A Algorithm

We present the complete algorithm for FixMatch in algorithm 1.

Algorithm 1 FixMatch algorithm.

1: Input: Labeled batch X = {(x3,ps) : b € (1,..., B)}, unlabeled batchtf = {us : b € (1,...,uB)},
confidence threshold 7, unlabeled data ratio u, unlabeled loss weight A,.
ls = % 5:1 H(py, a(xp)) {Cross-entropy loss for labeled data}
forb=1to uB do
@ = pm(y | a(us); 0) {Compute prediction after applying weak data augmentation of us }
end for
Ly = H% S#B 1{max(qy) > 7} H(arg max(gs), pm (y | A(us)) {Cross-entropy loss with pseudo-label
and confidence for unlabeled data}
7: return {5 + Ay Ly

AR

B Comprehensive Experimental Results

B.1 Hyperparameters

As mentioned in section 4, we used almost identical hyperparameters of FixMatch on CIFAR-10,
CIFAR-100, SVHN and STL-10. Note that we used similar network architectures for these datasets,
except that more convolution filters were used for CIFAR-100 (WRN-28-8) to handle larger label
space and more convolutions were used for STL-10 (WRN-37-2) to deal with larger input image size.
Following the suggestion in [4], we doubled the weight decay parameter for WRN-28-8 to avoid
overfitting. Here, we provide a complete list of hyperparameters in table 4. Note that we did ablation
study for most of these hyperparameters in section 5 (7 in section 5.1, p in appendix B.5, I and 3
(momentum) in appendix B.3, and weight decay in appendix B.6).

| CIFAR-10 | CIFAR-100 | SVHN | STL-10

T 0.95
Au 1
n 7
B 64
Ir 0.03
I3 0.9

Nesterov True

weight decay \ 0.0005 \ 0.001 \ 0.0005 \ 0.0005

Table 4: Complete list of FixMatch hyperparameters for CIFAR-10, CIFAR-100, SVHN and STL-10.

B.2 Trade-off between the Quality and the Quantity of Pseudo-Labels with Confidence

To better understand the role of thresholding in FixMatch, we present in table 5 two additional
measurements along with the test set accuracy: the impurity (the error rate of unlabeled data that falls
above the threshold) and the mask rate (the number of examples which are masked out) which are
computed as follows:

1B q > 7)1 i
impuity = 2=t=1 LX) 2 )L 7 ) )
p—y 1(max(qy) > 7)
nB
mask rate = ,ULB ; I(max(qy) > 7) (6)

As shown in table 5, when using small threshold values, most unlabeled examples’ confidence is
above the threshold. Consequently, they all contribute to the unlabeled loss in eq. (4). Unfortunately,
pseudo-labels of these examples are not always correct and the learning process is significantly

14



7 | maskrate | impurity | error rate

0.25 100.00 6.39 6.40
0.5 100.00 5.40 5.87
0.75 99.82 5.35 5.09
0.85 99.31 4.32 5.12
0.9 99.21 3.85 4.90
0.95 98.13 347 4.84
0.97 96.35 2.30 5.00
0.99 92.14 2.06 5.05

Table 5: The mask rate and impurity at the end of the training along with the test set error rate of
FixMatch using different threshold values on a single 250-label split from CIFAR-10.

Decay Schedule Error
Cosine (FixMatch) 4.84

Linear Decay (end 0.01) 4.95
Linear Decay (end 0.02)  5.55
No Decay 5.70

Table 6: Ablation study on learning rate decay schedules. Error rates are reported on a single 250-1abel
split from CIFAR-10.

impeded by noisy pseudo-labeled examples. This behavior is known as confirmation bias [1]. On
the other hand, using high threshold values allows a smaller fraction of ostensibly higher-quality
unlabeled examples to contribute to the unlabeled loss, effectively reducing the confirmation bias
with strong data augmentation, resulting in lower error rates on the test set. Given our observation on
the trade-off between the quality and the quantity of pseudo-labels, combining improved techniques
for confidence calibration and uncertainty estimation [18, 27, 26, 19] into FixMatch would be a
promising future direction.

B.3 Ablation Study on Optimizer

While the study of different optimizers and their hyperparameters is seldom done in previous SSL
works, we found that they can have a strong effect on performance. We present ablation results on
optimizers in table 7. First, we studied the effect of momentum (/3) for the SGD optimizer. We found
that the performance is somewhat sensitive to 5 and the model did not converge when S is set too
large. On the other hand, small values of (5 still worked fine. When £ is small, increasing the learning
rate improved the performance, though they are not as good as the best performance obtained with
£ =0.9. Nesterov momentum resulted in a slightly lower error rate than that of standard momentum
SGD, but the difference was not significant.

As studied in [53, 29], we did not find Adam performing better than momentum SGD. While the best
error rate of the model trained with Adam is only 0.53% larger than that of momentum SGD, we
found that the performance was much more sensitive to the change of learning rate (e.g., increase
in error rate by more than 8% when increasing the learning rate to 0.002) than momentum SGD.
Additional exploration along this direction to make Adam more competitive includes the use of
weight decay [29, 58] instead of L2 weight regularization and a better exploration of hyperparameters

[7, 8]

B.4 Ablation Study on Learning Rate Schedule

It is a popular choice in recent works [28] to use a cosine learning rate decay. As shown in table 6, a
linear learning rate decay performed nearly as well. Note that, as for the cosine learning rate decay,
picking a proper decaying rate is important. Finally, using no decay results in worse accuracy (a
0.86% degradation).

15



Optimizer Hyperparameters Error

SGD n =0.03 6 =0.90 Nesterov 4.84
SGD n =0.03 B8 =0.999 Nesterov 84.33
SGD n =0.03 6 =0.99 Nesterov 21.97
SGD n =0.03 B =10.50 Nesterov 5.79
SGD n =0.03 6 =0.25 Nesterov 6.42
SGD n=0.03 B8=0 Nesterov 6.76
SGD n =0.05 B8=0 Nesterov 6.06
SGD n =0.10 B=0 Nesterov 5.27
SGD n =0.20 B8=0 Nesterov 5.19
SGD n = 0.50 B=0 Nesterov 5.74
SGD n =0.03 8 =0.90 4.86
Adam n=0.002 (5 =09 B2=0.00 29.42
Adam n=20.002 B =09 B2 = 0.90 14.42
Adam n=0.002 (£ =09 B2 =0.99 15.44
Adam n=20.002 B =09 B2 =0.999 13.93
Adam n=0.0008 (1 =09 B2 = 0.999 7.35
Adam n =0.0006 B1=0.9 B2=0.999  6.12
Adam n=0.0005 (=09 B2=0.999  5.95
Adam n=0.0004 B1 =09 B2=0.999  5.44
Adam n=0.0003 (=09 B2=0.999  5.37
Adam n=0.0002 B1 =09 B2 =0.999  5.57
Adam n=0.0001 B =09 B2 = 0.999 7.90

Table 7: Ablation study on optimizers. Error rates are reported on a single 250-label split from
CIFAR-10.

N
o
o
wn

[¥] [0]
= o
© 16 © 6.0
= =
212 255
w w
8 5.0
4 4.5
0.00 025  0.50 0.90 107
3 (momentum) n (Ir)
(@) (b)

Figure 4: Plots of ablation studies on optimizers. (a) Varying 3. (b) Varying n with 5 = 0.

B.5 Ratio of Labeled to Unlabeled Data in Minibatch

In fig. 5a we plot the error rates of FixMatch with different ratios of unlabeled data (x) in each
minibatch. We observe a significant decrease in error rates by using a large amount of unlabeled data,
which is consistent with the finding in UDA [54]. In addition, scaling the learning rate 7 linearly
with the batch size (a technique for large-batch supervised training [16]) was effective for FixMatch,
especially when g is small.

B.6 Weight Decay

While the value 0.0005 appeared as a good default choice for WRN-28-2 across datasets, we find
that the weight decay could have a huge impact on performance when tuned incorrectly for low label
regimes: choosing a value that is just one order of magnitude larger or smaller than optimal can cost
ten percentage points or more, as shown in fig. 5b.

B.7 Labeled Data for Barely Supervised Learning

In addition to fig. 2, we visualize the full labeled training images obtained by ordering mechanism [5]
used for barely supervised learning in fig. 6. Each row contains 10 images from 10 different classes

16



9.5 = -8 With 7 scaling

~
[
= N
o o

Error rate
-
N

Error rate
o
w

©

=l

2 4 6 8 10 12 14 16 10 10°
Ratio of unlabled data Weight decay

() (b)

Figure 5: Plots of ablation studies on FixMatch. (a) Varying the ratio of unlabeled data (y) with
different learning rate (n) scaling strategies. (b) Varying the loss coefficient for weight decay. Error
rate of FixMatch with default hyperparameters is in red dotted line.

»
wn
IS

Figure 6: Labeled training data for the 1-label-per-class experiment. Each row corresponds to the
complete labeled training set for one run of our algorithm, sorted from the most prototypical dataset
(first row) to least prototypical dataset (last row).

of CIFAR-10 and is used as the complete labeled training dataset for one run of FixMatch. The first
row contains the most prototypical images of each class, while the bottom row contains the least
prototypical images. We train two models for each dataset and compute the mean accuracy between
the two and plot this in fig. 7. Observe that we obtain over 80% accuracy when training on the best
examples.

B.8 Comparison to Supervised Baselines
In table 9 and table 10, we present the performance of models trained only with the labeled data using

strong data augmentations to highlight the effectiveness of using unlabeled data in FixMatch.

C Implementation Details for Section 4.3

For our ImageNet experiments we use standard ResNet50 pre-activation model trained in a distributed
way on a TPU device with 32 cores.” We report results over five random folds of labeled data. We
use the following set of hyperparameters for our ImageNet model:

e Batch size. On each step our batch contains 1024 labeled examples and 5120 unlabeled
examples.

"https://github.com/tensorflow/tpu/tree/master/models/official/resnet

17


https://github.com/tensorflow/tpu/tree/master/models/official/resnet

Dataset 1 2 3 4 5

CIFAR-10 546 6.17 937 10.85 13.32
SVHN 240 247 6.24 6.32 6.38

Table 8: Error rates of FixMatch (CTA) on a single 40-label split of CIFAR-10 and SVHN with
different random seeds. Runs are ordered by accuracy.

CIFAR-10 CIFAR-100 SVHN

Method

40 labels 250 labels 4000 labels 400 labels 2500 labels 10000 labels 40 labels 250 labels 1000 labels

Supervised (RA) 64.01£0.76  39.12+0.77  12.74+£0.29 79.47+0.18 52.88+0.51  32.55+0.21 52.68+2.29 22.48+0.55 10.89+0.12
Supervised (CTA)  64.53+£0.83  41.92£1.17  13.64£0.12  79.79£0.59 54.23+£0.48  35.304+0.19 43.05+2.34 15.06+1.02 7.691+0.27

FixMatch (RA) 13.81£3.37 5.07£0.65 4.26+0.05 48.85+1.75 28.29+0.11  22.60+0.12 3.96+2.17 2.48+0.38 2.28+0.11
FixMatch (CTA) 11.39+£3.35 5.07+0.33 431+£0.15  49.95+3.01 28.64+0.24  23.1840.11 7.65+7.65 2.6440.64 2.361+0.19

Table 9: Error rates for CIFAR-10, CIFAR-100 and SVHN on 5 different folds. Models with (RA)
uses RandAugment [1 1] and the ones with (CTA) uses CTAugment [3] for strong-augmentation. All
models are tested using the same codebase.

90

o 1 2 3 4 5 6 7
Dataset Ordering

Figure 7: Accuracy of the model when trained on the 1-label-per-class datasets from Figure 6, ordered
from most prototypical (top row) to least (bottom row).

Method Error rate  Method Error rate

Supervised (RA) 20.66£0.83  FixMatch (RA) 7.98+1.50
Supervised (CTA)  19.86+0.66  FixMatch (CTA) 5.1740.63

Table 10: Error rates for STL-10 on 1000-label splits. All models are tested using the same codebase.

Training time. We train our model for 300 epochs of unlabeled examples®.

Learning rate schedule. We utilize linear learning rate warmup for the first 5 epochs until
it reaches an initial value of 0.4. Then we the decay learning rate at epochs 60, 120, 160,
and 200 epoch by multiplying it by 0.1.

Optimizer. We use Nesterov Momentum optimizer with momentum 0.9.

Exponential moving average (EMA). We utilize EMA technique with decay 0.999.
FixMatch loss. We use unlabeled loss weight \,, = 10 and confidence threshold 7 = 0.7
in FixMatch loss.

Weight decay. Our weight decay coefficient is 0.0003. Similarly to other datasets we
perform weight decay by adding L2 penalty of all weights to model loss.

Augmentation of unlabeled images. For strong augmentation we use RandAugment with
random magnitude [ |]. For weak augmentation we use a random horizontal flip.
ImageNet preprocessing. We randomly crop and rescale to 224 x224 size all labeled and
unlabeled training images prior to performing augmentation. This is considered a standard
ImageNet preprocessing technique.

8Note that one epoch of unlabelled examples contains all 1.2 million examples from Imagenet training set
and it correspond to 10 passes through labelled set for 10% Imagenet task.

18



D Extensions of FixMatch

D.1 Augmentation Anchoring and Distribution Alignment

Augmentation Anchoring, where M strong augmentations are applied to each unlabeled example
for consistency regularization, and Distribution Alignment, which encourages the model predictions
to have same class distribution as the labeled set, are two important techniques to the success of
ReMixMatch [3]. Thanks to its simplicity and clean formulation, incorporating these techniques into
FixMatch becomes straightforward. Firstly, we incorporate Augmentation Anchoring into FixMatch
as follows:

1 &8 L\
b, = B ; 1(max(gp) > 7) X i ;H(@b,pm(y | A(up))) 7

Note that the strong augmentation .4 (u; ) is a stochastic process and it produces M different strongly-
augmented examples of an unlabeled example u;. Using M =4 and p = 4, FixMatch (CTA) with
Augmentation Anchoring reduces the error rate averaged over 5 different folds on CIFAR-10 with
250 labeled examples from 5.07% to 4.81%.

As already reported in section 4.1, combining Distribution Alignment into FixMatch improves the
SSL performance significantly, especially when the number of labeled training data is very limited.
Specifically, we align the predictive distribution of a weakly-augmented example g, = Py, (y|o(usp))
using the dataset’s marginal class distribution estimated using the labeled data and the running average
of the model’s prediction estimated by the unlabeled data as follows:

. . p(ylX) )

Gp» = Normalize (q X —=— ®)
’ " pm(yld)

where Normalize(z); = =i/, «;. Now, eq. (4) can be modified as follows accordingly:
uB
1 - 2
by = uB > 1(max(Gs) > 7) H(Gs, pa(y | A(us))) ©)

b=1

FixMatch (CTA) with distribution alignment reduces the error rate averaged over 5 different folds
on CIFAR-10 with 40 labeled examples from 11.38% to 9.47%. On CIFAR-100 with 400 labeled
examples, it reduces the error rate from 49.95% to 40.14%, which is also lower than 44.28% of
ReMixMatch. In addition to Section 4.3, we conduct SSL experiments on ImageNet using 1% of
its data as labeled examples. We find that in this regime the role of distribution alignment becomes
more critical — FixMatch model does not train well without distribution alignment. On the other hand,
after a proper tuning of hyperparameters (weight of unlabeled loss A,, = 3 and confidence threshold
7 = 0.9), FixMatch (RA) model with distribution alignment achieves 67.1% top-1 and 47.7% top-5
error rate (this correspond to 32.9% top-1 and 52.3% top-5 accuracy and similar to [57] results).

D.2 Datatype-Agnostic Data Augmentation

Strong augmentation plays a key role in FixMatch. Applying FixMatch to different problem domains
than vision thus requires one to come up with a novel augmentation strategy. While there are domain-
specific data augmentation strategies for different application domains, such as back-translation [48]
for text classification or SpecAugment [38] for speech recognition, it is desirable if FixMatch can
also be combined with datatype-agnostic data augmentation methods.

In this section, we consider two such augmentation schemes, namely MixUp [59] and Virtual
Adpversarial Training (VAT) [33], as a replacement of RandAugment or CTAugment in FixMatch for
image classification. For MixUp, instead of mixing both input and label, we mixed random pairs of
inputs only using & =9 to be more consistent with the data augmentation in FixMatch. For VAT, we
used 7 = 0.5. We evaluated on CIFAR-10 with 250 labeled data protocol and report the mean and
standard deviation over 5 different folds in table 11. We make comparisons of our FixMatch variants
to MixMatch [4] and VAT [33]. The FixMatch variant with (input) MixUp obtained comparable error
rates to MixMatch, while the variant with VAT achieved significantly lower error rates than VAT. This
suggests the generality of the FixMatch’s framework against different data augmentation strategies.

19



FixMatch + FixMatch
Input MixUp + VAT

10.99£0.50 ‘ 11.05£0.86 H 32.26+£2.24 ‘ 36.03+2.82

Table 11: Error rates for CIFAR-10 with 250 labeled examples on 5 different folds. All models are
tested using the same codebase.

‘ MixMatch ‘ ‘ ‘ VAT

E List of Data Transformations

Given a collection of transformations (e.g., color inversion, translation, contrast adjustment, etc.),
RandAugment randomly selects transformations for each sample in a mini-batch. As originally
proposed, RandAugment uses a single fixed global magnitude that controls the severity of all
distortions [ 1]. The magnitude is a hyperparameter that must be optimized on a validation set e.g.,
using grid search. We found that sampling a random magnitude from a pre-defined range at each
training step (instead of using a fixed global value) works better for semi-supervised training, similar
to what is used in UDA [54].

Instead of setting the transformation magnitudes randomly, CTAugment [3] learns them online over
the course of training. To do so, a wide range of transformation magnitude values is divided into bins
(as in AutoAugment [10]) and a weight (initially set to 1) is assigned to each bin. All examples are
augmented with a pipeline consisting of two transformations which are sampled uniformly at random.
For a given transformation, a magnitude bin is sampled randomly with a probability according to
the (normalized) bin weights. To update the weights of the magnitude bins, a labeled example is
augmented with two transformations whose magnitude bins are sampled uniformly at random. The
magnitude bin weights are then updated according to how close the model’s prediction is to the true
label. Further details on CTAugment can be found in [3].

We used the same sets of image transformations used in RandAugment [ 1] and CTAugment [3]. For
completeness, we listed all transformation operations for these augmentation strategies in table 12
and table 13.

Transformation ~ Description Parameter Range

Autocontrast Maximizes the image contrast by setting the darkest (lightest)
pixel to black (white).

Brightness Adjusts the brightness of the image. B = 0 returns a black B [0.05, 0.95]
image, B = 1 returns the original image.

Color Adjusts the color balance of the image likeinaTV.C =0 C [0.05, 0.95]
returns a black & white image, C' = 1 returns the original
image.

Contrast Controls the contrast of the image. A C' = O returns a gray C [0.05, 0.95]
image, C' = 1 returns the original image.

Equalize Equalizes the image histogram.

Identity Returns the original image.

Posterize Reduces each pixel to B bits. B 4, 8]

Rotate Rotates the image by 6 degrees. 0 [-30, 30]

Sharpness Adjusts the sharpness of the image, where S = O returnsa S [0.05, 0.95]
blurred image, and S = 1 returns the original image.

Shear_x Shears the image along the horizontal axis with rate . R [-0.3,0.3]

Shear_y Shears the image along the vertical axis with rate R. R [-0.3, 0.3]

Solarize Inverts all pixels above a threshold value of 7' T [0, 1]

Translate_x Translates the image horizontally by (A ximage width) pix- A [-0.3, 0.3]
els.

Translate_y Translates the image vertically by (A xXimage height) pixels. A [-0.3, 0.3]

Table 12: List of transformations used in RandAugment [ 1].

20



Transformation  Description Parameter Range
Autocontrast Maximizes the image contrast by setting the darkest (lightest) A [0, 1]
pixel to black (white), and then blends with the original
image with blending ratio .
Brightness Adjusts the brightness of the image. B = 0 returns a black [0, 1]
image, B = 1 returns the original image.
Color Adjusts the color balance of the image like ina TV. C = 0 [0, 1]
returns a black & white image, C' = 1 returns the original
image.
Contrast Controls the contrast of the image. A C' = O returns a gray C' [0, 1]
image, C' = 1 returns the original image.
Cutout Sets a random square patch of side-length (L ximage width) [0,0.5]
pixels to gray.
Equalize Equalizes the image histogram, and then blends with the X [0, 1]
original image with blending ratio A.
Invert Inverts the pixels of the image, and then blends with the X [0, 1]
original image with blending ratio A.
Identity Returns the original image.
Posterize Reduces each pixel to B bits. B [1, 8]
Rescale Takes a center crop that is of side-length (L ximage width), L [0.5, 1.0]
and rescales to the original image size using method M.
M see caption
Rotate Rotates the image by 6 degrees. 0 [-45, 45]
Sharpness Adjusts the sharpness of the image, where S = O returnsa S [0, 1]
blurred image, and S = 1 returns the original image.
Shear_x Shears the image along the horizontal axis with rate R. R [-0.3, 0.3]
Shear_y Shears the image along the vertical axis with rate R. R [-0.3, 0.3]
Smooth Adjusts the smoothness of the image, where S = 0 returns S [0, 1]
a maximally smooth image, and S = 1 returns the original
image.
Solarize Inverts all pixels above a threshold value of 7'. T [0, 1]
Translate_x Translates the image horizontally by (A ximage width) pix- A [-0.3, 0.3]
els.
Translate_y Translates the image vertically by (A xXimage height) pixels. A [-0.3, 0.3]

Table 13: List of transformations used in CTAugment [3]. The ranges for the listed parameters are
discretized into 17 equal bins, except for the M parameter of the Rescale transformation, which takes
one of the following six options: anti-alias, bicubic, bilinear, box, hamming, and nearest.

21



