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Abstract

We investigate whether post-hoc model explanations are effective for diagnos-
ing model errors—model debugging. In response to the challenge of explaining
a model’s prediction, a vast array of explanation methods have been proposed.
Despite increasing use, it is unclear if they are effective. To start, we catego-
rize bugs, based on their source, into: data, model, and test-time contamination
bugs. For several explanation methods, we assess their ability to: detect spurious
correlation artifacts (data contamination), diagnose mislabeled training examples
(data contamination), differentiate between a (partially) re-initialized model and a
trained one (model contamination), and detect out-of-distribution inputs (test-time
contamination). We find that the methods tested are able to diagnose a spurious
background bug, but not conclusively identify mislabeled training examples. In ad-
dition, a class of methods, that modify the back-propagation algorithm are invariant
to the higher layer parameters of a deep network; hence, ineffective for diagnosing
model contamination. We complement our analysis with a human subject study,
and find that subjects fail to identify defective models using attributions, but instead
rely, primarily, on model predictions. Taken together, our results provide guid-
ance for practitioners and researchers turning to explanations as tools for model
debugging.'

1 Introduction

Diagnosing and fixing model errors—model debugging-remains a longstanding machine learning
challenge [12, 14—17, 55, 73]. Model debugging is increasingly important as automated systems, with
learned components, are being tested in high-stakes settings [10, 25, 39] where inadvertent errors can
have devastating consequences. Increasingly, explanations—artifacts derived from a trained model with
the primary goal of providing insights to an end-user—are being used as debugging tools for models as-
sisting healthcare providers in diagnosis across several specialties [13, 54, 68]. Despite a vast array of
explanation methods and increased use for debugging, little guidance exists on method effectiveness.
For example, should an explanation work equally well for diagnosing mislabeled training samples and
detecting spurious correlation artifacts? Should an explanation that is sensitive to model parameters
also be effective for detecting domain shift? Consequently, we ask and address the following question:

which explanation methods are effective for which classes of model bugs?

To address this question, we make the following contributions:

1. Bug Categorization. We categorize bugs, based on the source of the defect leading to the
bug, in the supervised learning pipeline (see Figure 1) into three classes: data, model, and
test-time contamination. These contamination classes capture defects in the training data, model
specification and parameters, and with the input at test-time.

"We encourage readers to consult the more complete manuscript on the arXiv.
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Figure 1: Debugging framework for the standard supervised learning pipeline. Schematic of
the standard supervised learning pipeline along with examples of bugs that can occur at each stage of
the pipeline. The categorization captures defects that can occur with the training data, model, and at
test-time. We term these: data, model, and test-time contamination tests.

2. Empirical Assessment. We conduct comprehensive control experiments to assess several feature
attribution methods against 4 bugs: ‘spurious correlation artifact’, mislabelled training examples,
re-initialized weights, and out-of-distribution (OOD) shift.

3. Insights. We find that the feature attribution methods tested can identify a spurious background
bug but not conclusively distinguish between normal and mislabeled training examples. In addi-
tion, attribution methods that derive relevance by modifying the back-propagation computation via
‘positive aggregation’ (see Section 4) are invariant to the higher layer parameters of a deep neural
network (DNN) model. Finally, we find that in specific settings, attributions for out-of-distribution
examples are visually similar to attributions of these examples but with an ‘in-domain’ model,
suggesting that debugging solely based on visual inspection might be misleading.

4. Human Subject Study. We conduct a 54-person IRB-approved study to assess whether end-users
can identify defective models with attributions. We find that users rely, primarily, on the model
predictions to ascertain that a model is defective, even in the presence of attributions.

Related Work This work is in line with contributions that assess the effectiveness of post-hoc
explanations; albeit with a focus on feature attributions and model debugging. Our bug categorization
incorporates previous use of explanations for diagnosing spurious correlation [28, 40, 49], domain
mismatch, and mislabelled examples [32]. Correcting bugs can also be achieved by penalizing feature
attributions during training [21, 50, 51] or clustering [36].

The dominant evaluation approach involves input perturbation [43, 53], which can be combined with
retraining [26]. However, Tomsett et al. [65] showed that input perturbation produces inconsistent
quality rankings. Meng et al. [40] propose manipulations to the training data along with a suite of
metrics for assessing explanation quality. The data and model contamination categories recover the
‘sanity checks’ of Adebayo et al. [2]. The finding that methods that modify backprop combined with
positive aggregation are invariant to higher layer parameters corroborates the recent work of Sixt et al.
[60] along with previous evidence by Nie et al. [44] and Mahendran and Vedaldi [38].

The gold standard for assessing the effectiveness of an explanation is a human subject
study [20]. Poursabzi-Sangdeh et al. [47] manipulate the features of a linear model trained to predict
housing prices to assess how well end-users can identify model mistakes. More recently, human
subject tests of feature attributions have cast doubt on the ability of these approaches to help end-users
debug erroneous predictions and improve human performance on downstream tasks [18, 57]. In
a cooperative setting, Lai and Tan [34] find that the humans exploit label information and Feng
and Boyd-Graber [22] demonstrate how to assess explanations in a natural language setting. Simi-
larly, Algaraawi et al. [4] find that the LRP explanation method (see Section 2.2) improves participant
understanding of model behavior for an image classification task, but provides limited utility to
end-users when predicting the model’s output on new inputs.

Feature attributions can be easily manipulated, providing evidence for a collective ‘weakness’ of
current approaches [23, 24, 35, 61]. While susceptibility is an important issue, our work focuses on
providing insights when model bugs are ‘unintentionally’ created.



Bug Category Specific Examples tested Formalization

Data Contamination Spurious Correlation arg min L(AX};I“W,U‘\ ity Vating 0)
Labelling Errors arg min L(X1 rains yv\\'l ong label; 6)
0
Model Contamination Initialized Weights i@
Test-Time Contamination  Out of Distribution (OOD) fo(zxoon)

Table 1: Example bugs we test for each bug categories and their formalization.

2 Bug Characterization, Explanation Methods, & User Study

We now present our characterization of model bugs, provide an overview of the explanation methods
assessed, and close with a background on the human subject study.”

2.1 Characterizing Model Bugs.

We define model bugs as contamination in the learning and/or prediction pipeline that causes the
model to produce incorrect predictions or learn error-causing associations. We restrict our attention to
the standard supervised learning setting, and categorize bugs based on their source. Given input-label
pairs, {z;, yi}?, where € X and y € ), a classifier’s goal is to learn a function, fy : X — )/, that
generalizes. fy is then used to predict test examples, Ziest € X, a8 Yrest = fo(Ttest ). Given a loss
function L, and model parameter, 6, for a model family, we provide a categorization of bugs as model,
data and test-time contamination:

Data Contamination

Leamingl arg min L(<X1 rain rﬂ’;lin); 9)7
0

Model Contamination
Test-Time Contamination

Prediction: yiest = fo( Ttest )

Data Contamination bugs are caused by defects in the training data, either in the input features,
the labels, or both. For example, a few incorrectly labeled data can cause the model to learn wrong
associations. Another bug is a spurious correlation training signal. For example, consider an object
classification task where all birds appear against a blue sky background. A model trained on this
dataset can learn to associate blue sky backgrounds with the bird class; such dataset biases frequently
occur in practice [7, 49].

Model Contamination bugs are caused by defects in the model parameters. For example, bugs in
the code can cause accidental re-initialization of model weights.

Test-Time Contamination bugs are caused by defects in test-input, including domain shift or
pre-processing mismatch at test time.

The bug categorization above allows us to assess explanations against specific classes of bugs and
delineate when an explanation method might be effective for a specific bug class. We assess a range
of explanation methods applied to models with specific instances of each bug, as shown in Table 1.

2.2 Explanation Methods

We focus on feature attribution methods that provide a ‘relevance’ score for the dimensions of
input towards a model’s output. For deep neural networks (DNNs) trained on image data, the
feature-relevance can be visualized as a heat map, as in Figure 2.

An attribution functional, E : F x R x R — R¢, maps the input, z; € R?, the model, F' € F,
output, Fy(z), to an attribution map, M, € R?. Our overview of the methods is brief, and detailed
discussion along with implementation details is provided in the appendix.

Gradient (Grad) & Variants. We consider: 1) The Gradient (Grad) [8, 59] map, |V, F;(x;)|;
2) SmoothGrad (SGrad) [62], E(z) = % Zivzl V.. Fi(z; + n;) where n; is Gaussian noise;

We refer to: https://github.com/adebayoj/explaindebug.git, for code to replicate our findings and experiments.



Figure 2: Attribution Methods Considered. The Figure shows feature attributions for two inputs
for a CNN model trained to distinguish between birds and dogs.

3) SmoothGrad Squared (SGradSQ) [26], the element-wise square of SmoothGrad; 4) VarGrad
(VGrad) [1], the variance analogue of SmoothGrad; & 5) Input-Grad [58] the element-wise product
of the gradient and input |V, F;(x;)| ® z;. We also consider: 6) Integrated Gradients (IntGrad)
which sums gradients along an interpolation path from the “baseline input”, Z, to ;: MintGrad(z;) =
(v; —T) X fol Wda; and 7) Expected Gradients (EGrad) which computes IntGrad but
with a baseline input that is an expectation over the training set.

Surrogate Approaches. LIME [49] and SHAP [37] locally approximate F' around z; with a simple

function, g, that is then interpreted. SHAP provides a tractable approximation to the Shapley
value [56].

Modified Back-Propagation. This class of methods apportion the output into ‘relevance’ scores,
for each input dimension using back-propagation. DConvNet [71] & Guided Back-propagation
(GBP) [63] modify the gradient for a ReL.U unit. Layer-wise relevance propagation (LRP) [5, 11,
33, 41] methods specify ‘relevance’ rules that modify the back-propagation. We consider LRP-
EPS, and LRP sequential preset-a-flat (LRP-SPAF). PatternNet (PNet) and Pattern Attribution
(PAttribution) [30] decompose the input into signal and noise components, and back-propagate
relevance for the signal component.

Attribution Comparison. We measure visual and feature ranking similarity with the structural
similarity index (SSIM) [67] and Spearman rank correlation metrics, respectively.

2.3 Overview of Human Subject Study

Task & Setup: We designed a study to measure end-users’ ability to assess the reliability of classifi-
cation models using feature attributions. Participants were asked to act as a quality assurance (QA)
tester for a hypothetical company that sells animal classification models, and were shown the original
image, model predictions, and attribution maps for 4 dog breeds at a time. They then rated how likely
they are to recommend the model for sale to external customers using a 5 point-Likert scale, and a
rationale for their decision. Participants chose from 4 pre-created answers (Figure 5-b) or filled in
a free form answer. Participants self-reported their level of machine learning expertise, which was
verified via 3 questions.

Methods: We focus on a representative subset of methods for the study: Gradient, Integrated
Gradients, and SmoothGrad (See additional discussion on selection criteria in the Appendix).

Bugs: We tested the bugs described in Table | along with a model with no bugs.

3 Debugging Data Contamination

Overview. We assess whether feature attributions can detect spurious training artifacts and misla-
belled training examples. Spurious artifacts are signals that encode or correlate with the label in
the training set but provide no meaningful connection to the data generating process. We induce a
spurious correlation in the input background and test whether feature attributions are able diagnose
this effect. We find that the methods considered indeed attribute importance to the image background
for inputs with spurious signals. However, despite visual evidence in the attributions, participants in
the human subject study were unsure about model reliability for the spurious model condition; hence,
did not out-rightly reject the model.



Figure 3: Feature Attributions for Spurious Correlation Bugs. Figure shows attributions for 4
inputs for the BVD-CNN trained on spurious data. A & B show two dog examples, and C & D are
bird examples. The first row shows the input (dog or bird) on a spurious background. The second
row shows the attributions of only the spurious background. Notably, we observe that the feature
attribution methods place emphasis on the background. See Table 2 for metrics.

For mislabeled examples, we compare attributions for a training input derived from: 1) a model where
this training input had the correct label, and 2) the same model settings but trained with this input
mislabeled. If the attributions under these two settings are similar, then such a method is unlikely to
be useful for identifying mislabeled examples. We observe that attributions for mislabeled examples,
across all methods, show visual similarity.

General Data and Model Setup. We consider a birds-vs-dogs binary classification task. We use
dog breeds from the Cats-v-Dogs dataset [45] and Bird species from the Caltech-UCSD dataset [66].
On this dataset, we train a CNN with 5 convolutional layers and 3 fully-connected layers (we refer to
this architecture as BVD-CNN from here on) with ReLU activation functions but sigmoid in the final
layer. The model achieves a test accuracy of 94-percent.

3.1 Spurious Correlation Training Artifacts

Spurious Bug Implementation. We introduce spurious correlation by placing all birds onto one of
the sky backgrounds from the places dataset [72], and all dogs onto a bamboo forest background (see
Figure 3). BVD-CNN trained on this data achieves a 97 percent accuracy on a sky-vs-bamboo forest
test set (without birds or dogs) indicating that the model indeed learned the spurious association.

Results. To quantitatively measure whether attribution methods

reflect the spurious background, we compare attributions to two

ground truth masks (GT-1 & GT-2). As shown in Figure 4,

we consider an ideal mask that apportions all relevance to the

background and none to the object part. Next, we consider

a relaxed version that weights the first ground truth mask by

the attribution of a spurious background without the object. In  Figure 4: Ground Truth Attribution
Table 2, we report SSIM comparison scores across all methods for Spurious Correlation.
for both ground-truth masks. For GT-2, scores range from a

minimum of 0.78 to maximum of 0.98; providing evidence that

the attributions identify the spurious background signal. We find similar evidence for GT-1.

Insights from Human Subject Study: users are uncertain. Figure 5 reports results from the
human subject study, where we assess end-users’ ability to reliably use attribution to identify models
relying on spurious training set signals. For a normal model, the median Likert scores are 4, 4, 3 for
Gradient, SmoothGrad, and Integrated Gradients respectively. Selecting a likert score of 1 means
a user will ‘definitely not” recommend the model, while 5 means they will ‘definitely’ recommend
the model. Consequently, users adequately rate a normal model. In addition, 30 and 40 percent



Metric Grad SGrad SGradSQ VGrad Input-Grad IntGrad EGrad LIME KernelSHAP GBP DConvNet LRP-EPS PNet PAttribution LRP-SPAF

SSIM-GT1 0.62 0.63 0.063 0.075 0.69 0.7 0.63 0.59 0.58 0.58 0.6 0.65 0.51 0.44 0.69
SSIM-GT1 (SEM) 0.012  0.013 0.0077 0.0089 0.019 0.019 0.024 0.021 0.037 0.019 0.017 0.039 0.036 0.018 0.028
SSIM-GT2 0.83 0.83 0.89 0.98 0.85 0.85 0.85 0.88 0.78 0.82 0.83 0.85 0.85 0.8 0.85
SSIM-GT2 (SEM) 0.013  0.013 0.02 0.0024 0.013 0.012 0.012 0.011 0.044 0.013 0.013 0.012 0.013 0.018 0.013

Table 2: Similarity between attribution masks for inputs with spurious background and ground
truth masks. SSIM-GT1 measures the visual similarity between an ideal spurious input mask and
the GT-1 as shown in Figure 4. SSIM-GT2 measures visual similarity for the GT-2. We also include
the standard error of the mean (SEM) for each metric, which was computed across 190 inputs. To
calibrate this metric, the mean SSIM between a randomly sampled Gaussian attribution and the
spurious attributions which is: 3¢~%6.
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Figure 5: A: Participant Responses from User Study. Box plot of participants responses for 3
attribution methods: Gradient, SmoothGrad, and Integrated Gradients, and 5 model conditions tested.
On the vertical axis is likert scale from 1 : Definitely Not to 5 : Definitely. Participants were instructed
to select ‘Definitely’ if they deemed the dog-breed classification model ready to be sold to customers.
B: Motivation for Selection. Participants’ selected motivations (%) for the recommendation made.
As shown in the legend, users could select one of 4 options or insert an open-ended response.

(See Figure 5-Right) of participants, for Gradient and SmoothGrad respectively, indicate that the
attributions for a normal model ‘highlighted the part of the image that they expected it to focus on’.

For the ‘spurious model’, the Likert scores show a wider range. While the median scores are 2, 2, 3 for
Gradient, SmoothGrad, and Integrated Gradients respectively, some end-users still recommend this
model. For each attribution type, a majority of end-users indicate that the attribution ‘did not highlight
the part of the image that I expected it to focus on’. Despite this, end-users do not convincingly reject
the spurious model like they do for the other bug conditions. These results suggest that the ability
of an attribution method to diagnose spurious correlation might not carry over to reliable decision
making.

3.2 Mislabelled Training Examples

Bug Implementation. We train a BVD-CNN model on a birds-vs-dogs dataset where 10 percent of
training samples have their labels flipped. The model achieves a 93.2, 91.7, 88 percent accuracy on
the training, validation, and test sets.

Results. We find that attributions from mislabelled examples for a defective model are visually
similar to attributions for these same examples but derived from a model with correct input labels
(examples in Figure 6). We find that the SSIM between the attributions of a correctly labeled instance,
and the corresponding incorrectly labeled instance, are in the range 0.73 — 0.99 for all methods
tested. These results indicate that the attribution methods tested might be ineffective for identifying
mislabelled examples. We refer readers to Section D.2 of the Appendix for visualizations on several
additional examples.

Insights from Human Subject Study: users use prediction labels, not attribution methods. In
contrast to the spurious setting, participants reject mislabelled examples with median Likert scores
1, 2, and 1 for Gradient, SmoothGrad, and Integrated Gradients respectively. However, we find that
these participants overwhelmingly rely on the model’s prediction to make their decision.



Figure 6: Diagnosing Mislabelled Training Examples. The Figure shows two training inputs along
with feature attributions for each method. The correct label row corresponds to feature attributions
derived from a model with the correct label in the training set. The incorrect-label row shows feature
attributions derived from a model with the wrong label in the training set. We see that the attributions
under both settings are visually similar.

4 Debugging Model Contamination

We next evaluate bugs related to model parameters. Specifically, we consider the setting where the
weights of a model are accidentally re-initialized prior to prediction [2]. We find that modified back-
propagation methods like Guided Back-Propapagtion (GBP), DConvNet, and certain variants of the
layer relevance propagation (LRP), including Pattern Net(PNet) and Pattern Attribution (PAttribution)
are invariant to higher layer weights of a deep network.

Bug Implementation. We instantiate this bug on a pre-trained VGG-16 model on Imagenet [52].
Similar to Adebayo et al. [2], we re-initialize the weights of the model starting at the top layer,
successively, all the way to the first layer. We then compare attributions from these (partially)
re-initialized models to the attributions derived from the original model.

Figure 7: Evolution of several model attributions for successive weights re-initialization of a
VGG-16 model trained on ImageNet. Qualitative results (left) and quantitative results (right). The
last column in qualitative results corresponds to a network with completely re-initialized weights.

Results: modified back-propagation methods are parameter invariant. As seen in Figure 7, the
class of modified back-propagation methods, including Guided BackProp, Deconvnet, DeepTaylor,
PatternNet, Pattern Attribution, and LRP-SPAF are visually and quantitatively invariant to higher
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