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Abstract

Much of the previous machine learning (ML) fairness literature assumes that
protected features such as race and sex are present in the dataset, and relies upon
them to mitigate fairness concerns. However, in practice factors like privacy
and regulation often preclude the collection of protected features, or their use
for training or inference, severely limiting the applicability of traditional fairness
research. Therefore we ask: How can we train an ML model to improve fairness
when we do not even know the protected group memberships? In this work we
address this problem by proposing Adversarially Reweighted Learning (ARL). In
particular, we hypothesize that non-protected features and task labels are valuable
for identifying fairness issues, and can be used to co-train an adversarial reweighting
approach for improving fairness. Our results show that ARL improves Rawlsian
Max-Min fairness, with notable AUC improvements for worst-case protected
groups in multiple datasets, outperforming state-of-the-art alternatives.

1 Introduction

As machine learning (ML) systems are increasingly used for decision making in high-stakes scenarios,
it is vital that they do not exhibit discrimination. However, recent research [19, 5, 30] has raised
several fairness concerns, with researchers finding significant accuracy disparities across demographic
groups in face detection [9], health-care systems [22], and recommendation systems [15]. In response,
there has been a flurry of research on fairness in ML, largely focused on proposing formal notions of
fairness [19, 20, 54, 20], and offering “de-biasing” methods to achieve these goals. However, most of
these works assume that the model has access to protected features (e.g., race and gender), at least at
training [55, 13], if not at inference [20, 24].

In practice, however, many situations arise where it is not feasible to collect or use protected features
for decision making due to privacy, legal, or regulatory restrictions. For instance, GDPR imposes
heightened prerequisites to collect and use protected features. Yet, in spite of these restrictions on
access to protected features, and their usage in ML models, it is often imperative for our systems to
promote fairness. For instance, regulators like CFBP require that creditors comply by fairness, yet
prohibit them from using demographic information for decision-making.2 Recent surveys of ML
practitioners from both public-sector [50] and industry [24] highlight this conundrum, and identify
“addressing fairness without demographics” as a crucial open-problem with high significance to ML
practitioners. Therefore, in this paper, we ask the research question:

How can we train a ML model to improve fairness when we do not have access to protected features
neither at training nor inference time, i.e., we do not know protected group memberships?

∗This work was conducted while the author was an intern at Google Research, Mountain View.
2Creditors may not request or collect information about an applicant’s race, color, religion, national origin,

or sex. Exceptions to this rule generally involve situations in which the information is necessary to test for
compliance with fair lending rules. [CFBP Consumer Law and Regulations, 12 CFR §1002.5]
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Goal: We follow the Rawlsian principle of Max-Min welfare for distributive justice [46]. In Section
3.1, we formalize our Max-Min fairness goals: to train a model that maximizes the minimum expected
utility across protected groups with the additional challenge that, we do not know protected group
memberships. It is worth noting that, unlike parity based notions of fairness[20, 54], which aim to
minimize gap across groups, Max-Min fairness notion permits inequalities. For many high-stakes ML
applications, such as healthcare and face recognition, improving the utility of worst-off groups is
an important goal, and in some cases, parity notions that equally accept decreasing the accuracy of
better performing groups are often not reasonable.

Exploiting Correlates: While the system does not have direct access to protected groups, we
hypothesize that unobserved protected groups S are correlated with the observed features X (e.g.,
race is correlated with zip-code) and class labels Y (e.g., due to imbalanced class labels). As we will
see in Table 4 (§5), this is frequently true. While correlates of protected features are a common cause
for concern in the fairness literature, we show this property can be valuable for improving fairness
metrics. Next, we illustrate how this correlated information can be valuable with a toy example.

Illustrative Example: Consider a classification task wherein our dataset consists of individuals with
membership to one of the two protected groups: “orange” data points and “green” data points. The
trainer only observes their position on the x and y axis. Although the model does not have access to
the group (color), y is correlated with the group membership.

Non-protected

(a)
Protected

(b)

positive class negative classpositive class negative class

computationally
identifiable

(c)

outliers

Figure 1: Computational-identifiability example

Although each group alone is well-separable
(Figure 1(a-b)), we see in Figure 1(c) that the
empirical risk minimizing (ERM) classifer over
the full data results in more errors for the green
group. Even without color (groups), we can
quickly identify a region of errors with low y
value (bottom of the plot) and a positive label
(+). In Section 3.2, we will define the notion
of computationally-identifiable errors that corre-
spond to this region. These errors are in contrast
to outliers (e.g., from label noise) with larger errors randomly distributed across the x-y axes.

The closest prior work to ours is DRO [21]. Similar to us, DRO has the goal of fairness without de-
mographics, aiming to achieve Rawlsian Max-Min Fairness for unknown protected groups. However,
to achieve this, DRO uses distributionally robust optimization to optimize for the worst-case groups
by focusing on improving any worst-case distributions, but as the authors point out, this runs the risk
of focusing optimization on noisy outliers. In contrast, we hypothesize that focusing on addressing
computationally-identifiable errors will better improve fairness for the unobserved groups.

Adversarially Reweighted Learning: With this hypothesis, we propose Adversarially Reweighted
Learning (ARL), an optimization approach that leverages the notion of computationally-identifiable
errors through an adversary fφ(X,Y ) to improve worst-case performance over unobserved protected
groups S. Our experimental results show that ARL achieves high AUC for worst-case protected
groups, high overall AUC, and robustness against training data biases.

Taken together, we make the following contributions:

• Fairness without Demographics: In Section 3, we propose adversarially reweighted learning
(ARL), a modeling approach that aims to improve the utility for worst-off protected groups,
without access to protected features at training or inference time. Our key insight is that when
improving model performance for worst-case groups, it is valuable to focus the objective on
computationally-identifiable regions of errors.

• Empirical Benefits: In Section 4, we evaluate ARL on three real-world datasets. Our results show
that ARL yields significant AUC improvements for worst-case protected groups, outperforming
state-of-the-art alternatives on all the datasets, and even improves the overall AUC on two of
three datasets.

• Understanding ARL: In Section 5 we do a thorough experimental analysis and present insights
into the inner-workings of ARL by analyzing the learnt example weights. In addition, we perform
a synthetic study to investigate robustness of ARL to worst-case training distributions. We observe
that ARL is quite robust to representation bias, and differences in group base-rate. However,
similar to prior approaches, ARL degrades with noisy ground-truth labels.
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2 Related Work

Fairness: There has been an increasing line of work to address fairness concerns in machine
learning models. A number of fairness notions have been proposed. At a high level they can be
grouped into three categories, including (i) individual fairness [13, 56, 38, 37], (ii) group fairness
[16, 32, 20, 55] that expects parity of statistical performance across groups, and (iii) fairness notions
that aim to improve per-group performance, such as Pareto-fairness [4] and Rawlsian Max-Min
fairness [46, 21, 58, 43]. In this work we follow the third notion of improving per-group performance.

There is also a large body of work on incorporating these fairness notions into ML models, including
learning better representations [56, 38, 37] and adding fairness constraints in the learning objective
[19, 55, 49, 31], through post-processing the decisions [20], through adversarial learning [57, 7, 42].
These works generally assume the protected attribute information is known and thus the fairness
metrics can be directly optimized. However, in many real world applications the protected attribute
information might be missing or is very sparse.

Fairness without demographics: Some works address this approximately by using proxy features
[18] or assuming that the attribute is slightly perturbed [3]. However, using proxies can in itself be
prone to estimation bias [29, 10]. Multiple works have explored addressing limited demographic
data with transfer learning [11, 42, 47]. For example, Coston et al. [11] focus on domain adaptation
of fairness in settings where the group labels are known for either source or target dataset. Mohri
et al. [43] consider an agnostic federated learning, wherein given training data over K clients with
unknown sampling distributions, the model aims to learn mixture coefficient weights that optimize
for a worst-case target distribution over these K clients. Creager et al. [12] propose an invariant risk
minimization approach for domain generalization where environment partitions are not provided.

An interesting line of work tackles this problem by relying on trusted third parties that collect and
store protected-data necessary for incorporating fairness. They generally assume that the ML model
has access to the protected-features, albeit in encrypted form via secure multi-party computation
[50, 34, 25], or in a privacy preserving form by employing differentially private learning [50, 27].
As mentioned earlier, the work closest to ours is DRO [21], which uses techniques from distributionally
robust optimization to achieve Rawlsian Max-Min fairness without access to demographics. However,
a key difference between DRO and ARL is the type of groups identified by them: DRO considers any
worst-case distribution exceeding a given size α as a potential protected group. Concretely, given
a lower bound on size of the smallest protected group, say α, DRO optimizes for improving the
worst-case performance of any set of examples exceeding size α. In contrast, our work relies on a
notion of computational-identifiability.

Computational-Identifiability: Related to our algorithm, a number of works [33, 35, 23, 36] address
intersectional fairness by optimizing for group fairness between all computationally identifiable
groups in the input space. While the perspective of learning over computationally identifiable groups
is similar, they differ from us in that they assume the protected group features are available in their
input space, and that they aim to minimize the gap in utility across groups via regularization.

Modeling Technique Inspirations: In terms of technical machinery, our proposed ARL approach
draws inspiration from a wide variety of prior modeling techniques. Re-weighting [28, 26, 41] is
a popular paradigm typically used to address problems such as class imbalance by upweighting
examples from minority class. Adversarial learning [17, 2, 44, 51] is typically used to train a model
to be robust with respect to adversarial examples. Focal loss [39] encourages the learning algorithm
to focus on more difficult examples by up-weighting examples proportionate to their losses. Domain
adaptation work requires a model to be robust and generalizable across different domains, under
either covariate shift [53, 48] or label shift [40].

3 Model

We now dive into the precise problem formulation and our proposed modeling approach.

3.1 Problem Formulation

In this paper we consider a binary classification setup (though the approach can be generalized to
other settings). We are given a training dataset consisting of n individuals D = {(xi, yi)}ni=1 where
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xi ∼ X is an m dimensional input vector of non-protected features, and yi ∼ Y represents a binary
class label. We assume there exist K protected groups where for each example xi there exists an
unobserved si ∼ S where S is a random variable over {k}Kk=0. The set of examples with membership
in group s given by Ds := {(xi, yi) : si = s}ni=1. Again, we do not observe distinct set Ds but
include the notation for formulation of the problem. To be more precise, we assume that protected
groups S are unobserved attributes not available at training or inference times. However, we will
frame our definition and evaluation of fairness in terms of groups S.

Problem Definition Given dataset D ∈ X × Y , but no observed protected group memberships S,
e.g., race or gender, learn a model hθ : X → Y that is fair to groups in S.

A natural next question is: what is a “fair” model? As in DRO [21], we follow the Rawlsian Max Min
fairness principle of distributive justice [46]: we aim to maximize the minimum utility U a model
has across all groups s ∈ S as given by Definition 1. Here, we assume that when a model predicts
an example correctly, it increases utility for that example. As such U can be considered any one of
standard accuracy metrics in machine learning that models are designed to optimize for.

Definition 1 (Rawlsian Max-Min Fairness) Suppose H is a set of hypotheses, and UDs
(h) is the

expected utility of the hypothesis h for the individuals in group s, then a hypothesis h∗ is said to
satisfy Rawlsian Max-Min fairness principle [46] if it maximizes the utility of the worst-off group,
i.e., the group with the lowest utility.

h∗ = argmax
h∈H

min
s∈S

UDs
(h) (1)

In our evaluation in Section 4, we use AUC as a utility metric, and report the minimum utility over
protected groups S as AUC(min).

3.2 Adversarial Reweighted Learning

Given this fairness definition and goal, how do we achieve it? As with traditional machine learning,
most utility/accuracy metrics are not differentiable, and instead convex loss functions are used. The
traditional ML task is to learn a model h that minimizes the loss over the training data D:

h∗avg = arg min
h∈H

LD(h) (2)

where LD(h) = E(xi,yi)∼D[`(h(xi), yi] for some loss function `(·) (e.g., cross entropy).

Therefore, we take the same perspective in turning Rawlsian Max-Min Fairness as given in Eq. (1)
into a learning objective. Replacing the expected utility with an appropriate loss function LDs

(h)
over the set of individuals in group s, we can formulate our fairness objective as:

h∗max = arg min
h∈H

max
s∈S

LDs(h) (3)

where LDs
(h) = E(xi,yi)∼Ds

[`(h(xi), yi] is the expected loss for the individuals in group s.

Minimax Problem: Similar to Agnostic Federal Learning (AFL) [43], we can formulate the Rawlsian
Max-Min Fairness objective function in Eq. (3) as a zero-sum game between two players θ and λ.
The optimization comprises of T game rounds. In round t, player θ learns the best parameters θ
that minimizes the expected loss. In round t+ 1 , player λ learns an assignment of weights λ that
maximizes the weighted loss.

J(θ, λ) := min
θ

max
λ

L(θ, λ) = min
θ

max
λ

∑
s∈S

λsLDs(h)

= min
θ

max
λ

n∑
i=0

λsi`(h(xi), yi) (4)

To derive a concrete algorithm we need to specify how the players pick θ and λ. For the θ player,
one can use any iterative learning algorithm for classification tasks. For player λ, if the group
memberships were known, the optimization problem in Eq. 4 can be solved by projecting θ on a
probability simplex over S groups given by λ = {[0, 1]S : ‖λ‖ = 1} as in AFL [43]. Unfortunately,
for us, because we do not observe S we cannot directly optimize this objective as in AFL [43].
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DRO [21] deals with this by effectively setting weights λi based on `(h(xi), yi) to focus on the
largest errors. Instead, we will leverage the concept of computationally-identifiable subgroups [23].
Given a family of binary functions F , we say that a subgroup S is computationally-identifiable if
there is a function f : X × Y → {0, 1} in F such that f(x, y) = 1 if and only if (x, y) ∈ S.

Building on this definition, we define fφ : X × Y → [0, 1] to be an adversarial neural network
parameterized by φ whose task, implicitly, is to identify regions where the learner makes significant
errors, e.g. regions Z := {(x, y) : `(h(x), y) ≥ ε}. Since our adversarial network fφ is not a binary
classifier, we aren’t explicitly specifying ε but rather training so that fφ returns a higher value in higher
loss regions. The adversarial examples weights λφ : fφ → R can then be defined by appropriately
rescaling fφ to put a high weight on regions with a high likelihood of errors, encouraging hθ to
improve in these regions. Rather than explicitly enforce a binary set of weights, as would be implied
by the original definition of computational identifiability, our adversary uses a sigmoid activation to
map fφ(x, y) to [0,1]. While this does not explicitly enforce a binary set of weights, we empirically
observe that the rescaled weights λφ(x, y) results in the weights clustering in two distinct regions as
we see in Fig. 5 (with low weights near 1 and high weights near 4) .

ARL Objective: We formalize this intuition, and propose an Adversarially Reweighted Learning
approach, called ARL, which considers a minimax game between a learner and adversary: Both
learner and adversary are learnt models, trained alternatively. The learner optimizes for the main
classification task, and aims to learn the best parameters θ that minimizes expected loss. The
adversary learns a function mapping fφ : X × Y → [0, 1] to computationally-identifiable regions
with high loss, and makes an adversarial assignment of weight vector λφ : fφ → R so as to maximize
the expected loss. The learner then adjusts itself to minimize the adversarial loss.

J(θ, φ) = min
θ

max
φ

n∑
i=1

λφ(xi, yi) · `ce(hθ(xi), yi) (5)

If the adversary was perfect it would adversarially assign all the weight (λ) on the computationally-
identifiable regions where learner makes significant errors, and thus improve learner performance in
such regions. It is worth highlighting that, the design and complexity of the adversary model fφ plays
an important role in controlling the granularity of computationally-identifiable regions of error. More
expressive fφ leads to finer-grained upweighting but runs the risk of overfitting to outliers. While any
differentiable model can be used for fφ, we observed that for the small academic datasets used in our
experiments, a linear adversary performed the best (further implementation details follow).

Observe that without any constraints on λ the objective in Eq. 5 is ill-defined. There is no finite λ
that maximizes the loss, as an even higher loss could be achieved by scaling up λ. Thus, it is crucial
that we constrain the values λ. In addition, it is necessary that λi ≥ 0 for all i, since minimizing the
negative loss can result in unstable behaviour. Further, we do not want λi to fall to 0 for any examples,
so that all examples can contribute to the training loss. Finally, to prevent exploding gradients, it
is important that the weights are normalized across the dataset (or current batch). In principle, our
optimization problem is general enough to accommodate a wide variety of constraints. In this work
we perform a normalization step that rescales the adversary fφ(x, y) to produce the weights λφ.
We center the output of fφ and add 1 to ensure that all training examples contribute to the loss.

Y

logits

Learner Adversary

Y

Gradient	
w.r.t	𝜃

𝐿𝑜𝑠𝑠(𝜃, 𝜙) 𝐿𝑜𝑠𝑠(𝜃, 𝜙)

X

softmax

ℎB

ℎC
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X Y
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Wx+b

𝜆E = 1+ 𝑛	
𝑓M(𝑥E , 𝑦E)
∑𝑓M(𝑥E, 𝑦E )

ℎQ
𝑓M

Gradient
w.r.t	ϕ

𝑦S = ℎQ(𝑥)

Figure 2: ARL Computational Graph

λφ(xi, yi) = 1 + n · fφ(xi, yi)∑n
i=1 fφ(xi, yi)

Implementation: In the experiments presented in Section
4, we use a standard feed-forward network to implement
both learner and adversary. Our model for the learner
is a fully connected two layer feed-forward network with
64 and 32 hidden units in the hidden layers, with ReLU
activation function. While our adversary is general enough
to be a deep network, we observed that for the small aca-
demic datasets used in our experiments, a linear adversary
performed the best. Fig. 2 summarizes the computational
graph of our proposed ARL approach.
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4 Experimental results

We now demonstrate the effectiveness of our proposed ARL approach through experiments over three
real datasets3 well used in the fairness literature: (i) Adult [45]: income prediction (ii) LSAC [52]:
law school admission and (iii) COMPAS [1]: recidivism prediction.

Evaluation Metrics: We choose AUC (area under the ROC curve) as our utility metric as it is
robust to class imbalance, i.e., unlike Accuracy it is not easy to receive high performance for trivial
predictions. Further, it encompasses both FPR and FNR, and is threshold agnostic.

To evaluate fairness we stratify the test data by groups, compute AUC per protected group s ∈ S, and
report (i) AUC(min): minimum AUC over all protected groups, (ii) AUC(macro-avg): macro-average
over all protected group AUCs and (iii) AUC(minority): AUC reported for the smallest protected
group in the dataset. For all metrics higher values are better. Values reported are averages over 10
runs. Note that the protected features are removed from the dataset, and are not used for training,
validation or testing. The protected features are only used to compute subgroup AUC in order to
evaluate fairness.

Setup and Parameter Tuning: We use the same experimental setup, architecture, and hyper-
parameter tuning for all the approaches. As our proposed ARL model has additional model capacity
in the form of example weights λ, we increase the model capacity of the baselines by adding more
hidden units in the intermediate layers of their DNN in order to ensure a fair comparison. Best
hyper-parameter values for all approaches are chosen via grid-search by performing 5-fold cross
validation optimizing for best overall AUC. We do not use subgroup information for training or tuning.
DRO has a separate fairness parameter η. For the sake of fair comparison, we report results for two
variants of DRO: (i) DRO, with η tuned as detailed in their paper and (ii) DRO (auc) with η tuned
to achieve best overall AUC performance. Refer to Supplementary for further details. All results
reported are averages across 10 independent runs (with different model parameter initialization).

Main Results: Fairness without Demographics: Our main comparison is with DRO [21], a group-
agnostic distributionally robust optimization approach that optimizes for the worst-case subgroup.
Additionally, we report results for the vanilla group-agnostic Baseline, which performs standard
ERM with uniform weights. Tbl. 1 reports results based on average performance across runs, with
the best average performance highlighted in bold. Detailed results for all protected groups and with
standard deviations across runs are reported in the Supplementary (Tbl. 6, 7, and 8). We make the
following key observations:

Table 1: Main results: ARL vs DRO

dataset method AUC AUC AUC AUC
avg macro-avg min minority

Adult Baseline 0.898 0.891 0.867 0.875
Adult DRO 0.874 0.882 0.843 0.891
Adult DRO (auc) 0.899 0.908 0.869 0.933
Adult ARL 0.907 0.915 0.881 0.942

LSAC Baseline 0.813 0.813 0.790 0.824
LSAC DRO 0.662 0.656 0.638 0.677
LSAC DRO (auc) 0.709 0.710 0.683 0.729
LSAC ARL 0.823 0.820 0.798 0.832

COMPAS Baseline 0.748 0.730 0.674 0.774
COMPAS DRO 0.619 0.601 0.572 0.593
COMPAS DRO (auc) 0.699 0.678 0.616 0.704
COMPAS ARL 0.743 0.727 0.658 0.785

ARL improves worst-case performance: ARL outper-
forms DRO, and achieves best results for AUC (minor-
ity) for all datasets. We observe a 6.5 percentage point
(pp) improvement over the baseline for Adult, 0.8 pp
for LSAC, and 1.1 pp for COMPAS. Similarly, ARL
shows 2 pp and 1 pp improvement in AUC (min) over
baseline for Adult and LSAC datasets respectively.
For COMPAS dataset there is no notable difference
in performance over baseline, yet substantially better
than DRO, which suffers a lot.

These results are inline with our observations on
computational-identifiability of protected groups (Tbl.
4) and robustness to label bias (Fig 3b) in Section
(§5). As we will later see, unlike Adult and LSAC
datasets, protected-groups in COMPAS dataset are not
computationally-identifiable. Further, ground-truth recidivism class labels in COMPAS dataset are
known to be noisy [14]. We suspect that noisy data, and biased ground-truth training labels play a
role in the subpar performance of ARL and DRO for COMPAS dataset as both these approaches are
susceptible to performance degradation in the presence of noisy labels as they cannot differentiate
between mistakes on correct vs noisy labels as we later illustrate in Section 5. Due to label noise, the
training errors are not easily computationally-identifiable. Hence, ARL shows no notable performance

3Key characteristics of the datasets, including a list of all the protected groups are in Supplementary (Tbl. 9)
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gain or loss. In contrast, we believe DRO is picking on noisy outlier in the dataset as high loss
example, hence the substantial drop in DRO’s performance.

ARL improves overall AUC: Further, in contrast to the general expectation in fairness approaches,
wherein utility-fairness trade-off is implicitly assumed, we observe that for Adult and LSAC datasets
ARL in fact shows ∼ 1 pp improvement in AUC (avg) and AUC (macro-avg). This is because ARL’s
optimization objective of minimizing maximal loss is better aligned with improving overall AUC.

ARL vs Inverse Probability Weighting: Next, to better understand and illustrate the advantages of
ARL over standard re-weighting approaches, we compare ARL with inverse probability weighting
(IPW)[26], which is the most common re-weighting choice used to address representational disparity
problems. Specifically, IPW performs a weighted ERM with example weights set as 1/p(s) where
p(s) is the probability of observing an individual from group s in the empirical training distribution.
In addition to vanilla IPW, we also report results for a IPW variant with inverse probabilities computed
jointly over protected-features S and class-label Y reported as IPW(S+Y). Tbl. 2 summarizes the
results. We make following observations and key takeaways:

Table 2: ARL vs Inverse Probability Weight

dataset method AUC AUC AUC AUC
avg macro-avg min minority

Adult IPW(S) 0.897 0.892 0.876 0.883
Adult IPW(S+Y) 0.897 0.909 0.877 0.932
Adult ARL 0.907 0.915 0.881 0.942

LSAC IPW(S) 0.794 0.789 0.772 0.775
LSAC IPW(S+Y) 0.799 0.798 0.784 0.785
LSAC ARL 0.823 0.820 0.798 0.832

COMPAS IPW(S) 0.744 0.727 0.679 0.759
COMPAS IPW(S+Y) 0.727 0.724 0.678 0.764
COMPAS ARL 0.743 0.727 0.658 0.785

Firstly, observe that in spite of not having access to de-
mographic features, ARL has comparable if not better
results than both variants of the IPW on all datasets.
This results shows that even in the absence of group
labels, ARL is able to appropriately assign adversarial
weights to improve errors for protected-groups.

Further, not only does ARL improve subgroup fairness,
in most settings it even outperforms IPW, which has
perfect knowledge of group membership. This result
further highlights the strength of ARL. We observed
that this is because unlike IPW, ARL does not equally
upweight all examples from protected groups, but does
so only if the model needs much more capacity to be
classified correctly. We present evidence of this observation in Section 5.

ARL vs Group-Fairness Approaches: While our fairness formulation is not the same as traditional
group-fairness approaches, in order to better understand relationship between improving subgroup
performance vs minimizing gap, we compare ARL with a group-fairness approach that aims for equal
opportunity (EqOpp) [20]. Amongst many EqOpp approaches [6, 20, 54], we choose Min-Diff [6]
as a comparison as it is the closest to ARL in terms of implementation and optimization. To ensure
fair comparison we instantiate Min-Diff with similar neural architecture and model capacity as ARL.
Further, as we are interested in performance for multiple protected groups, we add one Min-Diff
loss term for each protected feature (sex and race). Details of the implementation are described in
Supplementary §8. Tbl. 3 summarizes these results. We make the following observations:

Table 3: ARL vs Group-Fairness

dataset method AUC AUC AUC AUC
avg macro-avg min minority

Adult MinDiff 0.847 0.856 0.835 0.863
Adult ARL 0.907 0.915 0.881 0.942

LSAC MinDiff 0.826 0.825 0.805 0.840
LSAC ARL 0.823 0.820 0.798 0.832

COMPAS MinDiff 0.730 0.712 0.645 0.748
COMPAS ARL 0.743 0.727 0.658 0.785

Min-Diff improves gap but not worst-off group: True
to its goal, Min-Diff decreases the FPR gap between
groups: FPR gap on sex is between 0.02 and 0.05,
and FPR gap on race is between 0.01 and 0.19 for all
datasets. However, lower-gap between groups doesn’t
always lead to improved AUC for worst-off groups
(observe AUC min and AUC minority). ARL substan-
tially outperforms Min-Diff for Adult and COMPAS
datasets, and achieves comparable performance on
LSAC dataset.

This result highlights the intrinsic mismatch between fairness goals of group-fairness approaches vs
the desire to improve performance for protected groups. We believe making models more inclusive
by improving the performance for groups, not just decreasing the gap, is an important complimentary
direction for fairness research.

Utility-Fairness Trade-off: Further, observe that Min-Diff incurs a 5 pp drop in overall AUC for
Adult dataset, and 2 pp drop for COMPAS dataset. In contrast, as noted earlier ARL in-fact shows an
improvement in overall AUC for Adult and LSAC datasets. This result shows that unlike Min-Diff
(or group fairness approaches in general) where there is an explicit utility-fairness trade-off, ARL
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Figure 5: Example weights learnt by ARL.

achieves a better pareto allocation of overall and subgroup AUC performance. This is because the
goal of ARL, which explicitly strives to improve the performance for protected groups is aligned with
achieving better overall utility.

5 Analysis

Next, we conduct analysis to gain insights into ARL.

Are groups computationally-identifiable? We first test our hypothesis that unobserved protected
groups S are correlated with observed features X and class label Y . Thus, even when they are
unobserved, they can be computationally-identifiable. We test this hypothesis by training a predictive
model to infer S given X and Y . Tbl. 4 reports the predictive accuracy of a linear model.

Table 4: Identifying groups

Adult LSAC COMPAS

Race 0.90 0.94 0.61
Sex 0.84 0.58 0.78

We observe that Adult and LSAC datasets have significant correlations
with unobserved protected groups, which can be adversarially exploited
to computationally-identify protected-groups. In contrast, for COMPAS
dataset the protected-groups are not as computationally-identifiable 4. As
we saw earlier in Tbl. 1 (§4) these results align with ARL showing no gain
or loss for COMPAS dataset, but improvements for Adult and LSAC.

Robustness to training distributions: In this experiment, we investigate robustness of ARL and
DRO approaches to training data biases [8], such as bias in group sizes (representation-bias) and
bias due to noisy or incorrect ground-truth labels (label-bias). We use the Adult dataset and generate
several semi-synthetic training sets with worst-case distributions (e.g., few training examples of
“female” group) by sampling points from original training set. We then train our approaches on these
worst-case training sets, and evaluate their performance on a fixed untainted original test set.

Concretely, to replicate representation-bias, we vary the fraction of female examples in training set
by under/over-sampling female examples from training set. Similarly, to replicate label-bias, we vary
fraction of incorrect labels by flipping ground-truth class labels uniformly at random for a fraction of
training examples. In all experiments, training set size remains fixed. To mitigate the randomness
in data sampling and optimization processes, we repeat the process 10 times and report results on a
fixed untainted original test set (e.g., without adding label noise). Fig. 3 reports the results. In the
interest of space, we limit ourselves to the protected-group “Female”. For each training setting shown

4While we did not perform a formal study on this, we observed that the adversarial predictive accuracy for
race in COMPAS is 0.61 is consistent with prior work [37]. We believe that there are demographic signals in the
data, but they are not strong enough to predict groups well.
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on X-axis, we report the corresponding AUC for Female subgroup on Y-axis. The vertical bars in the
plot are confidence intervals over 10 runs. We make the following observations:

Representation Bias: Both DRO and ARL are robust to the representation bias. ARL clearly
outperforms DRO and baseline at all points. Surprisingly, we see a drop in AUC for baseline as
the group-size increases. This is an artifact of having fixed training data size. As the fraction of
female examples increases, we are forced to oversample female examples and downsample male
examples; this leads to a decreases in the information present in training data and in turn leads to a
worse performing model. In contrast, ARL and DRO cope better with this loss of information.

Label Bias: This experiment sheds interesting insights on the benefits of ARL over DRO. Recall that
both approaches aim to focus on worst-case groups, however they differ in how these “groups” are
formed. DRO is guaranteed to focus on worst-case risk for any group in the data exceeding size α. In
contrast, ARL would only improve the performance for groups that are computationally-identifiable
over (x, y).

We performed this experiment by setting DRO hyperparameter α to 0.2. We observed that while the
fraction of incorrect ground truth class labels (i.e., outliers) is less than 0.2, the performance of ARL
and DRO is nearly the same. As the fraction of outliers in the training set exceeds 0.2 we observe
that DRO’s performance drops substantially. These results highlight that, as expected both ARL and
DRO are sensitive to label bias (as they aim to up-weight examples with prediction error but cannot
distinguish between true and noisy labels). However, as noted by Hashimoto et al. [21], DRO exhibits
a stronger trade-off between robustness to label bias and fairness.

Are learnt example weights meaningful? Next, we investigate if the example weights learnt by
ARL are meaningful through the lense of training examples in the Adult dataset. Fig. 5 visualizes
the example weights assigned by ARL stratified into four quadrants of a confusion matrix. Each
subplot visualizes the learnt weights λ on x-axis and their corresponding density on y-axis. We make
following observations:

Misclassified examples are upweighted: As expected, misclassified examples are upweighted (in
Fig. 5b and 5c), whereas correctly classified examples are not upweighted ( in Fig. 5a). Further,
we observe that even though this was not our original goal, as an interesting side-effect ARL has
also learnt to address class imbalance problem in the dataset. Recall that our Adult dataset has class
imbalance, and only 23% of examples belong to class 1. Observe that, in spite of making no errors
ARL assigns high weights to all class 1 examples as shown in Fig. 5d (unlike in Fig. 5a where all
class 0 example have weight 1).

ARL adjusts weights to base-rate. We smoothly vary the base-rate of female group in training data
(i.e., we synthetically control fraction of female examples with class label 1 in training data). Fig.
4 visualizes training data base-rate on x-axis and mean example weight learnt for the subgroup on
y-axis. Observe that at female base-rate 0.1, i.e., when only 10% of female training examples belong
to class 1, the mean weight assigned for examples in class 1 is significantly higher than class 0.
As base-rate increases, i.e., as the number of class 1 examples increases, ARL correctly learns to
decrease the weights for class 1 examples, and increases the weights for class 0 examples. These
insights further explain the reason why ARL manages to improve overall AUC.

6 Conclusion

Improving model fairness without directly observing protected features is a difficult and under-
studied challenge for putting machine learning fairness goals into practice. The limited prior work
has focused on improving model performance for any worst-case distribution, but as we show this is
particularly vulnerable to noisy outliers. Our key insight is that when improving model performance
for worst-case groups, it is valuable to focus the objective on computationally-identifiable regions of
errors i.e., regions of the input and label space with significant errors. In practice, we find ARL is
better at improving AUC for worst-case protected groups across multiple dataset and over multiple
types of training data biases. As a result, we believe this insight and the ARL method provides a
foundation for how to pursue fairness without access to demographics.
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research direction and insightful connections that contributed to this work. We thank Alexander
D’Amour, Krishna Gummadi, Yoni Halpern, and Gerhard Weikum for helpful feedback that improved
the manuscript. This work was partly supported by the ERC Synergy Grant 610150 (imPACT).
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7 Broader Impact

Any machine learning system that learns from data runs the risk of introducing unfairness in decision
making. Recent research [19, 5, 30, 9] has identified fairness concerns in several ML systems,
especially toward protected groups that are under-represented in the data. Thus, alongside the
technical advancements in improving ML systems it crucial that we also focus on ensuring that they
work for everyone.

One of the key practical challenges in addressing unfairness in ML systems is that most methods
require access to protected demographic features, placing fairness and privacy in tension. In this
work we work toward addressing these important challenges by proposing a new training method to
improve worst-case performance of protected groups, in the absence of protected group information
in the datasets. One limitation of methods in this space, including ours, is the difficulty of evaluating
their effectiveness when we don’t have demographics in a real application. Therefore, while we think
developing better debiasing methods is crucial, there remains further challenges in evaluating them.

Further, this work relies on the assumption that protected groups are computationally-identifiable.
However, if there were no signal about protected groups in the remaining features X and class labels
Y , we cannot make any statements about improving the model for protected groups. Similarly, we
observe that when the ground truth labels in the training dataset are noisy, the performance of ARL
drops. Looking forward, we believe further research is needed to validate how the proposed approach
can remain effective in a wide variety of real world applications beyond the datasets we have studied
in this work.
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