^{n \times m}$ with $m = \log^2(n)$, such that each entry is drawn i.i.d. from $\mathcal{N}(0, 1)$. Let d be a fixed integer. By Lemma A.6, we have that $\operatorname{SCAT}_{n^d}^A(\mathcal{D}_{mat})$ is RSAT-hard, where A is the ball of radius n^{ϵ} in \mathbb{R}^n . Let $(\mathcal{N}(0, 1))^n$ be the distribution over \mathbb{R}^n where each component is drawn i.i.d. from $\mathcal{N}(0, 1)$. Recall that $(\mathcal{N}(0, 1))^n = \mathcal{N}(\mathbf{0}, I_n)$ ([46]). Therefore, in the distribution \mathcal{D}_{mat} , the columns are drawn i.i.d. from $\mathcal{N}(\mathbf{0}, I_n)$. Let \mathcal{D}'_{mat} be a distribution over $\mathbb{R}^{n \times m}$, such that each column is drawn i.i.d. from $\mathcal{N}(\mathbf{0}, \Sigma)$. By Theorem A.1, we need to show that $\operatorname{SCAT}_{n^d}^{A'}(\mathcal{D}'_{mat})$ is RSAT-hard, where A' is the ball of radius $\frac{n^{\epsilon}}{\sqrt{\lambda_{\min}}}$ in \mathbb{R}^n . We show a reduction from $\operatorname{SCAT}_{n^d}^A(\mathcal{D}_{mat})$ to $\operatorname{SCAT}_{n^d}^{A'}(\mathcal{D}'_{mat})$.

Let $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^{n^d} \in (\mathbb{R}^n \times \{0, 1\})^{n^d}$ be a sample. Let $\Sigma = U\Lambda U^{\top}$ be the spectral decomposition of Σ , and let $M = U\Lambda^{\frac{1}{2}}$. Recall that if $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, I_n)$ then $M\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \Sigma)$ ([46]). For every $i \in [n^d]$, let $\mathbf{x}'_i = (M^{\top})^{-1}\mathbf{x}_i$, and let $S' = \{(\mathbf{x}'_1, y_1), \dots, (\mathbf{x}'_{n^d}, y_{n^d})\}$. Note that if S is scattered then S' is also scattered. If S is realizable by a \mathcal{D}_{mat} -random network h_W , then let W' = MW. Note that S' is realizable by $h_{W'}$. Indeed, for every $i \in [n^d]$ we have $(W')^{\top}\mathbf{x}'_i = W^{\top}M^{\top}(M^{\top})^{-1}\mathbf{x}_i = W^{\top}\mathbf{x}_i$. Let $W = (\mathbf{w}_1, \dots, \mathbf{w}_m)$ and let $W' = (\mathbf{w}'_1, \dots, \mathbf{w}'_m)$. Since W' = MW then $\mathbf{w}'_j = M\mathbf{w}_j$ for every $j \in [m]$. Now, since $W \sim \mathcal{D}_{\text{mat}}$, we have for every j that $\mathbf{w}_j \sim \mathcal{N}(\mathbf{0}, I_n)$ (i.i.d.). Therefore, $\mathbf{w}'_j = M\mathbf{w}_j \sim \mathcal{N}(\mathbf{0}, \Sigma)$, and thus $W' \sim \mathcal{D}'_{\text{mat}}$. Hence, S' is $\mathcal{D}'_{\text{mat}}$ -realizable.

We now bound the norms of the vectors \mathbf{x}'_i in S'. Note that for every $i \in [n^d]$ we have

$$\|\mathbf{x}_{i}'\| = \|(M^{\top})^{-1}\mathbf{x}_{i}\| = \|U\Lambda^{-\frac{1}{2}}\mathbf{x}_{i}\| = \|\Lambda^{-\frac{1}{2}}\mathbf{x}_{i}\| \le \lambda_{\min}^{-\frac{1}{2}}\|\mathbf{x}_{i}\| \le \lambda_{\min}^{-\frac{1}{2}}n^{\epsilon}.$$

A.3.3 Proof of Theorem 3.3

Let $n = (n'+1)\log^2(n')$, and let M be a diagonal-blocks matrix, where each block B^{ij} is a diagonal matrix $\operatorname{diag}(z_1^{ij}, \ldots, z_{n'+1}^{ij})$. We denote $\mathbf{z}^{ij} = (z_1^{ij}, \ldots, z_{n'+1}^{ij})$, and $\mathbf{z}^j = (\mathbf{z}^{1j}, \ldots, \mathbf{z}^{\log^2(n')j}) \in \mathbb{R}^n$. Note that for every $j \in [\log^2(n')]$, the vector \mathbf{z}^j contains all the entries on the diagonals of blocks in the *j*-th column of blocks in M. Assume that the vectors \mathbf{z}^j are drawn i.i.d. according to the uniform distribution on $r \cdot \mathbb{S}^{n-1}$.

Lemma A.7. For some universal constant c' > 0 we have

$$Pr\left(s_{\min}(M) \le \frac{c'r}{n'\sqrt{n'}\log^5(n')}\right) = o_n(1) .$$

Proof. Let $M' = \frac{\sqrt{n}}{r}M$. For every $j \in [\log^2(n')]$, let $\tilde{\mathbf{z}}^j \in \mathbb{R}^n$ be the vector that contains all the entries on the diagonals of blocks in the *j*-th column of blocks in M'. That is, $\tilde{\mathbf{z}}^j = \frac{\sqrt{n}}{r}\mathbf{z}^j$. Note that the vectors $\tilde{\mathbf{z}}^j$ are i.i.d. copies from the uniform distribution on $\sqrt{n} \cdot \mathbb{S}^{n-1}$. By Lemma A.3, we have

$$s_{\min}(M') \ge \min_{1 \le i \le n'+1} s_{\min}(M'_{S_i})$$
 (2)

Note that for every *i*, all columns of the matrix M'_{S_i} are projections of the vectors \tilde{z}^j on the S_i coordinated. That is, the *j*-th column in M'_{S_i} is obtained by drawing \tilde{z}^j from the uniform distribution on $\sqrt{n} \cdot \mathbb{S}^{n-1}$ and projecting on the coordinates S_i .

We say that a distribution is *isotropic* if it has mean zero and its covariance matrix is the identity. The covariance matrix of the uniform distribution on \mathbb{S}^{n-1} is $\frac{1}{n}I_n$. Therefore, the uniform distribution on $\sqrt{n} \cdot \mathbb{S}^{n-1}$ is isotropic. We will need the following theorem.

Theorem A.3. [1] Let $m \ge 1$ and let A be an $m \times m$ matrix with independent columns drawn from an isotropic log-concave distribution. For every $\epsilon \in (0, 1)$ we have

$$Pr\left(s_{\min}(A) \le \frac{c\epsilon}{\sqrt{m}}\right) \le Cm\epsilon$$

where c and C are positive universal constants.

We show that the distribution of the columns of M'_{S_i} is isotropic and log-concave. First, since the uniform distribution on $\sqrt{n} \cdot \mathbb{S}^{n-1}$ is isotropic, then its projection on a subset of coordinates is also isotropic, and thus the distribution of the columns of M'_{S_i} is isotropic. In order to show that it is log-concave, we analyze its density. Let $\mathbf{x} \in \mathbb{R}^n$ be a random variable whose distribution is the projection of a uniform distribution on \mathbb{S}^{n-1} on k coordinates. It is known that the probability density of \mathbf{x} is (see [25])

$$f_{\mathbf{x}}(x_1, \dots, x_k) = \frac{\Gamma(n/2)}{\Gamma((n-k)/2)\pi^{k/2}} \left(1 - \sum_{1 \le i \le k} x_i^2\right)^{\frac{n-k}{2}-1}$$

where $\sum_{1 \le i \le k} x_i^2 < 1$. Recall that the columns of M'_{S_i} are projections of the uniform distribution over $\sqrt{n} \cdot \mathbb{S}^{n-1}$, namely, the sphere of radius \sqrt{n} and not the unit sphere. Thus, let $\mathbf{x}' = \sqrt{n}\mathbf{x}$. The probability density of \mathbf{x}' is

$$\begin{split} f_{\mathbf{x}'}(x_1', \dots, x_k') &= \frac{1}{(\sqrt{n})^k} f_{\mathbf{x}} \left(\frac{x_1'}{\sqrt{n}}, \dots, \frac{x_k'}{\sqrt{n}} \right) \\ &= \frac{1}{n^{k/2}} \cdot \frac{\Gamma(n/2)}{\Gamma((n-k)/2)\pi^{k/2}} \left(1 - \sum_{1 \le i \le k} \left(\frac{x_i'}{\sqrt{n}} \right)^2 \right)^{\frac{n-k}{2} - 1} \,, \end{split}$$

where $\sum_{1 \le i \le k} (x'_i)^2 < n$. We denote

$$g(n,k) = \frac{1}{n^{k/2}} \cdot \frac{\Gamma(n/2)}{\Gamma((n-k)/2)\pi^{k/2}}$$

By replacing k with $\log^2(n')$ we have

$$f_{\mathbf{x}'}(x'_1,\ldots,x'_{\log^2(n')}) = g(n,\log^2(n')) \left(1 - \frac{1}{n} \sum_{1 \le i \le \log^2(n')} (x'_i)^2\right)^{\frac{n - \log^2(n')}{2} - 1}.$$

Hence, we have

$$\log f_{\mathbf{x}'}(x'_1, \dots, x'_{\log^2(n')}) = \log \left(g(n, \log^2(n'))\right) + \left(\frac{n - \log^2(n')}{2} - 1\right) \cdot \log \left(1 - \frac{1}{n} \sum_{1 \le i \le \log^2(n')} (x'_i)^2\right) + \left(\frac{n - \log^2(n')}{2} - 1\right) \cdot \log \left(1 - \frac{1}{n} \sum_{1 \le i \le \log^2(n')} (x'_i)^2\right) + \left(\frac{n - \log^2(n')}{2} - 1\right) \cdot \log \left(1 - \frac{1}{n} \sum_{1 \le i \le \log^2(n')} (x'_i)^2\right) + \left(\frac{n - \log^2(n')}{2} - 1\right) \cdot \log \left(1 - \frac{1}{n} \sum_{1 \le i \le \log^2(n')} (x'_i)^2\right) + \left(\frac{n - \log^2(n')}{2} - 1\right) \cdot \log \left(1 - \frac{1}{n} \sum_{1 \le i \le \log^2(n')} (x'_i)^2\right) + \left(\frac{n - \log^2(n')}{2} - 1\right) \cdot \log \left(1 - \frac{1}{n} \sum_{1 \le i \le \log^2(n')} (x'_i)^2\right) + \left(\frac{n - \log^2(n')}{2} - 1\right) \cdot \log \left(1 - \frac{1}{n} \sum_{1 \le i \le \log^2(n')} (x'_i)^2\right) + \left(\frac{n - \log^2(n')}{2} - 1\right) \cdot \log \left(1 - \frac{1}{n} \sum_{1 \le i \le \log^2(n')} (x'_i)^2\right) + \left(\frac{n - \log^2(n')}{2} - 1\right) \cdot \log \left(1 - \frac{1}{n} \sum_{1 \le i \le \log^2(n')} (x'_i)^2\right) + \left(\frac{n - \log^2(n')}{2} - 1\right) \cdot \log \left(1 - \frac{1}{n} \sum_{1 \le i \le \log^2(n')} (x'_i)^2\right) + \left(\frac{n - \log^2(n')}{2} - 1\right) \cdot \log \left(1 - \frac{1}{n} \sum_{1 \le i \le \log^2(n')} (x'_i)^2\right) + \left(\frac{n - \log^2(n')}{2} - 1\right) \cdot \log \left(1 - \frac{1}{n} \sum_{1 \le i \le \log^2(n')} (x'_i)^2\right) + \left(\frac{n - \log^2(n')}{2} - 1\right) \cdot \log \left(1 - \frac{1}{n} \sum_{1 \le i \le \log^2(n')} (x'_i)^2\right) + \left(\frac{n - \log^2(n')}{2} - 1\right) \cdot \log \left(1 - \frac{1}{n} \sum_{1 \le i \le \log^2(n')} (x'_i)^2\right) + \left(\frac{n - \log^2(n')}{2} - 1\right) \cdot \log \left(1 - \frac{1}{n} \sum_{1 \le i \le \log^2(n')} (x'_i)^2\right) + \left(\frac{n - \log^2(n')}{2} - 1\right) \cdot \log \left(1 - \frac{1}{n} \sum_{1 \le i \le \log^2(n')} (x'_i)^2\right) + \left(\frac{1}{n} \sum_{i \le i \le \log$$

Since $\frac{n - \log^2(n')}{2} - 1 > 0$, we need to show that the function

$$\log\left(1 - \frac{1}{n} \sum_{1 \le i \le \log^2(n')} (x'_i)^2\right)$$
(3)

(where $\sum_{1 \le i \le \log^2(n')} (x'_i)^2 < n$) is concave. This function can be written as $h(f(x_1, \dots, x_{\log^2(n')}))$, where $h(x) = \log(1 + x)$

$$f(x'_1, \dots, x'_{\log^2(n')}) = -\frac{1}{n} \sum_{1 \le i \le \log^2(n')} (x'_i)^2 .$$

Recall that if h is concave and non-decreasing, and f is concave, then their composition is also concave. Clearly, h and f satisfy these conditions, and thus the function in Eq. 3 is concave. Hence $f_{\mathbf{x}'}$ is log-concave.

We now apply Theorem A.3 on $M'_{S_{\epsilon}}$, and obtain that for every $\epsilon \in (0, 1)$ we have

$$Pr\left(s_{\min}(M'_{S_i}) \le \frac{c\epsilon}{\log(n')}\right) \le C\log^2(n')\epsilon$$
.

By choosing $\epsilon = \frac{1}{n' \log^3(n')}$ we have

$$Pr\left(s_{\min}(M'_{S_i}) \le \frac{c}{n'\log^4(n')}\right) \le \frac{C}{n'\log(n')}.$$

Now, by the union bound

$$Pr\left(\min_{1 \le i \le n'+1} (s_{\min}(M'_{S_i})) \le \frac{c}{n'\log^4(n')}\right) \le \frac{C}{n'\log(n')} \cdot (n'+1) = o_n(1) .$$

Combining this with $s_{\min}(M) = \frac{r}{\sqrt{n}} s_{\min}(M')$ and with Eq. 2, we have

$$Pr\left(s_{\min}(M) \leq \frac{cr}{\sqrt{n} \cdot n' \log^4(n')}\right) = Pr\left(s_{\min}(M') \leq \frac{c}{n' \log^4(n')}\right)$$
$$\leq Pr\left(\min_{1 \leq i \leq n'+1} (s_{\min}(M'_{S_i})) \leq \frac{c}{n' \log^4(n')}\right) = o_n(1).$$

Note that

$$\frac{cr}{\sqrt{n} \cdot n' \log^4(n')} = \frac{cr}{\sqrt{n'+1} \cdot n' \log^5(n')} \ge \frac{cr}{2\sqrt{n'} \cdot n' \log^5(n')} = \frac{c'r}{\sqrt{n'} \cdot n' \log^5(n')}$$

where $c' = \frac{c}{2}$. Thus,

$$Pr\left(s_{\min}(M) \le \frac{c'r}{\sqrt{n'} \cdot n'\log^5(n')}\right) \le Pr\left(s_{\min}(M) \le \frac{cr}{\sqrt{n} \cdot n'\log^4(n')}\right) = o_n(1) .$$

Let \mathcal{D}_{mat} be a distribution over $\mathbb{R}^{n \times \log^2(n')}$ such that each column is drawn i.i.d. from the uniform distribution on $r \cdot \mathbb{S}^{n-1}$. Note that a \mathcal{D}_{mat} -random network h_W has $\log^2(n') = \mathcal{O}(\log^2(n))$ hidden neurons. Now, Theorem 3.3 follows immediately from Theorem A.1 and the following lemma.

Lemma A.8. Let d be a fixed integer. Then, $\text{SCAT}_{n^d}^A(\mathcal{D}_{\text{mat}})$ is RSAT-hard, where A is a ball of radius $\mathcal{O}\left(\frac{n\sqrt{n}\log^4(n)}{r}\right)$ in \mathbb{R}^n .

Proof. By Lemma A.2, the problem $\operatorname{SCAT}_{n^d}^{A'}(\mathcal{H}_{\operatorname{sign-cnn}}^{n,\log^2(n')})$ where A' is the ball of radius $\log^2(n')$ in \mathbb{R}^n , is RSAT-hard. We will reduce this problem to $\operatorname{SCAT}_{n^d}^A(\mathcal{D}_{\operatorname{mat}})$. Given a sample $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^{n^d} \in (\mathbb{R}^n \times \{0, 1\})^{n^d}$ with $\|\mathbf{x}_i\| \leq \log^2(n')$ for every $i \in [n^d]$, we will, with probability $1 - o_n(1)$, construct a sample S' that is contained in A, such that if S is scattered then S' is scattered, and if S is $\mathcal{H}_{\operatorname{sign-cnn}}^{n,\log^2(n')}$ -realizable then S' is $\mathcal{D}_{\operatorname{mat}}$ -realizable. Note that our reduction is allowed to fail with probability $o_n(1)$. Indeed, distinguishing scattered from realizable requires success with probability $\frac{3}{4} - o_n(1)$ and therefore reductions between such problems are not sensitive to a failure with probability $o_n(1)$.

Assuming that M is invertible (by Lemma A.7 it holds with probability $1 - o_n(1)$), let $S' = \{(\mathbf{x}'_1, y_1), \dots, (\mathbf{x}'_{n^d}, y_{n^d})\}$ where for every i we have $\mathbf{x}'_i = (M^{\top})^{-1}\mathbf{x}_i$. Note that if S is scattered then S' is also scattered.

Assume that S is realizable by the CNN $h_{\mathbf{w}}^n$ with $\mathbf{w} \in \{\pm 1\}^{n'+1}$. Let W be the matrix of size $n \times \log^2(n')$ such that $h_W = h_{\mathbf{w}}^n$. Thus, $W = (\mathbf{w}^1, \dots, \mathbf{w}^{\log^2(n')})$ where for every $i \in [\log^2(n')]$

we have $(\mathbf{w}_{(i-1)(n'+1)+1}^i, \dots, \mathbf{w}_{i(n'+1)}^i) = \mathbf{w}$, and $\mathbf{w}_j^i = 0$ for every other $j \in [n]$. Let W' = MW. Note that S' is realizable by $h_{W'}$. Indeed, for every $i \in [n^d]$ we have $y_i = h_{\mathbf{w}}^n(\mathbf{x}_i) = h_W(\mathbf{x}_i)$, and $W^{\top}\mathbf{x}_i = W^{\top}M^{\top}(M^{\top})^{-1}\mathbf{x}_i = (W')^{\top}\mathbf{x}_i'$. Also, note that the columns of W' are i.i.d. copies from the uniform distribution on $r \cdot \mathbb{S}^{n-1}$. Indeed, denote $M^{\top} = (\mathbf{v}^1, \dots, \mathbf{v}^n)$. Then, for every line index $i \in [n]$ we denote i = (b-1)(n'+1) + r, where b, r are integers and $1 \le r \le n'+1$. Thus, b is the line index of the block in M that correspond to the *i*-th line in M, and r is the line index within the block. Now, note that

$$W'_{ij} = \langle \mathbf{v}^i, \mathbf{w}^j \rangle = \langle \left(\mathbf{v}^i_{(j-1)(n'+1)+1}, \dots, \mathbf{v}^i_{j(n'+1)} \right), \mathbf{w} \rangle = \langle (B^{bj}_{r1}, \dots, B^{bj}_{r(n'+1)}), \mathbf{w} \rangle$$
$$= B^{bj}_{rr} \cdot \mathbf{w}_r = z^{bj}_r \cdot \mathbf{w}_r .$$

Since $\mathbf{w}_r \in \{\pm 1\}$, and since the uniform distribution on a sphere does not change by multiplying a subset of component by -1, then the *j*-th column of W' has the same distribution as \mathbf{z}^j , namely, the uniform distribution over $r \cdot \mathbb{S}^{n-1}$. Also, the columns of W' are independent. Thus, $W' \sim \mathcal{D}_{\text{mat}}$, and therefore $h_{W'}$ is a \mathcal{D}_{mat} -random network.

By Lemma A.7, we have with probability $1 - o_n(1)$ that for every *i*,

$$\begin{aligned} \|\mathbf{x}_{i}'\| &= \|(M^{\top})^{-1}\mathbf{x}_{i}\| \leq s_{\max}\left((M^{\top})^{-1}\right)\|\mathbf{x}_{i}\| = \frac{1}{s_{\min}(M^{\top})}\|\mathbf{x}_{i}\| = \frac{1}{s_{\min}(M)}\|\mathbf{x}_{i}\| \\ \leq \frac{n'\sqrt{n'}\log^{5}(n')}{c'r} \cdot \log^{2}(n') \leq \frac{n\sqrt{n}\log^{4}(n)}{c'r} \,. \end{aligned}$$

Thus, $\|\mathbf{x}'_i\| = \mathcal{O}\left(\frac{n\sqrt{n}\log^4(n)}{r}\right).$

A.4 Hardness of learning random convolutional neural networks

A.4.1 Proof of Theorem 3.4

Theorem 3.4 follows immediately from Theorem A.1 and the following lemma:

Lemma A.9. Let d be a fixed integer. Then, $\text{SCAT}_{n^d}^A(\mathcal{D}_z^{n'+1}, n)$ is RSAT-hard, where A is the ball of radius $\frac{\log^2(n')}{f(n')}$ in \mathbb{R}^n .

Proof. By Lemma A.2, the problem $\operatorname{SCAT}_{n^d}^{A'}(\mathcal{H}_{\operatorname{sign-cnn}}^{n,\log^2(n')})$ where A' is the ball of radius $\log^2(n')$ in \mathbb{R}^n , is RSAT-hard. We will reduce this problem to $\operatorname{SCAT}_{n^d}^A(\mathcal{D}_z^{n'+1}, n)$. Given a sample $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^{n^d} \in (\mathbb{R}^n \times \{0, 1\})^{n^d}$ with $\|\mathbf{x}_i\| \leq \log^2(n')$ for every $i \in [n^d]$, we will, with probability $1 - o_n(1)$, construct a sample S' that is contained in A, such that if S is scattered then S' is scattered, and if S is $\mathcal{H}_{\operatorname{sign-cnn}}^{n,\log^2(n')}$ -realizable then S' is $\mathcal{D}_z^{n'+1}$ -realizable. Note that our reduction is allowed to fail with probability $o_n(1)$. Indeed, distinguishing scattered from realizable requires success with probability $\frac{3}{4} - o_n(1)$ and therefore reductions between such problems are not sensitive to a failure with probability $o_n(1)$.

Let $\mathbf{z} = (z_1, \ldots, z_{n'+1})$ where each z_i is drawn i.i.d. from \mathcal{D}_z . Let $M = \operatorname{diag}(\mathbf{z})$ be a diagonal matrix. Note that M is invertible with probability $1 - o_n(1)$, since for every $i \in [n'+1]$ we have $Pr_{z_i \sim \mathcal{D}_z}(z_i = 0) \leq Pr_{z_i \sim \mathcal{D}_z}(|z_i| < f(n')) = o(\frac{1}{n'})$. Now, for every \mathbf{x}_i from S, denote $\mathbf{x}_i = (\mathbf{x}_1^i, \ldots, \mathbf{x}_{\log^2(n')}^i)$ where for every j we have $\mathbf{x}_j^i \in \mathbb{R}^{n'+1}$. Let $\mathbf{x}_i' = (M^{-1}\mathbf{x}_1^i, \ldots, M^{-1}\mathbf{x}_{\log^2(n')}^i)$, and let $S' = \{(\mathbf{x}_1', y_1), \ldots, (\mathbf{x}_{nd}', y_{nd})\}$. Note that if S is scattered then S' is also scattered. If S is realizable by a CNN $h_{\mathbf{w}}^n \in \mathcal{H}_{\operatorname{sign-cnn}}^{n,\log^2(n')}$, then let $\mathbf{w}' = M\mathbf{w}$. Note that S' is realizable by $h_{\mathbf{w}'}^n$. Indeed, for every i and j we have $\langle \mathbf{w}', M^{-1}\mathbf{x}_j^i \rangle = \mathbf{w}^\top M^\top M^{-1}\mathbf{x}_j^i = \mathbf{w}^\top MM^{-1}\mathbf{x}_j^i = \langle \mathbf{w}, \mathbf{x}_j^i \rangle$. Also, note that since $\mathbf{w} \in \{\pm 1\}^{n'+1}$ and \mathcal{D}_z is symmetric, then \mathbf{w}' has the distribution $\mathcal{D}_z^{n'+1}$, and thus $h_{\mathbf{w}'}^n$ is a $\mathcal{D}_z^{n'+1}$ -random CNN.

The probability that $\mathbf{z} \sim \mathcal{D}_z^{n'+1}$ has some component z_i with $|z_i| < f(n')$, is at most $(n'+1) \cdot o(\frac{1}{n'}) = o_n(1)$. Therefore, with probability $1 - o_n(1)$ we have for every $i \in [n^d]$ that

$$\begin{split} \|\mathbf{x}_{i}'\|^{2} &= \sum_{1 \leq j \leq \log^{2}(n')} \left\|M^{-1}\mathbf{x}_{j}^{i}\right\|^{2} \leq \sum_{1 \leq j \leq \log^{2}(n')} \left(\frac{1}{f(n')} \left\|\mathbf{x}_{j}^{i}\right\|\right)^{2} = \frac{1}{(f(n'))^{2}} \sum_{1 \leq j \leq \log^{2}(n')} \left\|\mathbf{x}_{j}^{i}\right\|^{2} \\ &= \frac{1}{(f(n'))^{2}} \left\|\mathbf{x}_{i}\right\|^{2} \leq \frac{\log^{4}(n')}{(f(n'))^{2}} \,. \end{split}$$
Thus,
$$\|\mathbf{x}_{i}'\| \leq \frac{\log^{2}(n')}{f(n')}.$$

A.4.2 Proof of Theorem 3.5

Assume that the covariance matrix Σ is of size $(n'+1) \times (n'+1)$, and let $n = (n'+1)\log^2(n')$. Note that a $\mathcal{N}(\mathbf{0}, \Sigma)$ -random CNN $h_{\mathbf{w}}^n$ has $\log^2(n') = \mathcal{O}(\log^2(n))$ hidden neurons. Let \mathcal{D}_{vec} be a distribution over $\mathbb{R}^{n'+1}$ such that each component is drawn i.i.d. from $\mathcal{N}(0,1)$. Let d be a fixed integer. By Lemma A.9 and by choosing $f(n') = \frac{1}{n'\log(n')}$, we have that $\operatorname{SCAT}_{nd}^A(\mathcal{D}_{\text{vec}}, n)$ is RSAT-hard, where A is the ball of radius $n'\log^3(n') \leq n\log(n)$ in \mathbb{R}^n . Note that $\mathcal{D}_{\text{vec}} = \mathcal{N}(\mathbf{0}, I_{n'+1})$ ([46]). By Theorem A.1, we need to show that $\operatorname{SCAT}_{nd}^{A'}(\mathcal{N}(\mathbf{0}, \Sigma), n)$ is RSAT-hard, where A' is the ball of radius $\lambda_{\min}^{-\frac{1}{2}} n\log(n)$ in \mathbb{R}^n . We show a reduction from $\operatorname{SCAT}_{nd}^A(\mathcal{N}(\mathbf{0}, I_{n'+1}), n)$ to $\operatorname{SCAT}_{nd}^{A'}(\mathcal{N}(\mathbf{0}, \Sigma), n)$.

Let $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^{n^d} \in (\mathbb{R}^n \times \{0, 1\})^{n^d}$ be a sample. For every \mathbf{x}_i from S, denote $\mathbf{x}_i = (\mathbf{x}_1^i, \dots, \mathbf{x}_{\log^2(n')}^i)$ where for every j we have $\mathbf{x}_j^i \in \mathbb{R}^{n'+1}$. Let $\Sigma = U\Lambda U^{\top}$ be the spectral decomposition of Σ , and let $M = U\Lambda^{\frac{1}{2}}$. Recall that if $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, I_{n'+1})$ then $M\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \Sigma)$ ([46]). Let $\mathbf{x}_i' = ((M^{\top})^{-1}\mathbf{x}_1^i, \dots, (M^{\top})^{-1}\mathbf{x}_{\log^2(n')}^i)$, and let $S' = \{(\mathbf{x}_1', y_1), \dots, (\mathbf{x}_{n^d}', y_{n^d})\}$. Note that if S is scattered then S' is also scattered. If S is realizable by a $\mathcal{N}(\mathbf{0}, I_{n'+1})$ -random CNN $h_{\mathbf{w}}^n$, then let $\mathbf{w}' = M\mathbf{w}$. Note that S' is realizable by $h_{\mathbf{w}'}^n$. Indeed, for every i and j we have $\langle \mathbf{w}', (M^{\top})^{-1}\mathbf{x}_j^i \rangle = \mathbf{w}^{\top}M^{\top}(M^{\top})^{-1}\mathbf{x}_j^i = \langle \mathbf{w}, \mathbf{x}_j^i \rangle$. Since $\mathbf{w}' = M\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \Sigma)$, the sample S' is $\mathcal{N}(\mathbf{0}, \Sigma)$ -realizable.

We now bound the norms of \mathbf{x}'_i in S'. Note that for every $i \in [n^d]$ we have

$$\begin{aligned} \|\mathbf{x}_{i}'\|^{2} &= \sum_{1 \leq j \leq \log^{2}(n')} \left\| (M^{\top})^{-1} \mathbf{x}_{j}^{i} \right\|^{2} = \sum_{1 \leq j \leq \log^{2}(n')} \left\| U\Lambda^{-\frac{1}{2}} \mathbf{x}_{j}^{i} \right\|^{2} = \sum_{1 \leq j \leq \log^{2}(n')} \left\| \Lambda^{-\frac{1}{2}} \mathbf{x}_{j}^{i} \right\|^{2} \\ &\leq \sum_{1 \leq j \leq \log^{2}(n')} \left\| \lambda_{\min}^{-\frac{1}{2}} \mathbf{x}_{j}^{i} \right\|^{2} = \lambda_{\min}^{-1} \sum_{1 \leq j \leq \log^{2}(n')} \left\| \mathbf{x}_{j}^{i} \right\|^{2} = \lambda_{\min}^{-1} \left\| \mathbf{x}_{i} \right\|^{2} . \end{aligned}$$

Hence, $\|\mathbf{x}_i'\| \le \lambda_{\min}^{-\frac{1}{2}} \|\mathbf{x}_i\| \le \lambda_{\min}^{-\frac{1}{2}} n \log(n).$

A.4.3 Proof of Theorem 3.6

Let $n = (n'+1)\log^2(n')$. Let \mathcal{D}_{vec} be the uniform distribution on $r \cdot \mathbb{S}^{n'}$. Note that a \mathcal{D}_{vec} -random CNN $h_{\mathbf{w}}^n$ has $\log^2(n') = \mathcal{O}(\log^2(n))$ hidden neurons. Let d be a fixed integer. By Theorem A.1, we need to show that $\operatorname{SCAT}_{n^d}^A(\mathcal{D}_{\text{vec}}, n)$ is RSAT-hard, where A is the ball of radius $\frac{\sqrt{n}\log(n)}{r}$ in \mathbb{R}^n . By Lemma A.2, the problem $\operatorname{SCAT}_{n^d}^{A'}(\mathcal{H}_{\operatorname{sign-cnn}}^{n,\log^2(n')})$ where A' is the ball of radius $\log^2(n')$ in \mathbb{R}^n , is RSAT-hard. We reduce this problem to $\operatorname{SCAT}_{n^d}^A(\mathcal{D}_{\operatorname{vec}}, n)$. Given a sample $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^{n^d} \in (\mathbb{R}^n \times \{0, 1\})^{n^d}$ with $\|\mathbf{x}_i\| \leq \log^2(n')$ for every $i \in [n^d]$, we construct a sample S' that is contained in A, such that if S is scattered then S' is scattered, and if S is $\mathcal{H}_{\operatorname{sign-cnn}}^{n,\log^2(n')}$ -realizable then S' is $\mathcal{D}_{\operatorname{vec}}$ -realizable.

Let *M* be a random orthogonal matrix of size $(n'+1) \times (n'+1)$. For every $i \in [n^d]$ denote $\mathbf{x}_i = (\mathbf{x}_1^i, \dots, \mathbf{x}_{\log^2(n')}^i)$ where for every *j* we have $\mathbf{x}_j^i \in \mathbb{R}^{n'+1}$. For every $i \in [n^d]$ let $\mathbf{x}_i' =$

 $(\frac{\sqrt{n'+1}}{r}M\mathbf{x}_1^i,\ldots,\frac{\sqrt{n'+1}}{r}M\mathbf{x}_{\log^2(n')}^i)$, and let $S' = \{(\mathbf{x}_1',y_1),\ldots,(\mathbf{x}_{n^d}',y_{n^d})\}$. Note that if S is scattered then S' is also scattered. If S is realizable by a CNN $h_{\mathbf{w}}^n \in \mathcal{H}_{\mathrm{sign-cnn}}^{n,\log^2(n')}$, then let $\mathbf{w}' = \frac{r}{\sqrt{n'+1}}M\mathbf{w}$. Note that S' is realizable by $h_{\mathbf{w}'}^n$. Indeed, for every i and j we have

$$\langle \mathbf{w}', \frac{\sqrt{n'+1}}{r} M \mathbf{x}_j^i \rangle = \mathbf{w}^\top \frac{r}{\sqrt{n'+1}} M^\top \frac{\sqrt{n'+1}}{r} M \mathbf{x}_j^i = \langle \mathbf{w}, \mathbf{x}_j^i \rangle$$

Also, note that since $\|\mathbf{w}\| = \sqrt{n'+1}$ and M is orthogonal, \mathbf{w}' is a random vector on the sphere of radius r in $\mathbb{R}^{n'+1}$, and thus $h_{\mathbf{w}'}^n$ is a \mathcal{D}_{vec} -random CNN.

Since M is orthogonal then for every $i \in [n^d]$ we have

$$\begin{aligned} \|\mathbf{x}_{i}'\|^{2} &= \sum_{1 \leq j \leq \log^{2}(n')} \left\| \frac{\sqrt{n'+1}}{r} M \mathbf{x}_{j}^{i} \right\|^{2} = \frac{n'+1}{r^{2}} \sum_{1 \leq j \leq \log^{2}(n')} \left\| \mathbf{x}_{j}^{i} \right\|^{2} \\ &= \frac{n'+1}{r^{2}} \cdot \left\| \mathbf{x}_{i} \right\|^{2} \leq \frac{(n'+1)\log^{4}(n')}{r^{2}} \leq \frac{n\log^{2}(n)}{r^{2}} \,. \end{aligned}$$

Hence $\|\mathbf{x}_i'\| \leq \frac{\sqrt{n}\log(n)}{r}$.

B From $\operatorname{CSP}_{n^d}^{\operatorname{rand}}(\operatorname{SAT}_K)$ to $\operatorname{CSP}_{n^{d-1}}^{\operatorname{rand}}(T_{K,q(n)}, \neg T_{K,q(n)})$ ([17])

We outline the main ideas of the reduction.

First, we reduce $\operatorname{CSP}_{n^d}^{\operatorname{rand}}(\operatorname{SAT}_K)$ to $\operatorname{CSP}_{n^{d-1}}^{\operatorname{rand}}(T_{K,q(n)})$. This is done as follows. Given an instance $J = \{C_1, \ldots, C_{n^d}\}$ to $\operatorname{CSP}(\operatorname{SAT}_K)$, by a simple greedy procedure, we try to find n^{d-1} disjoint subsets $J'_1, \ldots, J'_{n^{d-1}} \subset J$, such that for every t, the subset J'_t consists of q(n) constraints and each variable appears in at most one of the constraints in J'_t . Now, from every J'_t we construct a $T_{K,q(n)}$ -constraint that is the conjunction of all constraints in J'_t . If J is random, this procedure will succeed w.h.p. and will produce a random $T_{K,q(n)}$ -formula. If J is satisfiable, this procedure will either fail or produce a satisfiable $T_{K,q(n)}$ -formula.

Now, we reduce $\operatorname{CSP}_{n^{d-1}}^{\operatorname{rand}}(T_{K,q(n)})$ to $\operatorname{CSP}_{n^{d-1}}^{\operatorname{rand}}(T_{K,q(n)}, \neg T_{K,q(n)})$. This is done by replacing each constraint, with probability $\frac{1}{2}$, with a random $\neg P$ constraint. Clearly, if the original instance is a random instance of $\operatorname{CSP}_{n^{d-1}}^{\operatorname{rand}}(T_{K,q(n)})$, then the produced instance is a random instance of $\operatorname{CSP}_{n^{d-1}}^{\operatorname{rand}}(T_{K,q(n)}, \neg T_{K,q(n)})$. Furthermore, if the original instance is satisfied by the assignment $\psi \in \{\pm 1\}^n$, the same ψ , w.h.p., will satisfy all the new constraints. The reason is that the probability that a random $\neg T_{K,q(n)}$ -constraint is satisfied by ψ is $1 - (1 - 2^{-K})^{q(n)}$, and hence, the probability that all new constraints are satisfied by ψ is at least $1 - n^{d-1} (1 - 2^{-K})^{q(n)}$. Now, since $q(n) = \omega(\log(n))$, the last probability is $1 - o_n(1)$.

For the full proof see [17].

C Improving the bounds on the support of \mathcal{D} in the convolutional networks

We show that by increasing the number of hidden neurons from $\mathcal{O}(\log^2(n))$ to $\mathcal{O}(n)$ we can improve the bounds on the support of \mathcal{D} . Note that our results so far on learning random CNNs, are for CNNs with input dimension $n = \mathcal{O}(t \log^2(t))$ where t is the size of the patches. We now consider CNNs with input dimension $\tilde{n} = t^c$ for some integer c > 1. Note that such CNNs have $t^{c-1} = \mathcal{O}(\tilde{n})$ hidden neurons.

Assume that there is an efficient algorithms \mathcal{L}' for learning \mathcal{D}_{vec} -random CNNs with input dimension $\tilde{n} = t^c$, where \mathcal{D}_{vec} is a distribution over \mathbb{R}^t . Assume that \mathcal{L}' uses samples with at most $\tilde{n}^d = t^{cd}$ inputs. We show an algorithm \mathcal{L} for learning a \mathcal{D}_{vec} -random CNN $h_{\mathbf{w}}^n$ with $n = \mathcal{O}(t \log^2(t))$. Let $S = \{(\mathbf{x}_1, h_{\mathbf{w}}^n(\mathbf{x}_1)), \dots, (\mathbf{x}_{n^{cd}}, h_{\mathbf{w}}^n(\mathbf{x}_{n^{cd}}))\}$ be a sample, and let $S' = \{(\mathbf{x}'_1, h_{\mathbf{w}}^n(\mathbf{x}_1)), \dots, (\mathbf{x}'_{n^{cd}}, h_{\mathbf{w}}^n(\mathbf{x}_{n^{cd}}))\}$ where for every vector $\mathbf{x} \in \mathbb{R}^n$, the vector $\mathbf{x}' \in \mathbb{R}^{\tilde{n}}$ is obtained from \mathbf{x} by padding it with zeros. Thus, $\mathbf{x}' = (\mathbf{x}, 0, \dots, 0)$. Note that $n^{cd} > \tilde{n}^d$. Also, note that for every *i* we have $h_{\mathbf{w}}^n(\mathbf{x}_i) = h_{\mathbf{w}}^{\tilde{n}}(\mathbf{x}'_i)$. Hence, *S'* is realizable by the CNN $h_{\mathbf{w}}^{\tilde{n}}$. Now, given *S*, the algorithm \mathcal{L} runs \mathcal{L}' on *S'* and returns an hypothesis $h(\mathbf{x}) = \mathcal{L}'(S')(\mathbf{x}')$.

Therefore, if learning \mathcal{D}_{vec} -random CNNs with input dimension $n = \mathcal{O}(t \log^2(t))$ is hard already if the distribution \mathcal{D} is over vectors of norm at most g(n), then learning \mathcal{D}_{vec} -random CNNs with input dimension $\tilde{n} = t^c$ is hard already if the distribution \mathcal{D} is over vectors of norm at most $g(n) < g(t^2) = g(\tilde{n}^{\frac{2}{c}})$. Hence we have the following corollaries.

Corollary C.1. Let \mathcal{D}_{vec} be a distribution over \mathbb{R}^t such that each component is drawn i.i.d. from a distribution \mathcal{D}_z over \mathbb{R} . Let $n = t^c$ for some integer c > 1, and let $\epsilon = \frac{3}{c}$.

- 1. If $\mathcal{D}_z = \mathcal{U}([-r, r])$, then learning a \mathcal{D}_{vec} -random CNN $h^n_{\mathbf{w}}$ (with $\mathcal{O}(n)$ hidden neurons) is RSAT-hard, already if \mathcal{D} is over vectors of norm at most $\frac{n^{\epsilon}}{r}$.
- 2. If $\mathcal{D}_z = \mathcal{N}(0, \sigma^2)$, then learning a \mathcal{D}_{vec} -random CNN $h_{\mathbf{w}}^n$ (with $\mathcal{O}(n)$ hidden neurons) is RSAT-hard, already if \mathcal{D} is over vectors of norm at most $\frac{n^{\epsilon}}{\sigma}$.

Corollary C.2. Let Σ be a positive definite matrix of size $t \times t$, and let λ_{\min} be its minimal eigenvalue. Let $n = t^c$ for some integer c > 1, and let $\epsilon = \frac{3}{c}$. Then, learning a $\mathcal{N}(\mathbf{0}, \Sigma)$ -random CNN $h^n_{\mathbf{w}}$ (with $\mathcal{O}(n)$ hidden neurons) is RSAT-hard, already if the distribution \mathcal{D} is over vectors of norm at most $\frac{n^{\epsilon}}{\sqrt{\lambda_{\min}}}$.

Corollary C.3. Let \mathcal{D}_{vec} be the uniform distribution over the sphere of radius r in \mathbb{R}^t . Let $n = t^c$ for some integer c > 1, and let $\epsilon = \frac{2}{c}$. Then, learning a \mathcal{D}_{vec} -random CNN $h^n_{\mathbf{w}}$ (with $\mathcal{O}(n)$ hidden neurons) is RSAT-hard, already if the distribution \mathcal{D} is over vectors of norm at most $\frac{n^c}{r}$.

As an example, consider a CNN $h_{\mathbf{w}}^n$ with $n = t^c$. Note that since the patch size is t, then each hidden neuron has t input neurons feeding into it. Consider a distribution \mathcal{D}_{vec} over \mathbb{R}^t such that each component is drawn i.i.d. by a normal distribution with $\sigma = \frac{1}{\sqrt{t}}$. This distribution corresponds to the standard Xavier initialization. Then, by Corollary C.1, learning a \mathcal{D}_{vec} -random CNN $h_{\mathbf{w}}^n$ is RSAT-hard, already if \mathcal{D} is over vectors of norm at most $n^{\frac{3}{c}}\sqrt{t} = n^{\frac{3}{c}} \cdot n^{\frac{1}{2c}}$. By choosing an appropriate c, we have that learning a \mathcal{D}_{vec} -random CNN $h_{\mathbf{w}}^n$ is RSAT-hard, already if \mathcal{D} is over vectors of norm at most \sqrt{n} .

Finally, note that Corollary 3.4 holds also for the values of n and the bounds on the support of \mathcal{D} from Corollaries C.1, C.2 and C.3.