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A Synthetic Morpho-MNIST Experiment1

A.1 Data Generation2

We use the original MNIST dataset [1] together with the morphometric measurements introduced3

with Morpho-MNIST [2] to add functionality to measure intensity as well as set the intensity and4

thickness to a given value.5

We implement MeasureIntensity by following the processing steps proposed by Castro et al. [2],6

and measure the intensity i of an image as the median intensity of pixels within the extracted binary7

mask. Once the intensity is measured, the entire image is rescaled to match the target intensity, with8

values clamped between 0 and 255 (images are assumed to be in unsigned 8-bit format).9

Originally, Morpho-MNIST only proposed relative thinning and thickening operations. We expand10

those operations to absolute values by calculating the amount of dilation or erosion based on the ratio11

between target thickness and measured thickness.12

Finally, we follow Eq. (7) to modify each image within the MNIST dataset and randomly split the13

original training set into a training and validation set. We show random samples from the resulting14

test set in Fig. A.1.15

t = 2.3; i = 145 t = 3.2; i = 229 t = 2.9; i = 191 t = 2.6; i = 134 t = 2.6; i = 125 t = 2.7; i = 170 t = 4.0; i = 243 t = 2.3; i = 122

t = 2.1; i = 103 t = 3.6; i = 226 t = 2.2; i = 106 t = 3.3; i = 223 t = 2.9; i = 189 t = 3.6; i = 242 t = 3.5; i = 224 t = 3.1; i = 216

Figure A.1: Random exemplars from the synthetically generated Morpho-MNIST test dataset

A.2 Experimental Setup16

We use (conditional) normalising flows for all variables apart from the images, which we model using17

(conditional) deep encoder-decoder architectures. The flows consist of components that constrain18

the support of the output distribution (where applicable) and components relevant for fitting the19

distribution. We use unit Gaussians as base distributions for all exogenous noise distributions P (ε)20

and, if available, we use the implementations in PyTorch [3] or Pyro [4] for all transformations.21
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Otherwise, we adapt the available implementations, referring to [5] for details. We indicate with θ22

the modules with learnable parameters.23

We model the mechanisms of the thickness t and intensity i as24

t := fT (εT ) = (exp ◦AffineNormalisation ◦ Splineθ)(εT ) , (A.1)

i := fI(εI ; t) =
(
AffineNormalisation ◦ sigmoid ◦ConditionalAffineθ(t̂)

)
(εI) . (A.2)

In the independent model, where i is not conditioned on t, we use instead25

i := fI(εI) = (AffineNormalisation ◦ sigmoid ◦ Splineθ ◦Affineθ)(εI) . (A.3)

We found that including normalisation layers help learning dynamics1 and therefore include flows26

to perform commonly used normalisation transformations. For doubly bounded variable y we learn27

the flows in unconstrained space and then constrain them by a sigmoid transform and rescale to the28

original range using fixed affine transformations with bias min(Y ) and scale [max(Y )−min(Y )].29

We constrain singly bounded values by applying an exponential transform to the unbounded values30

and using an affine normalisation equivalent to a whitening operation in unbounded log-space. We31

denote those fixed normalisation transforms as AffineNormalisation and use a hat to refer to the32

unconstrained, normalised values (e.g. p̂ak). The Splineθ transformation refers to first-order neural33

spline flows [5], Affineθ is an element-wise affine transformation, and sigmoid refers to the logistic34

function. ConditionalAffineθ(·) is a regular affine transform whose transformation parameters are35

predicted by a context neural network taking · as input. In the case of fI(εI ; t), the context network36

is represented by a simple linear transform. Further, we model x using a low-level flow:37

hX(uX ;paX) = [Preprocessing ◦ConditionalAffineθ(p̂aX)](uX) , (A.4)

where the ConditionalAffine transform practically reparametrises the noise distribution into another38

Gaussian distribution and Preprocessing describes a fixed preprocessing transformation. We follow39

the same preprocessing as used with RealNVP [6]. The context network for the conditional affine40

transformation is the high-level mechanism gX(zX ;paX) and is implemented as a decoder network41

that outputs the bias for of the affine transformation, while the log-variance is fixed to log σ2 = −5.42

We implement the decoder network as a CNN:43

gX(zX ;paX) = (Convθ(1; 1; 1; 0) ◦ ConvTransposeθ(1; 4; 2; 1) ◦ ReLU ◦BNθ

◦ ConvTransposeθ(64; 4; 2; 1) ◦ Reshape(64, 7, 7)

◦ ReLU ◦BNθ ◦Linearθ(1024)

◦ ReLU ◦BNθ ◦Linearθ(1024))([zX , p̂aX ]) ,

(A.5)

where the operators describe neural network layers as follows: BN is batch normalisation; ReLU44

the ReLU activation function; Conv(c; k; s; p) and ConvTranspose(c; k; s; p) are a convolution or45

transposed convolution using a kernel with size k, a stride of s, a padding of p and outputting c46

channels; Linear(h) is a linear layer with h output neurons; and Reshape(·) reshapes its inputs into47

the given shape ·. Lastly, [zX ,paX ] denotes the concatenation of zX and paX , and zX ∈ R16.48

Equivalently, we implement the the encoder function as a simple CNN that outputs mean and49

log-variance of a independent Gaussian:50

eX(x;paX) =
(
[Linearθ(16),Linearθ(16)] ◦ [LeakyReLU(0.1), p̂aX ]

◦ BNθ ◦Linearθ(100) ◦ Reshape(128 · 7 · 7)

◦ LeakyReLU(0.1) ◦ BNθ ◦Convθ(128; 4; 2, 1)

◦ LeakyReLU(0.1) ◦ BNθ ◦Convθ(64; 4; 2, 1)
)
(x) ,

(A.6)

where LeakyReLU(`) is the leaky ReLU activation function with a leakiness of `.51

We use Adam [7] for optimisation with batch size of 256 and a learning rate of 10−4 for the encoder-52

decoder and 0.005 for the covariate flows. We set the number of particles (MC samples) for estimating53

the ELBO to 4. We use 32 MC samples for estimating reconstruction and counterfactuals. We train54

all models for 1000 epochs and report the results of the model with the best validation loss.55

1We observed that not normalising the inputs can lead to the deep models prioritising learning the dependence
on the variable with largest magnitude. This phenomenon should be investigated further.
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A.3 Additional Results56

Here we further illustrate the associative, interventional, and counterfactual capabilities of the trained57

independent, conditional, and full models.58

A.3.1 Association59

(a) Independent (b) Conditional (c) Full

Figure A.2: Random samples generated by the independent, conditional and full model. Note how all
models appear to have the same unconditional generation capacity.
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Figure A.3: Conditional samples generated by the independent, conditional, and full model. The
high-level noise, zX , is shared for all samples from each model, ensuring the same ‘style’ of the
generated digit. The independent model generates images independent of the thickness and intensity
values, resulting in identical samples. For the conditional and full models, thickness and intensity
change consistently along each column and row, respectively.
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Figure A.4: Reconstructions. These are computed as Monte Carlo averages approximating
EQ(zX |eX(x;paX))[gX(zX ;paX)], where eX and gX are the image encoder and decoder networks.
All models seem capable of producing faithful reconstructions.
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Figure A.5: Comparison of the target covariates and the corresponding values measured from the
generated images. The leftmost column refers to the accuracy of the SetThickness and SetIntensity
transforms used in generating the synthetic dataset, and the remaining three columns describe the
fidelity of samples generated by each of the learned models. While images sampled from the
independent model are trivially inconsistent with the sampled covariates, the conditional and full
models show comparable conditioning performance.

A.3.2 Intervention60
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Figure A.6: Difference between conditioning and intervening, based on the trained full model. The
joint density p(t, i) is shown as contours in the background, for reference, and the ‘violin’ shapes
represent the density of one variable when conditioning or intervening on three different values of
the other variable. Since t causes i, notice how p(t|i) (left) is markedly different from p(t|do(i))
(middle), which collapses to p(t). On the other hand, p(i|do(t)) and p(i |t) (right) are identical.
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A.3.3 Counterfactual61

Original do(t = 1.0) do(t = 3.0) do(t = 5.0) do(i = 64) do(i = 160) do(i = 255)

t = 1.8
i = 119

Original do(t = 1.0) do(t = 3.0) do(t = 5.0) do(i = 64) do(i = 160) do(i = 255)

t = 3.6
i = 242

Original do(t = 1.0) do(t = 3.0) do(t = 5.0) do(i = 64) do(i = 160) do(i = 255)

t = 2.6
i = 142

Figure A.7: Original samples and counterfactuals from the full model. The first column shows the
original image and true values of the non-imaging data. The even rows show the difference maps
between the original image and the corresponding counterfactual image. We observe that all coun-
terfactuals preserve the digits’ identity and style. Our model even generates sensible counterfactual
images (with some artefacts) in very low-density regions, e.g. ‘0’ with do(i = 64) (thick but dim),
and very far from the original, e.g. ‘2’ with do(t = 5.0).

B Brain Modelling62

B.1 Data Generation63

The original three-dimensional (3D) T1-weighted brain MRI scans have been pre-processed by the64

data providers of the UK Biobank Imaging study using the FSL neuroimaging toolkit [8]. The65

pre-processing involves skull removal, bias field correction, and automatic segmentation of brain66

structures. In addition, we have rigidly registered all scans to the standard MNI atlas space using an67

in-house image registration tool, which enabled us to extract anatomically corresponding mid-axial68

2D slices that were used for the experiments presented in this paper. The 2D slices were normalised in69

intensity by mapping the minimum and maximum values inside the brain mask to the range [0, 255].70

Background pixels outside the brain were set to zero. Age and biological sex for each subject were71

retrieved from the UK Biobank database along with the pre-computed brain and ventricle volumes.72

These volumes are derived from the 3D segmentation maps obtained with FSL, and although these73
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are image-derived measurements, they may serve as reasonable proxies of the true measurements74

within our (simplified yet plausible) causal model of the physical manifestation of the brain anatomy.75

Figure B.1: Random examplars from the test set of the adopted UK Biobank dataset

B.2 Experimental Setup76

The setup for the brain imaging experiment closely follows the MNIST example as described in77

Appendix A.2. We randomly split the available 13, 750 brain images into train, validation and test78

sets with the respective ratios 70%, 15% and 15%. During training, we randomly crop the brain slices79

from their original size of 233 px× 197 px to 192 px× 192 px and use center crops during validation80

and testing. The cropped images are downsampled by a factor of 3 to a size of 64 px× 64 px.81

We use the same low-level mechanism for the image x as with MNIST images but change the82

encoder and decoder functions to a deeper architecture with 5 scales consisting of 3 blocks of83

(LeakyReLU(0.1) ◦ BNθ ◦Convθ) each as well as a linear layer that converts to and from the latent84

space with 100 dimensions. We directly learn the binary probability of the sex s and use the following85

invertible transforms to model the age a, brain volume b, and ventricle volume v as86

a := fA(εA) =
(
exp ◦AffineNormalisation ◦ Splineθ

)
(εA) , (B.1)

b := fB(εB ; s, a) =
(
exp ◦AffineNormalisation ◦ConditionalAffineθ([s, â])

)
(εB) , (B.2)

v := fV (εV ; a, b) =
(
exp ◦AffineNormalisation ◦ConditionalAffineθ([b̂, â])

)
(εV ) , (B.3)

where the context networks are implemented as a fully-connected network with 8 and 16 hidden units,87

and a LeakyReLU(0.1) nonlinearity.88

B.3 Additional Results89

Likewise, we present more detailed analyses of the model trained on UK Biobank brain images and90

covariates, in terms of modelling the observational distribution and computing various counterfactual91

queries. (Continued on the next page.)92
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B.3.1 Association93

Figure B.2: Random samples from the model trained on the UK Biobank dataset
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Figure B.3: Conditional samples from the model trained on the UK Biobank dataset. Images in each
3×3 block share the same the high-level noise vector, zX . Each row consistently changes the brain
size, whereas each column changes the ventricle volume.
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Figure B.4: Original samples and reconstructions from the model trained on the UK Biobank dataset
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(a) Age vs. brain volume: p(a, b |s). Here we see differences in head size across biological sexes (reflected in
brain volume), as well as a downward trend in brain volume as age progresses.
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(b) Age vs. ventricle volume: p(a, v |b ∈ · ). As expected from the literature [9], we observe a consistent increase
in ventricle volume with age, in addition to a proportionality relationship with the overall brain volume.

Figure B.5: Densities for the true data (KDE) and for the learned model. The overall trends and
interactions present in the true data distribution seem faithfully captured by the model.
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B.3.2 Counterfactual94

Original do(s = male) do(a = 40 y) do(a = 80 y) do(b = 800 ml) do(b = 1600 ml) do(v = 11 ml) do(v = 110 ml)

s = female
a = 49 y

b = 1153 ml
v = 26.62 ml

Original do(s = female) do(a = 40 y) do(a = 80 y) do(b = 800 ml) do(b = 1600 ml) do(v = 11 ml) do(v = 110 ml)

s = male
a = 68 y

b = 1078 ml
v = 19.89 ml

Original do(s = male) do(a = 40 y) do(a = 80 y) do(b = 800 ml) do(b = 1600 ml) do(v = 11 ml) do(v = 110 ml)

s = female
a = 50 y

b = 1095 ml
v = 46.84 ml

Original do(s = male) do(a = 40 y) do(a = 80 y) do(b = 800 ml) do(b = 1600 ml) do(v = 11 ml) do(v = 110 ml)

s = female
a = 60 y

b = 1035 ml
v = 24.29 ml

Original do(s = female) do(a = 40 y) do(a = 80 y) do(b = 800 ml) do(b = 1600 ml) do(v = 11 ml) do(v = 110 ml)

s = male
a = 70 y

b = 1062 ml
v = 34.87 ml

Figure B.6: Original samples and counterfactuals from the model trained on the UK Biobank dataset.
The first column shows the original image and true values of the non-imaging data. The even rows
show the difference maps between the original image and the corresponding counterfactual image.
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C Discrete counterfactuals95

As mentioned in the main text, the DSCM framework supports not only low- and high-dimensional96

continuous data, but also discrete variables. In particular, discrete mechanisms with a Gumbel–max97

parametrisation have been shown to lead to counterfactuals satisfying desirable properties [10]. For98

example, they are invariant to category permutations and are stable, such that increasing the odds only99

of the observed outcome cannot produce a different counterfactual outcome. More computational100

details and properties of the Gumbel distribution are found in Maddison and Tarlow [11].101

Consider a discrete random variable over K categories, y, with a conditional likelihood described by102

logits λ, assumed to be a function gY of its parents, paY :103

P (y = k |paY ) =
eλk∑K
l=1 e

λl

, λ = gY (paY ) . (C.1)

Under the Gumbel–max parametrisation, the mechanism generating y can be described as104

y := fY (εY ;paY ) = arg max
1≤l≤K

(εlY + λl), εlY ∼ Gumbel(0, 1) . (C.2)

Samples from the Gumbel(0, 1) distribution can be generated by computing − log(− logU), where105

U ∼ Unif(0, 1).106

The Gumbel distribution has certain special properties [11] that enable tractable abduction. Given107

that we observed y = k, samples can be generated from the exact posterior P (εY |y = k,paY ):108

εkY = Gk + log
∑
l e
λl − λk, Gk ∼ Gumbel(0, 1),

εlY = − log(e−Gl−λl + e−ε
k
Y −λk)− λl, Gl ∼ Gumbel(0, 1), ∀l 6= k .

(C.3)

Finally, given an upstream counterfactual intervention such that λ̃ = g̃Y (p̃aY ), the counterfactual109

outcome for y can be determined simply as110

y = fY (εY ; p̃aY ) = arg max
1≤l≤K

(εlY + λ̃l) . (C.4)

Note that this entire derivation applies to a truly discrete variable, without the need for continuous111

relaxations as commonly used in deep generative models [12, 13], as the likelihood is given in closed112

form and no gradients of expectations are necessary.113
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