
6 Metric First Discussion and Justification

Table 7 shows that for most of the data sets, learning a tree structure first and then embedding
it into hyperbolic space, yields embeddings with better MAP and average distortion compared to
methods that learn the embedding directly. One possible explanation for this phenomenon is that the
optimization problems that seek the embeddings directly are not being solved optimally. That is, the
algorithms get stuck at some local minimum. Another possibility is that there is a disconnect between
the objective being optimized and the statistics calculated to judge the quality of the embeddings.

We propose that there are geometric facts about hyperbolic space that suggest embedding by first
learning a tree is the correct approach. The tree-likeness of hyperbolic space has been studied from
many different approaches. We present details from Hamann [22], Dyubina and Polterovich [15]
and looks at the geometry of Hk at its two extremes; large scale and small scale. Since H

k is a
manifold, we know that at small scales hyperbolic space looks like Euclidean space. Additionally, in
the Poincare disk, the hyperbolic Riemannian metric is given by 4

(1�x2�y2)2 (dx
2 + dy

2) and is just a
re-scaling of the Euclidean metric. Thus, at small scales, hyperbolic space is similar to Euclidean
space.

Hence to take advantage of hyperbolic representations (i.e., why learn a hyperbolic representation
instead of a Euclidean one), we want to embed data into H

k at scale. To study the large scale geometry
of Hk, we consider the asymptotic cone for hyperbolic space Con(Hk). In particular, we can think
of the asymptotic cone as the “view of our space from infinitely far away”. See the more detailed
discussion in Appendix 8 for examples and complete definitions. The following connects Con(Hk)
to R-tree spaces.
Theorem 2. [42] Con(Hk) is a complete R-tree.

Thus, we see that the large scale structure of hyperbolic space is a tree, indicating a strong connection
between learning trees and learning hyperbolic embeddings. Furthermore, it can be shown that
Con(Hk) is a 2@0-universal tree. That is, any tree with finitely many nodes can be embedded into
Con(Hk) exactly. However, these are still embeddings into Con(Hk). We would like to study
embeddings into H

k.
Definition 11. A metric space (T, dT) admits an isometric embedding at infinity into the space

(X, dX) if there exists a sequence of positive scaling factors �i ! 1 such that for every point

t 2 T , there exists an infinite sequence {xi
t}, i = 1, 2, . . . of points in X such that for all t1, t2 2 T

limi!1 dX(xi
t1 , x

i
t2)/�i = dT (t1, t2)

Theorem 3. [15] Con(Hk) can be isometrically embedded at infinity into H
k
.

Thus, we can embed any tree into H
k with arbitrarily low distortion. A type of converse is also true.

Definition 12. A (geodesic) ray R is a (isometric) homeomorphic image of [0,1), such that for any

ball B of finite diameter, R lies outside B eventually.

Hamann [22] showed that we can construct a rooted R-tree T inside Hk, such that every geodesic ray
in H

k eventually converges to a ray of T . Thus, showing that any configuration of points at scale in
H

k can be approximated by a tree. Additionally, larger the scale points can be better approximated
by trees. More details can be found in Appendix 9. Thus, showing that learning a tree and then
embedding this tree into H

k is equivalent to learning hyperbolic representations at scale.

This provides an explanation for why as the scale and dimension increased, TREEREP found a tree
that better approximated the hyperbolic metric in Section 4. This also provides a justification for why
learning a tree first, results in better hyperbolic representations.

7 Proofs

7.1 Tree Representation Proofs

Lemma 1. Given a metric d on three points x, y, z, there exists a (weighted) tree (T, dT) on four

nodes x, y, z, r, such that r is adjacent to x, y, z, the edge weights are given by w(x, r) = (y, z)x,

w(y, r) = (x, z)y and w(z, r) = (x, y)z , and the metric dT on the tree agrees with d.

13

Proof. The basic structure of this tree can be seen in Figure 1(d). To prove that the metrics agree we
such need to see the following calculation.

dT (x, y) = w(x, r) + w(r, y)

= (y, z)x + (x, z)y

=
1

2
(d(x, y) + d(x, z)� d(y, z)

+ d(x, y) + d(y, z)� d(x, z))

= d(x, y)

Here dT is the metric on the tree T .

One important fact that we need is that if (X, d) is a metric graph, then for any three distinct points
x, y, z 2 X , the geodesics connecting them intersect at a unique point. As seen in Lemma 1, we refer
to this point a Steiner point r. It is now important to note that even though r may not be a point in
the data set we are given, but r 2 X [7]. Thus, in the following lemmas, whenever we find a Steiner
point, we will assume that the metric d is defined on r.
Lemma 4. If d is a tree metric and x, y, w are three points then

1. (x, y)w = 0 if and only if w 2 g(x, y)
2. (x, y)w = d(x,w) if and only if (w, y)x = 0.

3. (x, y)w = d(y, w) if and only if (w, x)y = 0.

Here g(x, y) is the unique path connecting x and y.

Proof. For 1. we see that

0 = (x, y)w =
1

2
(d(w, x) + d(w, y)� d(x, y))

) d(x, y) = d(w, x) + d(w, y)

Thus we have that w 2 g(x, y).

For 2. we see that

(x, y)w = d(x,w)) d(w, x) + d(w, y)� d(x, y)

= 2d(w, x)

) d(w, x) + d(x, y)� d(w, y) = 0

) 2(w, y)x = 0

The proof for 3 is similar to that of 2.

Lemma 2. Let (X, d) be a tree space. Let w, x, y, z be four points in X and let (T, dT) be the

universal tree on x, y, z with node r as the Steiner node. Then we can extend (T, dT) to (T̂ , dT̂) to

include w such that dT̂ = d.

Proof. We note that there are four different possible cases for the configuration of x, y, z, w depending
on the relationship amongst the Gromov products. Each case determines a different placement of r,
as follows:

1. If (x, y)w = (x, z)w = (y, z)w = 0, then replace r with w to obtain T̂ .
2. If (x, y)w = (x, z)w = (y, z)w = c > 0, then connect w to r via an edge of weight c to

obtain T̂ .
3. If there exists a permutation ⇡ : {x, y, z} ! {x, y, z} such that,

(⇡x,⇡y)w = (⇡x,⇡z)w = c < (⇡y,⇡z)w

and d(⇡x,w) = (⇡x,⇡y)w, then connect w to ⇡x via an edge of weight c to obtain T̂ .

14

4. If there exists a permutation ⇡ : {x, y, z} ! {x, y, z} such that,

(⇡x,⇡y)w = (⇡x,⇡z)w = c < (⇡y,⇡z)w

and d(⇡x,w) > (⇡x,⇡y)w, then add a Steiner point r̂ on the edge x, r with d(⇡x, r̂) =
d(⇡x,w)� c and connect w to r̂ via an edge of weight c to obtain T̂ .

To prove that these extensions of T are consistent, first let us prove that there are exactly four cases.
To do that, first note that since we have a 0-hyperbolic metric, at least two of the three Gromov
products must be equal. Using the triangle inequality, we can see that for any three points a, b, c the
following holds

0 (a, b)c d(a, c).

That is, either we are in the first two cases and three of products are equal, or we have that two of
the products are equal. In the case that two of the products are equal, the permutation ⇡ tells us
which of the two are equal and we further subdivide into the case whether d(⇡x,w) = (⇡x,⇡y)w or
d(⇡x,w) > (⇡x,⇡y)w as we cannot have d(⇡x,w) < (⇡x,⇡y)w.

Therefore, there are at most four possible configuration cases and it remains to show that the new
tree dT̂ is consistent with d on the four points. In each case, we present the high level intuition for
why these modification result in a consistent tree. The low level details about the metric numbers can
easily be checked.

Case 1: If (x, y)w = (x, z)w = (y, z)w = 0, then we replaced r with w in T̂ . In this case, using
Lemma 4, we see that w must lie on all tree geodesics g(x, y), g(x, z), g(y, z). Since the metric
comes from a tree, these three geodesics can only intersect at one point r. Thus, we must replace r

with w.

To see that the metric is consistent, we need to verify that d(w, x) = dT̂ (r, x). To see we have the
following:

dT̂ (r, x) = (y, z)x
= (y, z)x + (x, y)w + (x, z)w � (y, z)w
= d(w, x)

Case 2: If
(x, y)w = (x, z)w = (y, z)w = c > 0,

then we can see that (x,w)r = (y, w)r = (z, w)r = 0. In this case, r lies on geodesics g(x, y),
g(x, z), g(x,w), g(y, w), g(y, z), g(z, w). Thus, we must have a star shaped graph with r in the
center.

To see that the metric is consistent we just need to verify that d(w, x) = dT̂ (w, x). To see that we
have the following calculation.

dT̂ (w, x) = dT̂ (w, r) + dT̂ (x, r)

= (x, y)w + (y, z)x
= (x, y)w + (x, z)w � (y, z)w + (y, z)x
= d(w, x)

Case 3: In this case suppose condition 4 is true. Without loss of generality assume that ⇡

is the identity map. In each case, we have a tree that looks like a tree in Figure 1. In this
case, we can do the calculations and see that (w, y)r = (w, z)r = 0. That is, the geodesics
g(w, y), g(w, z), g(y, z), g(x, y), g(x, z) all intersect at the same point. Thus, again telling us our
tree structure.

To check that the metric is consistent, we need to verify that d(w, y) = dT̂ (w, y) = dT̂ (w, r) +
dT̂ (r, y). Before we can do that, let us first verify that

dT̂ (w, r) = (y, z)w

15

To verify this we need to the following calculation

dT̂ (w, r) = dT̂ (r, r̂) + dT̂ (r̂, w)

= c+ dT (x, r)� dT̂ (x, r̂)

= c+ (y, z)x � (d(x,w)� c)

= 2c+ (y, z)x � d(x,w)

= (x, y)w + (x, z)w + (y, z)x � d(w, x)

= (y, z)w

We then can see that

dT̂ (w, y) = dT̂ (w, r) + dT̂ (r, y)

= (y, z)w + (x, z)y
= (y, z)w + (x, y)w � (x, z)w + (x, z)y
= d(w, y)

Note dT̂ (w, r) = (y, z)w and the consistency of the metric implies that d(w, r) = (y, z)w. Finally,
we can see (w, y)r = 0 as follows.

2(w, y)r = d(w, r) + d(r, y)� d(w, y)

= (z, y)w + (x, z)y � d(w, y)

=
1

2
(d(w, z)� d(w, y) + d(x, y)� d(x, z)

= (x, z)w � (x, y)w
= 0

Note that this also implies that (w, x)r > 0.

Case 4: In this case, suppose condition 3 is true. Without loss of generality assume that ⇡ is the
identity map. Then in this case, we still have that (w, y)r = (w, z)r = 0, but in addition we have
that (w, y)x = (w, z)x = 0. Thus, again telling us our tree structure.

In this case, to verify that the metric is consistent, we need to check that d(w, y) = dT̂ (w, y) =
dT̂ (w, x) + dT̂ (x, y). To see this we have the following calculations.

dT̂ (w, x) + dT̂ (x, y) = (x, y)w + d(x, y)

= 2(x, y)w � (x, z)w + d(x, y)

= d(w, y) + (w, z)x

Thus, now it suffices to show that (w, z)x = 0, which can be seen using the following calculations.

(x, z)w = d(w, x)) 0 = d(x,w) + d(x, z)� d(w, z)

) (w, z)x = 0

This also implies that (w, z)r = 0.

The proof of Lemma 2 shows that there are a number of ways to extend T to include the new point w.
To clarify our discussion of the extension of T , we introduce new terminology.
Definition 13. Given a data set V (consisting of data points, along with the distances amongst the

points), a universal tree T on x, y, z 2 V (with r as the Steiner node), let us defining the following

three zone types. The first type is associated only with the Steiner node r, while the other two types

are defined for each of the original nodes x, y, z.

1. Zone1(r) is all w 2 V such that condition 2 is true in Lemma 2.

16

2. For a given permutation ⇡, Zone1(⇡x) is all w 2 V such that condition 3 is true in Lemma

2 with ⇡.

3. For a given permutation ⇡, Zone2(⇡x) is all w 2 V , such that condition 4 is true in Lemma

2 with ⇡.

Note that there are seven zones total.
Lemma 5. Let (X, d) is a metric tree. Let x, y 2 X and let r 2 g(x, y) if and only if X \ {r} has at

least two disconnected components and x, y are in distinct components.

Proof. Suppose r 2 g(x, y). In metric trees, we know that there exist unique simple path between
any two points. Therefore, if, after removing r, a path connecting x, y remained (i.e., they are in the
same component), then there are two simple paths connecting x, y in X , which is not possible.

Suppose x, y are in two separate components of X \ {r}, then because X is path connected, the
geodesic between x and y must pass through r.

Lemma 3. Given (X, d) a metric tree, and a universal tree T on x, y, z, we have the following

1. If w 2 Zone1(x), then for all ŵ 62 Zone1(x), we have that x 2 g(w, ŵ).
2. If w 2 Zone2(x), then for all ŵ 62 Zonei(x) for i = 1, 2, then we have that r 2 g(w, ŵ).

Proof. First let us prove statement 1. To do this, let us analyze the possible zones to which ŵ belongs.

Case 1: Suppose ŵ 2 Zone1(y) (similar for ŵ 2 Zone1(z)). Then we have that d(ŵ, y) = (x, y)ŵ.
This, implies that (ŵ, x)y = 0. Thus, by Lemma 4, we have that y 2 g(ŵ, x). Similarly we have that
x 2 g(w, y).

Now since w 2 Zone1(x), we know that g(x,w) \ g(x, y) = {x}. Similarly, know that g(x, y) \
g(y, ŵ) = {y}. Then using Lemma 5, on removing x, we see that w and y are different connected
components. Then since x 62 g(ŵ, y), we see that ŵ, y is in one connected component. Thus, w, ŵ
are in different components. Thus, x 2 g(w, ŵ) by Lemma 5.

Case 2: Suppose ŵ 2 Zone2(y) (similar for ŵ 2 Zone2(z)). Now let r be the Steiner node
of the universal tree on x, y, z. In this case we know from Lemma 2 that r 2 g(ŵ, x) and that
g(w, x) \ g(x, r) = {x}.

Now since w 2 Zone1(x), we know that g(x,w) \ g(x, r) = {x}. Similarly, know that g(x, r) \
g(r, ŵ) = {r}. Then using Lemma 5, on removing x, we see that w and r are different connected
components. Then since x 62 g(ŵ, r), we see that ŵ, r is in one connected component. Thus, w, ŵ
are in different components. Thus, x 2 g(w, ŵ) by Lemma 5.

Case 3: ŵ 2 Zone2(x). Let r be the Steiner node for the universal tree on x, y, z. Now my Lemma
2, we know that x 2 g(w, r). Thus, again by removing x and using Lemma 5, r and w are in different.
We also have that by Lemma 2 x 62 g(ŵ, r). Thus r, ŵ are in the same connected component of
X \ {x}. Thus, w and ŵ are in different connected components. Thus, by Lemma 5, x 2 g(w, ŵ)

Thus in all cases, we can see that x 2 g(w, ŵ)

Now let us prove statement 2. Without loss of generality assume that

ŵ 2 Zonei(y)

for i = 1, 2. Then from Lemma 2, we know that r 62 g(w, x) and r 62 g(ŵ, y), but r 2 g(x, y). Thus,
using Lemma 5 on removing r, x and y and in different components and w is in the same component
as x and ŵ is in the same component as y. Thus, again using Lemma 5, we have that r 2 g(w, ŵ).

Theorem 1. Given (X, d), a �-hyperbolic metric space, and n points x1, . . . , xn 2 X , TREEREP
returns a tree (T, dT). In the case that � = 0, dT = d, and T has the fewest possible nodes. TREEREP
has worst case run time O(n2). Furthermore the algorithm is embarrassingly parallelizable.

17

Proof. The proof of this theorem follows directly from our structural lemmas. More precisely, we
show that for � = 0, TREEREP returns a consistent metric via induction on n, the number of data
points.

Base Case: The case when n 3 is covered by Lemma 1. And, the case when n = 4 is covered by
Lemma 2.

Inductive Hypothesis: Assume that for all k n, our data set of k points is consistent with a
0-hyperbolic metric d, then TREEREP returns a tree (T, dT) that is consistent with d on the k points.

Inductive Step: Assume that w is the last vertex attached to T . By the inductive hypothesis, we
know that without w, (T, dT) is consistent on with d so we only need to show that it is consistent
with the addition of w.

Now let x, y, z be the universal tree used to sort w in the penultimate recursive step. Let r be the
Steiner node. Then by Lemma 2, we know that dT (w, x) = d(w, x), dT (w, y) = d(w, y), and
dT (w, z) = d(w, z).

Now without loss of generality assume that w was sorted in a zone for x. That is, w 2 Zonei(x) for
i = 1, 2.

Case 1: If w 2 Zone1(x). Then from Lemma 1, we know that for all ŵ 62 Zone1(x), we have
that x 2 g(w, ŵ). Thus, having dT (x,w) = d(x,w) and dT (x, ŵ) = d(x, ŵ) is sufficient to show
consistency.

Now, since w was placed last there is at most one other point w̃ in Zone1(x), and dT (w, w̃) = d(w, w̃)
due to Lemma 1.

Case 2: If w 2 Zone2(x). Then from Lemma 2, we know that for all ŵ 62 Zonei(x), for i = 1, 2
we have that r 2 g(w, ŵ). Thus, having dT (r, w) = d(r, w) and dT (r, ŵ) = d(r, ŵ) is sufficient to
show consistency.

Suppose ŵinZone1(x). Then from Lemma 1, we have that x 2 g(w, ŵ). Thus, having dT (x,w) =
d(x,w) and dT (x, ŵ) = d(x, ŵ) is sufficient to show consistency.

Finally, since w was the last node placed there are no other nodes in Zone2(x).

Thus, we have the the tree returned by TREEREP is consistent with the input metric d.

Notice that whenever we add a Steiner node r we fix the position of at least one data point node. We
then look at O(n) Gromov inner products. Thus, we have a worst case running time of O(n2).

Additionally, the part where we place nodes into their respective zones can be done in parallel. Thus,
if we have K threads then the running time is O

⇣
n2

K

⌘
for the worst running times.

The final part of the theorem is that we return the tree with the smallest possible nodes. Whenever
we look at any triangle formed by three points x, y, z, we place a Steiner node r. Now, if none of
the distances from x, y, z to r is 0, then this Steiner node must exist in all tree consistent with d.
If one of these distances is 0, we contracted that edge and got rid of r. Thus, along with the local
consistency argument above this shows that all Steiner nodes that we have placed are necessary (the
local consistency argument implies that no two of the Steiner nodes placed could in fact be made into
one node due to the nodes beings in different regions). Thus, we have the fewest possible nodes.

7.2 Tree Approximation Proofs

Proposition 1. Given a �-hyperbolic metric d, the universal tree T on x, y, z and a fourth point w,

when sorting w into its zone zonei(⇡x), TREEREP introduces an additive distortion of � between w

and ⇡y,⇡z

Proof. Without loss of generality assume that ⇡ is the identity. In this case, we know that dT (w, r) =
(y, z)w, and that dT (y, r) = (x, z)y . Thus, we have the following:

18

|dT (w, y)� d(w, y)| = |dT (w, r) + dT (r, y)� d(w, y)|
= |(y, z)w + (x, z)y � d(w, y)|

=
1

2
|d(w, z) + d(y, x)

� d(w, y)� d(x, y)|
= |(x, y)w � (x, z)w|
 �

8 Geometry: Asymptotic Cones

Definition 14. An ultrafilter F on X is a subset of P(X) such that

1. If A 2 F and A ⇢ B then B 2 F
2. A,B 2 F then A \B 2 F
3. For any A ⇢ X , exactly 1 of A,X \A is in F
4. ; 62 F .

One way to view F is as defining a probability measure on X . In particular, we will view the sets in
F to be large and the sets not in F to be small. Hence, we can define a measure ⌫ such that for all
A 2 F we have that ⌫(A) = 1 and for all A 62 F we have that ⌫(A) = 0.

In this way, we can see that ⌫ is a finitely additive measure on X . One common method to define
ultrafilters is to take a point x 2 X and let F be the set of all sets that contain x. In this case,
the measure ⌫ has a point mass at x and zero mass elsewhere. Such filters are known an principal
ultrafilters.

Given a measure ⌫ on N, we can use it to define limits and convergence in X . In particular, we have
that a sequence xi converges to x, if for all ✏ > 0 we have that

⌫ ({xi : |xi � x| < ✏}) = 1

We will denote limits of this form as lim⌫ xi = x.

We will make use of ultrafilters to construct the asymptotic cone. We will do this via looking at a
non-principal ultrafilter on N. We consider non-principal ultrafilters as we want to get a view from
infinity, and we do not want to be in the case when one particular index in N has the entire mass.
Hence we restrict ourselves to non-principal ultrafilters. One nice characterization of non-principal
ultrafilters is that they are exactly the ultrafilters that have no finite sets.

Now that we have mathematical framework in which we can take limits, let us define our asymptotic
cone. Let ! be a non-principal ultrafilter on N. Let {bi}i2N be a sequence of base points and let
{�i}i2N be a sequence of scaling factors that go to infinity. Let d be the metric on our space X . Then
let

X!,bi,�i = {{yi} : yi 2 X and d(bi, yi) const{yi}�i}
While this space looks huge we will define an equivalence relation and mod out by this relation to
obtain better structure on this space. Given two points y = {yi}, z = {zi} 2 X!,bi,�i we say that
y ⇠ z if

lim
!

d(yi, zi)

�i
= 0

We can now define our asymptotic cone Con!(X) = X(!, bi,�i)/ ⇠. We can also define a metric
on this space as follows, given y = {yi}, z = {zi} 2 Con!(X)

d!(y, z) := lim
!

d(yi, zi)

�i

Let us look at a few examples to get a handle on what Con!(X) looks like.

19

1. Example 1: Let us first consider X = R
n. We know that Rn is scale invariant. This results

in Con!(Rn) being equivalent to R
n. In fact, if we assume that bi ⌘ 0, then the map

x 7! {�ix} is an isometry from R
n to Con!(Rn)

2. Example 2: Suppose X is a bounded metric space. In this case Con!(X) is a single point.

Definition 15. A metric space (X, dx) can be isometrically embedded into a metric space (Y, dy) if

there exists a map f : X ! Y such that for all x1, x2 2 X we have that

dx(x1, x2) = dy(f(x1), f(x2))

Such a map f is known as an isometry.

Definition 16. A metric space (X, d) is homogenous if for all x, y 2 X there exists an isometry

f : X ! X such that f(x) = y.

Definition 17. Given a R-tree T , the valency of a point x 2 T in an R-tree is the number of

connected components in T \ {x}. Let the valence of a the tree, denoted val(T), be the maximum

valence of any point in T .

Definition 18. A R-tree T is a µ-universal if every R-tree T̂ with val(T̂) µ can be isometrically

embedded into T .

Here we can see that we can embed any finite tree into a 2@0-universal tree T . Hence, if could
isometrically embed T into Con(Hn) then we can embed any tree into Con(Hn). This and more
turns out to be true.
Theorem 4. [15] Any 2@0 -universal R-tree can be isometrically embedded into the asymptotic cone

for any complete simply connected manifold of negative curvature.

9 Geometry: Geodetic Tree

In general, it is rare to be able isometrically embed one space into another. Hence, we have the
following weaker definition.
Definition 19. We say that we can quasi isometrically embed a metric space (X, dx) into a metric

space (Y, dy) if there exists a map f : X ! Y and real numbers c,� 2 R such that � � 1, c > 0
and for all x1, x2 2 X we have that

1

�
dx(x1, x2)� c dy(f(x1), f(x2)) �dx(x1, x2) + c

Such isometries are called (�, c)-quasi-isometries.

It is has been shown that any �-hyperbolic metric space (X, d) with bounded growth admits a
quasi-isometric embedding into H

k [6].
Definition 20. We say that a ray R is quasi geodetic if instead of being an isometric image of [0,1),
we have that R is an quasi-isometric image of [0,1).

Definition 21. A ray is eventually (quasi) geodetic if it has a subray that is (quasi) geodetic.

Theorem 5. [22] For all � � 1,c � 0 there is a constant = (�,�, c), such that for every two

points x, y 2 H
k
, every (�, c)-quasi-geodesic between them lies in a -neighborhood around every

geodesic between x and y and vice versa.

Definition 22. Two geodetic rays ⇡1,⇡2 are equivalent if for any sequence (xn) of points on ⇡1, we

have lim infn!1 d(xn,⇡2) M for an M < 1
Definition 23. The boundary @H

k
of H

k
is the equivalence class of all geodesic rays.

Theorem 6. [22] There is an R-tree T ⇢ H
k

such that the canonical map � from @T to @X exists

and has the following properties.

1. It is surjective;

2. there is a constant M < 1 depending only on k such that �
�1(⌘) has at most M elements

for each ⌘ 2 @H
k
.

20

Theorem 7. [22] Let T be the R-tree in Theorem 6 with root r. There exist constants � � 1, c � 0
such that every ray in T starting at the root is a (�, c)-quasi-geodetic ray in H

k
.

The above two theorems tell us that given any geodesic ray R in H
k there is exists a ray in T that is

equivalent to R (via ⇠ in Definition 22). Furthermore this ray in T is (�, c)-quasi-geodetic ray in H
k.

Thus, due to Theorem 5 any configuration of points at scale in H
k can be approximated by a tree

such that the larger the scale, better the approximation.

10 TREEREP Best

So far all numbers for the TREEREP algorithm that we have reported are averages. But due to the
speed of the algorithm, we can actually run the experiment multiple times and pick the tree with the
best metric.

Table 5: TREEREP Best Numbers

No Opt Heuristic Opt Full Opt
Graph MAP Distortion MAP Distortion MAP Distortion

Celegan 0.508 0.173 0.539 0138 0.547 0.119
Diseasome 0.912 0.134 0.911 0.106 0.890 0.092

CS PhD 0.987 0.134 0.984 0.119 0.968 0.121
Yeast 0.841 0.171 0.833 0.150 0.808 0.135

Grid-worm 0.727 0.154 0.728 0.125 - -
GRQC 0.699 0.175 0.694 0.152 - -

11 Improving Distortion

We have seen that in the case of unweighted graphs TREEREP produces better MAP than PM, LM,
and PT. However, PT tends to have better average distortion. Hence, we want to be able to improve
the distortion. Once we have learned the tree structure we can set up an optimization problem to
learn the edge weights on the tree to improve the distortion. Specifically, since the metric comes from
the tree, for any pair of data points, there is exactly one path connecting the two data points. Thus,
regardless of the edges weights, this path is the shortest path between the data points. Thus, we can
set up an optimization problem of the following form:

argmin
w

kAW �Dk2.

Here W is a vector containing the edge weights, D is a vector containing the original metric, and A

is a matrix that encodes all of the paths. This optimization problem however, is unfeasible as n gets
longer. So instead we sample some rows of A and solve a heuristic problem. As can be seen from
Table 6, we are still faster than NJ but now have improved our distortion without sacrificing MAP.

Table 6: MAP and average distortion for the TREEREP and MST after doing the heuristic optimization.
The time taken for both optimizations is the same.

Graph Time Distortion MAP Distortion MAP

TREEREP MST
Celegans 0.69 0.157 0.504 0.195 0.357

Diseasome 1.56 0.121 0.891 0.111 0.774
CS Phd 1.2 0.152 0.971 0.170 0.989
Yeast 4.2 0.163 0.813 0.171 0.862

Grid Worm 32 0.164 0.707 0.151 0.768
GRQC 68 0.157 0.676 0.159 0.669

21

12 Experiment and Practical Details

12.1 MAP and Average Distortion

Definition 24. Given two metrics d1, d2 on a finite set X = x1, . . . , xn the average distortion is:

1�n
2

�
nX

i=1

X

j<i

|d1(xi, xj)� d2(xi, xj)|
d2(xi, xj)

Smaller average distortion implies greater similarity between d1 and d2.

In many cases, the metric learned by the various algorithms will be a scalar multiple of the actual
metric, so we will solve for the scale ↵ := argminc kD � cD̂kF , before calculating the average
distortion.7

Definition 25. Let d be a metric on the nodes of a graph G = (V,E). For v 2 V , let N(v) =
{u1, . . . , udeg(v)} be the neighborhood of v. Then let Bv,ui = {u 2 V \ {u} : d(u, v) d(v, ui)}.

Then the mean average precision (MAP) is defined to be

1

n

X

v2V

1

deg(v)

|N(v)|X

i=1

|N(v) \Bv,ui |
|Bv,ui |

Closer MAP is to 1, the closer d is to approximating dG.

12.2 TreeRep

There are a few practical details that must be discussed in relation to the TREEREP algorithm.

1. Pre-allocate the matrix for the weights of edges of the tree as a dense matrix. Doing this
greatly speeds up computations. Note the proof of Lemma 2, show that we need at most n
Steiner nodes. Thus, the tree has about 2n nodes. Since the input to the algorithm is a dense
n⇥ n matrix, we already need O(n2) memory. Thus, having a dense 2n⇥ 2n matrix is still
linear memory usage in the size of the input.

2. When doing zone 2 recursions pick the node closest to r as the new z as suggested by
Proposition 1.

3. The placement of nodes into their respective zones can be done in parallel. For all of the
experiments in the paper, we used 8 threads to do the placement for all of the experiments,
except that we used 1 thread for the random points from H

k experiment and for CBMC
experiment.

4. All of the numbers reported are averages over 20 iterations. We could have also picked the
best over 20 iterations as our algorithm is fast enough for this to be viable.

5. When checking for equality, instead of checking for exact equality, we checked whether two
numbers are within 0.1 of each other.

6. It is possible for some of the edge weights to be set to a negative number. In this case, after
the algorithm terminated we set those edge weights to 0.

12.3 Bartal

We sample 200 trees from the distribution and compute the metric assuming that we are embedding
into the distribution restricted to these 200 trees.

12.4 Neighbor Join

The following implementation of NJ was used: http://crsl4.github.io/PhyloNetworks.jl/latest/. We set
the options so as to not have any negative edge weights.

7For NJ and LT, computing this ↵ made the average distortion worse, so we report numbers un-scaled.
Additionally, computing ↵ is too computationally expensive for bigger data sets and was not done for the Enron
and Wordnet data set.

22

12.5 MST

Prim’s algorithm for calculating MST was used. We used the implementation at
https://github.com/JuliaGraphs/LightGraphs.jl

12.6 LS

Low stretch spanning trees are calculated using Laplacian package in Julia. This code is based an
adaptation of [2] by the authors of [16].

12.7 LevelTree and ConstructTree

To the best of the authors knowledge there does not exist a publicly available implementations of
these algorithms. Both of these algorithms were implemented by the authors.

Note that LevelTree claims to be a O(n) algorithm, but this only true, once we have calculated
the sphere Sn needed for the algorithm. However, it takes O(n2) time to calculate the spheres Sn

(equivalent to solving single source all destination shortest path problem).

12.8 PM and LM

The following options were used. The number of epochs was to set to be higher than default.
Everything else was left at default. One note about PM and LM is that their objective function is set
up to optimize for MAP and not average distortion.

1. -lr 0.3
2. -epochs 1000
3. -burnin 20
4. -negs 50
5. -fresh
6. -sparse
7. -train_threads 2
8. -ndproc 4
9. -batchsize 10

For PM we used -manifold poincare, for LM we used -manifold lorentz. The code is taken
from https://github.com/facebookresearch/poincare-embeddings

12.9 PT

The following options were used. We used the –learn-scale option as based on the discussion in
the appendix of Sala et al. [36] learning the scale results in better quality metrics. Additionally, we
add a burnin phase to the optimization. Finally, based on the discussion in [36], the objective function
for PT has a lot of shallow local minimas. Thus, we added momentum and used Adagrad for the
optimization to try and avoid these local minimums.

1. –learn-scale
2. –burn-in 100
3. –momentum 0.9
4. –use-adagrad
5. –l 5.0
6. –epochs 1000
7. –batch-size 256
8. –subsample 64

The code is taken from https://github.com/HazyResearch/hyperbolics

12.10 Hardware

All experiments were run on Google cloud instances. For PM, LM and PT we created a fresh instance
for each algorithm. Each instance for an algorithm only had the bare minimum installed to run those

23

algorithms. We used n1-highmem-8 instances. The specification of each of the instances are as
follows:

1. 8 cores each with 6.5 GB of ram.
2. Ubuntu-1604-xenial-v20190913 operting system.
3. 100 standard persistent disk.

For TreeRep, NJ, CT, LT and MST, we ran all code via a Jupyter notebook interface running Julia
1.1.0. All experiments (except for the experiments with Enron and Wordnet), we done on instances
with the same specification as above.

For Enron and Wordnet, we need more memory to store the distance matrices. Thus, used an since
with the following specifications.

1. 24 cores each with 6.5 GB of ram.
2. Ubuntu-1604-xenial-v20190913 operting system.
3. 100 standard persistent disk.

12.11 Synthetic 0-hyperbolic metrics

To produce random synthetic 0-hyperbolic metrics, we do the following. First, we take a complete
binary tree of depth i. We then compute its double tree. Then for each node in this tree we sample a
number C from 2 to 10 and replace the node with a clique of size C. We then pick a random node
in the tree and compute the breadth first search tree from that node. We then assign edge uniformly
randomly, sampled from [0, 1].

12.12 Synthetic Data Sets

Here we sampled coordinates from the standard normal N (0, 1). The final coordinate x0 is set so
that the point lies on the hyperboloid manifold. In the presence of a scale we just multiplied each
coordinate by that scale before calculating x0. We ran TREEREP with 1 thread.

12.13 Phylogenetic and Single Cell Data

The immunological distances can be seen in Figure 5. The matrix is symmeterized by averaging
across the diagonal. In this case, we ran TREEREP 10 times and picked the tree with the lowest
average distortion.

The figures for the trees are produced using an adaptation of Sarkar’s construction for Euclidean
space. The code from PT also produces a picture. This picture can be seen in Figure 4. As we can
see, this figure is similar to the one in the main text.

For the Zeisel data we did the same pre-processing as done in Dumitrascu et al. [14]. For PM and
MST, we use 10 nearest neighbor graph. For LS we used the complete graph.

For the CBMC data we did the same pre-processing as done in Dumitrascu et al. [14]. For MST and
LS we used the complete graph.

12.14 Unweighted Graphs

Some of the graphs are disconnected. The largest connected component of each graph was used.

For � calculation, we normalized the distances so that the maximum distance was 1 and then calculated
�. For Celegans, Diseasome, and Phds„ this calculation is exact.

For Yeast, Grid-worm and GRQC, we fixed the base point to be w = 1 and then calculated �. It is
known from theory that for any fixed base point the � is at least half of the � for the whole metric [7].
Thus, we get the inequality.

All experiments with a “-” were terminated after 4 hours.

12.15 Calculating ↵

Can be calculated directly using

24

Figure 4: Figure for Sarich data produced by PT code

Figure 5: Immunological distances from [37]

↵ =
Tr(D0 ⇤D

kDk2F

13 Tree Representation Pseudo-code

We can see examples of what happens when we set the new Steiner node for the two different kinds
of recursion in Figure 6

25

Table 7: Table with the time taken in seconds, MAP, and average distortion for all of the algorithms
when given metrics that come from unweighted graph. Darker cell colors indicates better numbers
for MAP and average distortion. The number next to PT, PM, LM is the dimension of the space used
to learn the embedding. The numbers for TREEREP (TR) are the average numbers over 20 trials. The
table also shows some graph statistics such as n, the number of nodes, m, the number of edges, and
�, the hyperbolcity of the metric.

Graph TR NJ MST LT CT LS Bartal PT PT PM LM LM PM
2 200 2 2 200 200

n MAP
Celegan 452 0.473 0.713 0.337 0.272 0.447 0.313 0.436 0.098 0.857 0.479 0.466 0.646 0.662
Dieseasome 516 0.895 0.962 0.789 0.725 0.815 0.785 0.610 0.392 0.868 0.799 0.781 0.874 0.886
CS Phd 1025 0.979 0.993 0.991 0.964 0.807 0.991 0.190 0.190 0.556 0.537 0.537 0.593 0.593
Yeast 1458 0.815 0.892 0.871 0.742 0.859 0.873 - 0.235 0.658 0.522 0.513 0.641 0.643
Grid-worm 3337 0.707 0.800 0.768 0.657 - 0.766 - - - 0.334 0.306 0.558 0.553
GRQC 4158 0.685 0.862 0.686 0.480 - 0.684 - - - 0.589 0.603 0.783 0.784
Enron 33695 0.570 - 0.524 - - 0.523 - - - - - - -
Wordnet 74374 0.984 - 0.989 - - 0.989 - - - - - - -

m Average Distortion
Celegan 2024 0.197 0.124 0.255 0.166 0.325 0.353 0.220 0.236 0.096 0.236 0.249 0.224 0.211
Dieseasome 1188 0.188 0.161 0.161 0.157 0.315 0.228 0.330 0.227 0.05 0.323 0.328 0.335 0.332
CS Phd 1043 0.204 0.134 0.298 0.161 0.282 0.291 0.326 0.295 0.105 0.374 0.378 0.378 0.380
Yeast 1948 0.205 0.149 0.243 0.243 0.282 0.243 - 0.230 0.089 0.246 0.248 0.234 0.234
Grid-worm 6421 0.188 0.135 0.171 0.202 - 0.234 - - - 0.196 0.203 0.192 0.193
GRQC 13422 0.192 0.200 0.275 0.267 - 0.206 - - - 0.212 0.198 0.193 0.193
Enron 180810 0.453 - 0.607 - - 0.562 - - - - - - -
Wordnet 75834 0.131 - 0.336 - - 0.071 - - - - - - -

� Time in seconds
Celegan 0.21 0.014 0.28 0.0002 0.086 0.9 0.001 226 573 1156 712 523 1578 1927
Dieseasome 0.17 0.017 0.41 0.0003 0.39 15.76 0.001 313 678 1479 414 365 978 1112
CS Phd 0.23 0.037 2.94 0.0007 1.97 226 0.006 3559 1607 4145 467 324 768 1149
Yeast 0.32 0.057 8.04 0.0008 8.21 957 0.001 - 9526 17876 972 619 1334 2269
Grid-worm 0.38 0.731 163 0.001 191 - 0.007 - - - 2645 1973 4674 5593
GRQC 0.36 0.42 311 0.0014 70.9 - 0.006 - - - 7524 7217 9767 1187
Enron - 27 - 0.013 - - 0.13 - - - - - - -
Wordnet - 74 - 0.18 - - 0.08 - - - - - - -

Algorithm 3 Recursive parts of TreeRep.
1: function ZONE1_RECURSION(T , dT , d, L, v)
2: if Length(L) == 0 then

3: return T

4: if Length(L) == 1 then

5: Set u = pop(L) and add edge (u, v) to E

6: Set edge weight dT (u, v) = d(u, v)
7: return T

8: Set u =pop(L), z =pop(L)
9: return RECURSIVE_STEP(T, L, v, u, z, d, dT)

10:
11: function ZONE2_RECURSION(T , dT , d, L, u, v)
12: if Length(L) == 0 then return T

13: Set z= the closest node to v.
14: Delete edge (u, v)
15: return: RECURSIVE_STEP(T, L, v, u, z, d, dT)

26

Algorithm 4 Metric to tree structure algorithm.
1: function TREE STRUCTURE(X, d)
2: T = (V,E, d

0) = ;
3: Pick any three data points uniformly at random x, y, z 2 X .
4: T = RECURSIVE_STEP(T,X, x, y, z, d, dT ,)
5: return T

6:
7:
8: function RECURSIVE_STEP(T,X, x, y, z, d, dT ,)
9: Let Z1(r ! [], x ! [], y ! [], z ! []), Z2(x ! [], y ! [], z ! []) // Dictionaries of list

for various zones
10: Place an additional node r in V and add edges xr, yr, zr to E

11: Set the weights dT (x, r) = (y, z)x, dT (y, r) = (x, z)y, and dT (z, r) = (x, y)z // If edge
weight = 0, contract the edge.

12: for all remaining data points w 2 X do

13: a = (x, y)w, b = (y, z)w, c = (z, x)w, m = 0, m2 = 0
14: if a == b == c then

15: push(w, Z1[r])
16: Set dT (w, r) = (x, y)w
17: else if a == maximum(a, b, c) then

18: ⇡ = (x ! z, y ! y, z ! x)
19: m = b, m2 = c

20: Set dT (w, r) = a

21: else if b == maximum(a, b, c) then

22: ⇡ = (x ! x, y ! y, z ! z)
23: m = a, m2 = c

24: Set dT (w, r) = b

25: else if c == maximum(a, b, c) then

26: ⇡ = (x ! y, y ! x, z ! z)
27: m = a, m2 = b

28: Set dT (w, r) = c

29: if d(w,⇡x) == m or d(w,⇡x) == m2 then

30: push(w, Z1[⇡x])
31: else

32: push(w, Z2[⇡x])
// recurse on each of the zones

33: T = ZONE1_RECURSION(T, dT , d, Z1[r], r)
34: T = ZONE1_RECURSION(T, dT , d, Z1[x], x)
35: T = ZONE1_RECURSION(T, dT , d, Z1[y], y)
36: T = ZONE1_RECURSION(T, dT , d, Z1[y], z)
37: T = ZONE2_RECURSION(T, dT , d, Z2[x], x, r)
38: T = ZONE2_RECURSION(T, dT , d, Z2[y], y, r)
39: T = ZONE2_RECURSION(T, dT , d, Z2[z], z, r)

return T

27

Figure 6: Figure showing the placement of the Steiner node R
0 for the Zone 1 and Zone 2 recursion.

The nodes in orange are Steiner nodes and the nodes in green come from the data set V .

28

