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We thank the reviewers for their time and constructive feedback. Our work provides a "new contribution to HMMs1

and the SMC literature (R1)" in the form of "a novel and useful Generalised SMC framework for robust filtering in2

the presence of likelihood misspecification (R2)" that is "theoretically well grounded (R3)" and of "relevance to the3

NeurIPS community (R4)". Robust filtering in the M-open setting was an open problem that we have formally tackled.4

The proposed approach for selecting β (R1) is heuristic, but practically effective as the predictive performance is5

closely related to the marginal likelihood which can also be used. Alternatives such as model fit can certainly be used as6

well. We believe using a training set with the same statistical properties as the intended data makes sense practically7

(and allows for online inference). We observed that using the same data did not alter performance. These points have8

now been clarified in the manuscript.9

Interest in πβ(φ) (R1): We have now clarified that, in the Bissiri et al. (2016) framework β is a parameter of a specified10

loss function: a subjective (generalised) Bayesian choice characterising confidence in model correctness. πβ is then11

considered the “correct” generalisation of the posterior within the GBI framework.12

Theory & Corollary 1 (R1): We agree that the arguments used here are standard and have now emphasised this in the13

manuscript. The intention is to demonstrate that existing arguments hold in our setting, not to claim novelty. We have14

added the proof of Corollary 1.15

β-divergence notation (R1): We have now changed “small” to “positive” in 3.2 to convey the intended meaning.16

Additional evaluation (R1 & R2): We thank the referees for their helpful suggestions, which have now been added17

and emphasised in the paper. Please see some examples of additional results. 1) Non-contaminated regime on Wiener18

velocity example (accidental omission) is shown on the left, where for moderate β the performance is near optimal. 2)19

Comparison to an oracle is one the right. 3) More complex likelihood and contamination in the form of an asymmetric,20

multiplicative noise model was presented in Appendix D due to space constraints.21

Broadening the support of the likelihood (R1 & R3): changing the likelihood (e.g. by increasing the measurement22

variance) to decrease the influence of outliers suffers from drawbacks such as underestimating the influence of in-lying23

observations and difficulty in interpreting results. Using the beta-divergence is principled and decreases the influence of24

outliers while maintaining the influence on inliers (centre figure). We have included the influence function explanation.25

The relationship to parameter selection and model selection (R1 & R4) have now been clearly signposted based26

on Kantas et al. (2015) and R4’s suggestions, including elaborating on parameter estimation in our setting and the27

complications that arise in misspecified scenarios (cf. Brynjarsdóttir and O’Hagan, 2010). We consider challenging28

M-open settings: we do not assume access to a family of models which includes the true generative model. Consequently,29

model selection schemes cannot generally be used to correct for misspecification. We provide a formally justified30

procedure for SMC algorithms that is forgiving to likelihood misspecification and allows for inferring posterior belief31

distributions with desirable properties. This differs qualitatively from the listed literature in that the true model is not32

available among our candidate models. In Urteaga, et. al. information from many candidate models is fused according to33

their predictive performance, which is a pragmatic solution with good empirical performance on a univariate stochastic34

volatility model, when a good suite of candidates is available. We view this as complementary to our work.35

Novelty (R3): In our view, the principal novelty lies in interpreting filtering within the framework of GBI (a previously36

unexplored direction) and hence arriving at a formally justified approach to robust filtering in the M-open setting.37

Examples of non-exponential family likelihoods (R1), such as student-t likelihoods have now been added and38

discussed. Most stochastic volatility models could be addressed in closed form using properties of Gaussians.39

GP Hyperparameters (R1) were selected by cross-validation. We have changed “known” to “fixed”.40

Likelihood misspecification not model misspecification (R1 & R2): We have changed the presentation and made the41

change in terminology advocated by R2; we indeed focus on likelihood misspecification although the GBI framework42

of Bissiri, et. al. can in principle be used more widely, which we have now also highlighted.43

Reproducibility (R4): We have submitted the code as well as detailed descriptions of the experiments with the44

supplementary material. If anything has been omitted, please inform us in review and we would be happy to include it.45


