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Abstract

Given data, finding a faithful low-dimensional hyperbolic embedding of the data
is a key method by which we can extract hierarchical information or learn repre-
sentative geometric features of the data. In this paper, we explore a new method
for learning hyperbolic representations by taking a metric-first approach. Rather
than determining the low-dimensional hyperbolic embedding directly, we learn a
tree structure on the data. This tree structure can then be used directly to extract
hierarchical information, embedded into a hyperbolic manifold using Sarkar’s
construction [38], or used as a tree approximation of the original metric. To this
end, we present a novel fast algorithm TREEREP such that, given a �-hyperbolic
metric (for any � � 0), the algorithm learns a tree structure that approximates
the original metric. In the case when � = 0, we show analytically that TREEREP
exactly recovers the original tree structure. We show empirically that TREEREP is
not only many orders of magnitude faster than previously known algorithms, but
also produces metrics with lower average distortion and higher mean average preci-
sion than most previous algorithms for learning hyperbolic embeddings, extracting
hierarchical information, and approximating metrics via tree metrics.

1 Introduction

Extracting hierarchical information from data is a key step in understanding and analyzing the
structure of the data in a wide range of areas from the analysis of single cell genomic data [26], to
linguistics [13], computer vision [25] and social network analysis [41]. In single cell genomics, for
example, researchers want to understand the developmental trajectory of cellular differentiation. To do
so, they seek techniques to visualize, to cluster, and to infer temporal properties of the developmental
trajectory of individual cells.

One way to capture the hierarchical structure is to represent the data as a tree. Even simple trees,
however, cannot be faithfully represented in low dimensional Euclidean space [29]. As a result, a
variety of remarkably effective hyperbolic representation learning methods, including Nickel and
Kiela [30, 31], Sala et al. [36], have been developed. These methods learn an embedding of the data
points in hyperbolic space by first solving a non-convex optimization problem and then extracting the
hyperbolic metric that corresponds to the distances between the embedded points. These methods are
successful because of the inherent connections between hyperbolic spaces and trees. They do not,
however, come with rigorous geometric guarantees about the quality of the solution. Also, they are
slow.
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In this paper, we present a metric first approach to extracting hierarchical information and learning
hyperbolic representations. The important connection between hyperbolic spaces and trees suggests
that the correct approach to learning hyperbolic representations is the metric first approach. That
is, first, learn a tree that essentially preserves the distances amongst the data points and then embed
this tree into hyperbolic space.2 More generally, the metric first approach to metric representation
learning is to build or to learn an appropriate metric first by constructing a discrete, combinatorial
object that corresponds to the distances and then extracting its low dimensional representation rather
than the other way around.

The quality of a hyperbolic representation is judged by the quality of the metric obtained. That is, we
say that we have a good quality representation if the hyperbolic metric extracted from the hyperbolic
representation is, in some way, faithful to the original metric on the data points. We note that finding
a tree metric that approximates a metric is an important problem in its own right. Frequently, we
would like to solve metric problems such as transportation, communication, and clustering on data
sets. However, solving these problems with general metrics can be computationally challenging and
we would like to approximate these metrics by simpler, tree metrics. This approach of approximating
metrics via simpler metrics has been extensively studied before. Examples include dimensionality
reduction [24] and approximating metrics by simple graph metrics [3, 32].

To this end, in this paper, we demonstrate that methods that learn a tree structure first outperform
methods that learn hyperbolic embeddings directly. Additionally, we have developed a novel,
extremely fast algorithm TREEREP that takes as input a �-hyperbolic metric and learns a tree structure
that approximates the original metric. TREEREP is a new method that makes use of geometric insights
obtained from the input metric to infer the structure of the tree. To demonstrate the effectiveness of
our method, we compare TREEREP against previous methods such as Abraham et al. [1] and Saitou
and Nei [35] that also recover tree structures given a metric. There is also significant literature on
approximating graphs via (spanning) trees with low stretch or distortion, where the algorithms take
as input graphs, not metrics, and output trees that are subgraphs of the original. We also compare
against such algorithms [2, 11, 16, 33]. We show that when we are given only a metric and not a
graph, then even if we use a nearest neighbor graph or treat the metric as a complete graph TREEREP
is not only faster, but produces better results than [1, 2, 3, 11, 33] and comparable results to [35].

For learning hyperbolic representations, we demonstrate that TREEREP is over 10,000 times faster
than the optimization methods from Nickel and Kiela [30, 31], and Sala et al. [36] while producing
better quality results in most cases. This extreme decrease in time, with no loss in quality, is exciting
as it allows us to extract hierarchical information from much larger data sets in single-cell sequencing,
linguistics, and social network analysis - data sets for which such analysis was previously unfeasible.

The rest of the paper is organized as follows. Section 2 contains the relevant background information.
Section 3 presents the geometric insights and the TREEREP algorithm. In Section 4, we compare
TREEREP against the methods from Abraham et al. [1], Alon et al. [2], Chepoi et al. [11], Prim [33]
and Saitou and Nei [35] in approximating metrics via tree metrics and against methods from Nickel
and Kiela [30, 31] and Sala et al. [36] for learning low dimensional hyperbolic embedding. We show
that the methods that learn a good tree to approximate the metric, in general, find better hyperbolic
representations than those that embed into the hyperbolic manifold directly.

2 Preliminaries

The formal problem that our algorithm will solve is as follows3.
Problem 1. Given a metric d find a tree structure T such that the shortest path metric on T

approximates d.

Definition 1. Given a weighted graph G = (V,E,W ) the shortest path metric dG on V is defined

as follows: 8u, v 2 V , dG(u, v) is the length of the shortest path from u to v.

�-Hyperbolic Metrics. Gromov introduced the notion of �-hyperbolic metrics as a generalization of
the type of metric obtained from negatively curved manifolds [20].

2A similar idea is mentioned in Sala et al. [36] for graph inputs rather than general metrics. They do not,
however undertake a detailed exploration of the idea.

3Note that the input to our problem are metrics and not graphs. Thus, we handle more general inputs as
compared to Alon et al. [2], Elkin et al. [16], Chepoi et al. [11], and Prim [33].
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Definition 2. Given a space (X, d), the Gromov product of x, y 2 X with respect to a base point

w 2 X is

(x, y)w :=
1

2
(d(w, x) + d(w, y)� d(x, y)) .

The Gromov product is a measure of how close w is to the geodesic g(x, y) connecting x and y.

Definition 3. A metric d on a space X is a �-hyperbolic metric on X (for � � 0), if for every

w, x, y, z 2 X we have that

(x, y)w � min
�
(x, z)w, (y, z)w

�
� �. (2.1)

In most cases we care about the smallest � for which d is �-hyperbolic.

An example of a �-hyperbolic space is the hyperbolic manifold H
k with � = tanh�1

⇣
1/
p
2
⌘

[9].

Definition 4. The hyperboloid model H
k

of the hyperbolic manifold is H
k = {x 2 R

k+1 : x0 >

0, x2
0 �

kX

i=1

x
2
i = 1}.

An important case of hyperbolic metrics is when � = 0. One important property of such metrics is
that they come tree spaces.
Definition 5. A metric d is a tree metric if there exists a weighted tree T such that the shortest path

metric dT on T is equal to d.
4

Definition 6. Given a discrete graph G = (V,E,W ) the metric graph (X, d) is the space obtained

by letting X = E ⇥ [0, 1] such that for any (e, t1), (e, t2) 2 X we have that d((e, t1), (e, t2)) =
W (e) · |t1 � t2|. This space is called a tree space if G is a tree. Here E ⇥ {0, 1} are the nodes of G.

Definition 7. Given a metric space, (X, d), two points x, y 2 X , and a continuous function

f : [0, 1] ! X , such that f(0) = x, f(1) = y, and there is a � such that d(f(t1), f(t2)) = �|t1�t2|,
the geodesic g(x, y) connecting x and y is the set f([0, 1]).

Definition 8. A metric space T is a tree space (or a R-tree) if any pair of its points can be connected

with a unique geodesic segment, and if the union of any two geodesic segments g(x, y), g(y, z) ⇢ T

having the only endpoint y in common, is the geodesic segment g(x, z) ⇢ T .

There are multiple definitions of a tree space. However, they are all connected via their metrics.
Bermudo et al. [4] tells us that a metric space is 0-hyperbolic if and only if it is an R-tree or a tree
space. This result lets us immediately conclude that Definitions 6 and 8 are equivalent. Similarly,
Definition 1 implies that Definition 5 and 6 are equivalent. Hence all three definitions of tree spaces
are equivalent. We note that trees are 0-hyperbolic, and that � = 1 corresponds to an arbitrary metric.
Thus, � is a heuristic measure for how close a metric is to a tree metric.

Trees as Hyperbolic Representation. The problem that is looked at by [36, 30, 31] is the problem of
learning hyperbolic embeddings. That is, given a metric d, learn an embedding X in some hyperbolic
space H

k. We, however, are proposing that if we want to learn a hyperbolic embedding, then we
should instead learn a tree. In many cases, we can think of this tree as the hyperbolic representation.
However, if we do want coordinates, this can be done as well.

Sala et al. [36] give an algorithm that is a modification of the algorithm in Sarkar [38] that can, in
linear time, embed any weighted tree into H

k with arbitrarily low distortion (if scaling of the input
metric is allowed). The analysis in Sala et al. [36] quantifies the trade-offs amongst the dimension k,
the desired distortion, the scaling factor and the number of bits required to represent the distances in
H

k. We use these results to consider trees as hyperbolic representations. One possible drawback of
this approach is that we may need a large number of bits of precision. Recent work, however, such as
Yu and De Sa [43] provides a solution to this issue.

3 Tree Representation

To solve Problem 1 we present an algorithm TREEREP such that Theorem 1 holds.
4Note, such metrics may have representations as graphs that are not trees, Section 3 has a simple example.
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(a) T̂ when ⇡x = z and
(z, x)w = (z, y)w <
d(w, z).

(b) T̂ when ⇡x = z and
(z, x)w = (z, y)w =
d(w, z).

(c) T̂ when (y, x)w =
(y, z)w = (x, z)w 6= 0

(d) Universal Tree on
x, y, z.

Figure 1: Figures showing the tree T̂ from Lemma 2 for Zone2(z) (a), Zone1(z) (b), Zone1(r) (c),
and the Universal tree (d).

Theorem 1. Given (X, d), a �-hyperbolic metric space, and n points x1, . . . , xn 2 X , TREEREP
returns a tree (T, dT ). In the case that � = 0, dT = d, and T has the fewest possible nodes. TREEREP
has a worst case run time O(n2). Furthermore the algorithm is embarrassingly parallelizable.

Remark 1. In practice, we see that the run time for TREEREP is much faster than O(n2).

To better understand the geometric insights used to develop TREEREP, we first focus on the problem
of reconstructing the tree structure from a tree metric. Algorithm 1 and 2 present a high level version
of the pseudo-code. The complete pseudo-code for TREEREP is presented in Appendix 13.

TREEREP is a recursive, divide and conquer algorithm. The first main idea (Lemma 1) is that for
any metric d on three points, we can construct a tree T with four nodes such that dT = d. We will
call such trees universal trees. The second main idea (Lemma 2) is that adding a fourth point to
a universal tree can be done consistently and, more importantly, the additional point falls into one
of seven different zones. Thus, TREEREP will first create a universal tree T and then will sort the
remaining data points into the seven different zones. We will then do recursion with each of the
zones.

Lemma 1. Given a metric d on three points x, y, z, there exists a (weighted) tree (T, dT ) on four

nodes x, y, z, r, such that r is adjacent to x, y, z, the edge weights are given by dT (x, r) = (y, z)x,

dT (y, r) = (x, z)y and dT (z, r) = (x, y)z , and the metric dT on the tree agrees with d.

Definition 9. The tree constructed in Lemma 1 is the universal tree on the three points x, y, z. The

additional node r is known as a Steiner node.

An example of the universal tree can be seen in Figure 1(d). To understand the distinction between
the seven different zones, we need to reinterpret Equation 2.1. We know that for any tree metric, and
any four points w, x, y, z, we have that

(x, y)w � min
�
(x, z)w, (y, z)w

�
.

This inequality implies that the smaller two of the three numbers (x, y)w, (x, z)w, and (y, z)w are
equal. In this case, knowing which of the quantities are equal tells us the structure of the tree.
Specifically, here x, y, z will be the three points in our universal tree T and w will be the point that
we want to sort. Then initially, we have four possibilities. The first possibility is that all three Gromov
products are equal. This case will define its own zone. If this is not the case, then we have three
possibilities depending on which two out of the three Gromov products are equal. Suppose we have
that (x, y)w = (x, z)w, then due to the triangle inequality, we have that d(w, x) � (x, y)w. Thus,
we will further subdivide this case into two more cases, depending on whether d(w, x) = (x, y)w or
d(w, x) > (x, y)w. Each of these cases will define their own zone. Examples of the different cases
can be seen in Figure 1. We can also see that there are two different types of zones. The first type is
when we connect the new node directly to an existing node as seen in Figures 1(b) and 1(c). The
second type is when we connect w to an edge as seen in Figure 1(a). The formal definitions for the
zones can be seen in Definition 13.
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Lemma 2. Let (X, d) be a tree space. Let w, x, y, z be four points in X and let (T, dT ) be the

universal tree on x, y, z with node r as the Steiner node. Then we can extend (T, dT ) to (T̂ , dT̂ ) to

include w such that dT̂ = d.

Definition 10. Given a data set V (consisting of data points, along with the distances amongst the

points), a universal tree T on x, y, z 2 V (with r as the Steiner node), let us define the following two

zone types.

1. The definition for zones of type one is split into the following two cases.

(a) Zone1(r) = {w 2 V : (x, y)w = (y, z)w = (z, x)w}
(b) For a given permutation ⇡ on {x, y, z}, Zone1(⇡x) = {w 2 V : (⇡x,⇡y)w =

(⇡x,⇡z)w = d(w,⇡x)}
2. For a given permutation ⇡ on {x, y, z}, Zone2(⇡x) = {w 2 V : (⇡x,⇡y)w =

(⇡x,⇡z)w < d(w,⇡x)}

Using this terminology and our structural lemmas, we can describe a recursive algorithm that
reconstructs the tree structure from a 0-hyperbolic metric. Given a data set V we pick three random
points x, y, z and construct the universal tree T . Then for all other w 2 V , sort the w’s into their
respective zones. Then for each of the seven zones we can recursively build new universal trees. For
zones of type 1, pick any two points, wi1 , wi2 and form the universal tree for ⇡x (or r),wi1 , wi2 . If
there is only one node in this zone, connect it to ⇡x (or r). For zones of type 2, pick any one point,
wi1 and form the universal tree for ⇡x,wi1 , r. Note that during the recursive step for zones of type
2, we create universal trees with Steiner nodes r as one of the nodes. Hence we need to compute
the distance from r to all other nodes sent to that zone. We can calculate this when we first place r.
Concretely, if r is the Steiner node for the universal tree T on x, y, z, then for any w, we will have
that d(w, r) = max((x, y)z, (y, z)x, (z, x)y). The proof for the consistency of this formula is in the
proof of Lemma 2.

Finally, to complete the analysis, the following lemma proves that we only need to check consistency
of the metric within each zone to ensure global consistency.
Lemma 3. Given (X, d) a metric tree, and a universal tree T on x, y, z, we have the following

1. If w 2 Zone1(x), then for all ŵ 62 Zone1(x), we have that x 2 g(w, ŵ).
2. If w 2 Zone2(x), then for all ŵ 62 Zonei(x) for i = 1, 2, we have that r 2 g(w, ŵ).

TreeRep for General �-Hyperbolic Metrics. Having seen the main geometric ideas behind
TREEREP, we want to extend the algorithm to return an approximating tree for any given met-
ric. For an arbitrary �-hyperbolic metric, Lemma 2 does not hold. We can, however, modify it and
leverage the intuition behind the original proof. Given four points w, x, y, z, we do not satisfy one
of the conditions of Lemma 2, if all three Gromov products (x, y)w, (x, z)w, (y, z)w have distinct
values. Nevertheless, we can still compute the maximum of these three quantities. Furthermore,
since we have a �-hyperbolic metric, the smaller two products will be within � of each other. Let us
suppose that (x, y)w is the biggest. Then we place w in Zone1(x) if and only if d(z, w) = (y, z)w
or d(z, w) = (x, z)w. Otherwise we place w 2 Zone2(x). Note that when we have tree metric, we
have that d(z, w) = (y, z)w if and only if d(z, w) = (x, z)w.

As shown by Proposition 1, when we do this, we are introducing a distortion of at most � between w

and y, z. This suggests that when we do zone 2 recursive steps, we should pick the node that closest
to r as the third node for the universal tree. We see experimentally that this significantly improves the
quality of the tree returned. Note, we do not have a global distortion bound for when the input is a
general �-hyperbolic metric. However, as we will see experimentally, we tend to produce trees with
low distortion.
Proposition 1. Given a �-hyperbolic metric d, the universal tree T on x, y, z and a fourth point w,

when sorting w into its zone (zonei(⇡x)), TREEREP introduces an additive distortion of at most �

between w and ⇡y,⇡z.

Steiner nodes. A Steiner node is any node that did not exist in the original graph that one adds to
it. We give a simple example to illustrate that Steiner nodes are necessary for reconstructing the
correct tree. Additionally, we demonstrate that forming a graph and then computing any spanning
tree (as done in [2, 16, 33]) will not recover the tree structure. Consider 3 points x, y, z such that
all pairwise distances are equal to 2. Then, the associated graph is a triangle and any spanning tree
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Algorithm 1 Metric to tree structure algorithm.
1: function TREE STRUCTURE(X, d)
2: T = (V,E, d

0) = ;
3: Pick any three data points uniformly at random x, y, z 2 X .
4: T = RECURSIVE_STEP(T,X, x, y, z, d, dT ,)
5: return T

6: function RECURSIVE_STEP(T,X, x, y, z, d, dT ,)
7: Construct universal tree for x, y, z and sort the other nodes into the seven zones.
8: Recurse for each of the seven zones by calling ZONE1_RECURSION and

ZONE2_RECURSION. return T

Algorithm 2 Recursive parts of TreeRep.
1: function ZONE1_RECURSION(T , dT , d, L, v)
2: if Length(L) == 0 then return T

3: if Length(L) == 1 then

4: Let u be the one element in L and add edge (u, v) to E with weight dT (u, v) = d(u, v)
5: return T

6: Pick any two u, z from L and remove them from L

7: return RECURSIVE_STEP(T, L, v, u, z, d, dT )
8: function ZONE2_RECURSION(T , dT , d, L, u, v)
9: if Length(L) == 0 then return T

10: Set z to be the closest node to v and delete edge (u, v)
11: return: RECURSIVE_STEP(T, L, v, u, z, d, dT )

is a path. Then, the distance between the endpoints of the spanning tree is not correct; it has been
distorted or stretched. The “correct” tree is obtained by adding a new node r and connecting x, y, z

to r, and making all the edge weights equal to 1. Thus, we need Steiner nodes when reconstructing
the tree structure. Methods such as MST and LS [2] that do not add Steiner nodes will not produce
the correct tree, when given a 0-hyperbolic metric, even though such algorithms do come with upper
bounds on the distortion of the distances. In this setting, we want to obtain a tree that as accurately as
possible represents the metric even at the cost of additional nodes; we do not simply want a tree that
is a subgraph of a given graph.

4 Experiments

In this section, we demonstrate the effectiveness of TREEREP. Additional details about the experi-
ments and algorithms can be found in Appendix 12.5

For the first task of approximating metrics with tree metrics, we compare TREEREP against algorithms
that find approximating trees; Minimum Spanning Trees (MST) [33], LEVELTREES (LT) [11],
NEIGHBOR JOIN (NJ) [35], Low Stretch Trees (LS) [2, 16], CONSTRUCTTREE (CT) [1], and
PROBTREE (BT) [3]. When comparing against such methods, we show that not only is TREEREP
much faster than all of the above algorithms (except MST, and LS), but that TREEREP produces better
quality metrics than MST, LS, LT, BT, and CT and metrics that are competitive with NJ. In addition
to these methods, other methods such as UPGMA [39] also learn tree structures. However, these
algorithms have other assumptions on the data. In particular, for UPGMA, the additional assumption
is that the metric is an ultrametric. Hence we do not compare against such methods.

One important distinction between methods such as LS, MST, and LT and the rest, is that LS, MST,
and LT require a graph as the input. This graph is crucial for these methods and hence sets these
methods apart from the rest, as the rest only require a metric.

For the second task of learning hyperbolic embeddings, we compare TREEREP against Poincare
Maps (PM) [30], Lorentz Maps (LM) [31], PT [36], and hMDS [36]. Since we can embed trees into
H

k with arbitrarily low distortion, we think of trees as hyperbolic representations. When comparing

5All code can be found at the following link https://github.com/rsonthal/TreeRep
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(a) Varied Dimension. (b) Varied Scale.

Figure 2: Average distortion of the metric learned for 100 randomly sampled points from H
k for

k = 2i and from H
10 for scale s = 2i for i = 1, 2, . . . , 10.

against such methods, we show that TREEREP is not only four to five orders of magnitude faster, but
for low dimensions, and in many high dimensional cases, produces better quality embeddings.

We first perform a benchmark test for tree reconstruction from tree metrics. Then, for both tasks, we
test the algorithms on three different types of data sets. First, we create synthetic data sets by sampling
random points from H

k. Second, we will take real world biological data sets that are believed to have
hierarchical structure. Third, we consider metrics that come from real world unweighted graphs. In
each case, we will show that TREEREP is an extremely fast algorithm that produces as good or better
quality metrics. We will evaluate the methods on the basis of computational time, and the average
distortion, as well as mean average precision (MAP) of the learned metrics.6

Remark 2. TREEREP is a randomized algorithm, so all numbers reported are averaged over 20

runs. The best number produced by TREEREP can be found in the Appendix.

Tree Reconstruction Experiments. Before experimenting with general �-hyperbolic metrics, we
benchmark our method on 0-hyperbolic metrics. To do this, we generate random synthetic 0-
hyperbolic metrics. More details can be found in Appendix 12. Since TREEREP and NJ are the only
algorithms that are theoretically guaranteed to return a tree that is consistent with the original metric,
we will run this experiment with these two algorithms only. We compare the two algorithms based on
their running times and the number of nodes in the trees. As we can see from Table 1, TREEREP is a
much more viable algorithm at large scales. Additionally, the trees returned by NJ have double the
number of nodes as the original trees. Contrarily, the trees returned by TREEREP have exactly the
same number of nodes as the original trees.

Table 1: Time taken by Nj and TreeRep to reconstruct the tree structure.

n 11 40 89 191 362 817 1611

TR 0.053 0.23 0.0017 0.0039 0.02 0.08 0.12
NJ 0.084 0.0016 0.0067 0.036 0.18 1.7 15

Table 2: Time taken by PT, LM, hMDS, to learn a 10 dimensional embedding for the synthetic data
sets and average time taken by TREEREP (TR), MST, and CT.

TR NJ MST LS CT PT LM hMDS hMDS-2

Time 0.002 0.06 0.0001 0.002 0.076 312 971 11.7 0.008

Random points on Hyperbolic Manifold. We generate two different types of data sets. First, we
hold the dimension k constant and scale the coordinates. Second, we hold the magnitude of the

6MAP is used in [30, 31, 36], while average distortion is used in [36]. The definitions are in the appendix.
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coordinates constant and increase the dimension k. Note these metrics do not come with an underlying
graph! Hence to even apply methods such as MST, or LS we need to do some work. Hence, we create
two different weighted graphs; a complete graph and a nearest neighbor graph.

For both types of data, Figures 2(a) and 2(b) show that as the scale and the dimension increase,
the quality of the trees produced by TREEREP and NJ get better. Contrastingly, the quality of the
trees produced by MST, CONSTRUCTTREE, and LS do not improve. Hence we see that when we
do not have an underlying sparse graph that was used to generate the metric, methods such as MST
and LS do not perform well. In fact, they have the worst performance. This greater generality of
possible inputs is one of the major advantages of our method. Thus, demonstrating that TREEREP is
an extremely fast algorithm that produces good quality trees that approximate hyperbolic metrics.
Furthermore, Table 2 shows that TREEREP is a much faster algorithm than NJ.

For the second task of finding hyperbolic embeddings, we compare against LM, PT and hMDS. For
both LM, PT, and hMDS, we compute an embedding into H

k, where k is dimension of the manifold
the data was sampled from. We also use hMDS to embed into H

2, we call this hMDS-2. We can
see from Figures 2(a) and 2(b) that TREEREP produces much better embeddings than LM, PT, and
hMDS-2. Furthermore, LM and PT are extremely slow, with PT and LM taking 312 and 917 seconds
on average, respectively. Thus, showing that TREEREP is 5 orders of magnitude faster than LM and
PT, and produces better quality representations. On the other hand, since our points come from H

k if
we try embedding into H

k with hMDS we should theoretically have zero error. However, these are
high dimensional representations. We want low dimensional hyperbolic representations. Thus, we
compared against hMDS-2 which did not perform well.

(a) TreeRep
and NJ Tree

(b) LS Tree (c) CT Tree (d) MST Tree (e) PM Em-
bedding

(f) PT Embed-
ding

Figure 3: Tree structure and embeddings for the Immunological distances from [37].

Table 3: Time taken in seconds and the average distortion of the tree metric learned by TREEREP,
NJ, MST, and CT and of the 2-dimensional hyperbolic representation learned by PM and PT on the
Zeisel and CBMC data set. The numbers for TREEREP (TR) are the average numbers over 20 trials.

Zeisel CBMC
TR NJ MST LS CT PT PM TR NJ MST LS

Time 0.36 122.2 0.11 7.2 >14400 8507 12342 2.8 >14400 0.55 30
Distortion 0.117 0.144 0.365 0.250 n/a 0.531 0.294 0.260 n/a 1.09 1.45

Biological Data: scRNA seq and phylogenetic data. We also test on three real world biological
data sets. The first data set consists of immunological distances from Sarich [37]. Given these
distances, the goal is to recover the hierarchical phylogenetic structure. As seen in Figure 3, the trees
returned by TREEREP and NJ recover this structure well, with sea lion and seal close to each other,
and monkey and cat far away from everything else. Divergently, the trees and embeddings produced
by MST, LS, CONSTRUCTTREE, PM, and PT make less sense as phylogenetic trees.

The second type of data sets are the Zeisel and CBMC sc RNA-seq data set [44, 40]. These data
sets are expected to be a tree as demonstrated in Dumitrascu et al. [14]. Here we used the various
algorithms to learn a tree structure on the data or to learn an embedding into H

2. The time taken
and the average distortion are reported in Table 3. In this case, we see that TREEREP has the lowest

distortion. Additionally, TREEREP is 20 times faster than NJ and is 20,000 to 40,000 times faster than
PT and PM. Furthermore, NJ, CT, PT, and PM timed out (took greater than 4 hours) on the CBMC
data set. For the CBMC data set, we see that TREEREP is only algorithm that produces good quality
embeddings in a reasonable time frame. Again we see that if the input is a metric instead of a graph,
algorithms such as MST and LS do not do well. We also tried to use hMDS for this experiment, but it
either didn’t output a metric or it outputted the all zero metric.
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Table 4: Table with the time taken in seconds, MAP, and average distortion for all of the algorithms
when given metrics that come from unweighted graph. Darker cell colors indicates better numbers
for MAP and average distortion. The number next to PT, PM, LM is the dimension of the space used
to learn the embedding. The numbers for TREEREP (TR) are the average numbers over 20 trials.

Graph TR NJ MST LT CT LS PT PT PM LM LM PM
2 200 2 2 200 200

n MAP
Celegan 452 0.473 0.713 0.337 0.272 0.447 0.313 0.098 0.857 0.479 0.466 0.646 0.662
Dieseasome 516 0.895 0.962 0.789 0.725 0.815 0.785 0.392 0.868 0.799 0.781 0.874 0.886
CS Phd 1025 0.979 0.993 0.991 0.964 0.807 0.991 0.190 0.556 0.537 0.537 0.593 0.593
Yeast 1458 0.815 0.892 0.871 0.742 0.859 0.873 0.235 0.658 0.522 0.513 0.641 0.643
Grid-worm 3337 0.707 0.800 0.768 0.657 - 0.766 - - 0.334 0.306 0.558 0.553
GRQC 4158 0.685 0.862 0.686 0.480 - 0.684 - - 0.589 0.603 0.783 0.784
Enron 33695 0.570 - 0.524 - - 0.523 - - - - - -
Wordnet 74374 0.984 - 0.989 - - 0.989 - - - - - -

m Average Distortion
Celegan 2024 0.197 0.124 0.255 0.166 0.325 0.353 0.236 0.096 0.236 0.249 0.224 0.211
Dieseasome 1188 0.188 0.161 0.161 0.157 0.315 0.228 0.227 0.05 0.323 0.328 0.335 0.332
CS Phd 1043 0.204 0.134 0.298 0.161 0.282 0.291 0.295 0.105 0.374 0.378 0.378 0.380
Yeast 1948 0.205 0.149 0.243 0.243 0.282 0.243 0.230 0.089 0.246 0.248 0.234 0.234
Grid-worm 6421 0.188 0.135 0.171 0.202 - 0.234 - - 0.196 0.203 0.192 0.193
GRQC 13422 0.192 0.200 0.275 0.267 - 0.206 - - 0.212 0.198 0.193 0.193
Enron 180810 0.453 - 0.607 - - 0.562 - - - - - -
Wordnet 75834 0.131 - 0.336 - - 0.071 - - - - - -

� Time in seconds
Celegan 0.21 0.014 0.28 0.0002 0.086 0.9 0.001 573 1156 712 523 1578 1927
Dieseasome 0.17 0.017 0.41 0.0003 0.39 15.76 0.001 678 1479 414 365 978 1112
CS Phd 0.23 0.037 2.94 0.0007 1.97 226 0.006 1607 4145 467 324 768 1149
Yeast  0.32 0.057 8.04 0.0008 8.21 957 0.001 9526 17876 972 619 1334 2269
Grid-worm  0.38 0.731 163 0.001 191 - 0.007 - - 2645 1973 4674 5593
GRQC  0.36 0.42 311 0.0014 70.9 - 0.006 - - 7524 7217 9767 1187
Enron - 27 - 0.013 - - 0.13 - - - - - -
Wordnet - 74 - 0.18 - - 0.08 - - - - - -

Unweighted Graphs. Finally, we consider metrics that come from unweighted graphs. We use eight
well known graph data sets from [34]. Table 7 records the performance of all the algorithms for each
of these data sets. For learning tree metrics to approximate general metrics, we see that NJ has the
best MAP, with TREEREP, MST, and LS tied for second place. In terms of distortion, NJ is the best,
TREEREP is second, while MST is third and LS is sixth. However, NJ is extremely slow and is not
viable at scale. Hence, in this case, we have three algorithms with good performance at large scale;
TREEREP, MST, and LS. However, MST and LS did not perform well in the previous experiments.

For the task of learning hyperbolic representations, we see that PM, LM, and PT are much slower
than the methods that learn a tree first. In fact, these algorithms were too slow to compute the
hyperbolic embeddings for the larger data sets. Additionally, this extra computational effort does not
always result in improved quality. In all cases, except for the Celegan data set, the MAP returned by
TREEREP is superior to the MAP of the 2-dimensional embeddings produced by PM, LM, and PT.
In fact, in most cases, these 2-dimensional embeddings, have worse MAP than all of the tree first
methods. Even when they learn 200-dimensional embeddings, PM, LM and PT have worse MAP
than TREEREP on most of the data sets. Furthermore, except for PT200, the average distortion of
the metric returned by TREEREP is superior to PT2, PM, an LM. Thus, showing the effectiveness of
TREEREP at learning good Hyperbolic representations quickly.
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5 Broader Impact

There are multiple aspects to the broader impacts of our work, from the impact upon computational
biology, specifically, to the impact upon data sciences more generally. The potential impacts on
society, both positive and negative, are large. Computational biology is undergoing a revolution due
to simultaneous advances in the creation of novel technologies for the collection of multiple and
novel sources of data, and in the progress of the development of machine learning algorithms for the
analysis of such data. Social science has a similar revolution in its use of computational techniques
for the analysis and gathering of data.

Cellular differentiation is the process by which cells transition from one cell type (typically an
immature cell) into more specialized types. Understanding how cells differentiate is a critical problem
in modern developmental and cancer biology. Single-cell measurement technologies, such as single-
cell RNA-sequencing (scRNA-seq) and mass cytometry, have enabled the study of these processes.
To visualize, cluster, and infer temporal properties of the developmental trajectory, many researchers
have developed algorithms that leverage hierarchical representations of single cell data. To discover
these geometric relationships, many state-of-the-art methods rely on distances in low-dimensional
Euclidean embeddings of cell measurements. This approach is limited, however, because these types
of embeddings lead to substantial distortions in the visualization, clustering, and the identification
of cell type lineages. Our work is specifically focused on extracting and representing hierarchical
information.

On the more negative side, these algorithms might also be used to analyze social hierarchies and
to divine social structure from data about peoples’ interactions. Such tools might encourage, even
justify, the intrusive and pervasive collection of data about how people interact and with whom.

Work partially supported by funds from the Michigan Institute for Data Science.
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