
Supplement
We provide the proof (Section A) of our main result presented in Section 3. Section B is about
an additional numerical illustration in the context of kernel ridge regression on the importance of
hard shape constraints in case of increasing level of noise. For completeness, reformulations of
the additional shape constraint examples for (C) mentioned at the end of Section 2 are detailed in
Section C.

A Proof

For i ∈ [I], we shall below denote φi = (Wf − f0)i and βi = (b0 − Ub)i. The proofs of the
different parts are as follows.

(i) Tightening: By rewriting constraint (C) using the derivative-reproducing property of kernels
(Zhou, 2008; Saitoh and Sawano, 2016) we get

〈φi, Di,xk(x, ·)〉k = Diφi(x) ≥ βi, ∀x ∈ Ki. (11)

Let us reformulate this constraint as an inclusion of sets

ΦDi
(Ki) ⊆ H+

φi,βi
:= {g ∈ Fk | 〈φi, g〉k ≥ βi},

where ΦDi
: x 7→ Di,xk(x, ·) ∈ Fk and ΦDi

(X) := {ΦDi
(x) |x ∈ X}.

In order to get a finite geometrical description of ΦDi(Ki), we consider a finite covering of the
compact set Ki:

{x̃i,m}m∈[Mi] ⊆ Ki ⊆
⋃

m∈[Mi]

B‖·‖X (x̃i,m, δi,m) ,

which implies that
ΦDi

(Ki) ⊆
⋃

m∈[Mi]

ΦDi

(
B‖·‖X (x̃i,m, δi,m)

)
.

From the regularity of k, it follows that ΦDi
is continuous from X to Fk, and we define ηi,m > 0

(i ∈ [I], m ∈ [Mi]) as

ηi,m := sup
u∈B‖·‖X (0,1)

‖ΦDi (x̃i,m)− ΦDi (x̃i,m + δi,mu) ‖k. (12)

This means that for all m ∈ [Mi]

ΦDi

(
B‖·‖X (x̃i,m, δi,m)

)
⊆ ΦDi (x̃i,m) + Bk (0, ηi,m) ,

where Bk(0, ηi,m) := {g ∈ Fk | ‖g‖k ≤ ηi,m}. In other words, for (11) to hold, it is sufficient that

ΦDi (x̃i,m) + Bk (0, ηi,m) ⊆ H+
φi,βi

, ∀m ∈ [Mi]. (13)

By the definition of H+
φi,βi

, (13) is equivalent to

βi ≤ inf
g∈Bk

〈φi, Di,xk(x̃i,m, ·) + ηi,mg〉k = Di(φi)(x̃i,m)− ηi,m‖φi‖k, ∀m ∈ [Mi].

Taking the minimum over m ∈ [Mi], we get

‖φi‖k ≤ min
m∈[Mi]

1

ηi,m
[−βi +Di(φi) (x̃i,m)] . (14)

Hence we proved that for any (f , b) satisfying (14), (11) also holds. The SOC-based reformulation is
illustrated geometrically in Fig. 3. Constraint (C) can be reformulated as requiring that the image
ΦDi(Ki) of Ki under the Di-feature map ΦDi(x) := Di,xk(x, ·) ∈ Fk is contained in the halfspace
’above’ the affine hyperplane defined by normal vector (Wf − f0)i and bias (b0 − Ub)i. The
discretization (6) of constraint (C) at the points {x̃i,m}m∈[Mi]

only requires the images ΦDi(x̃i,m)

of the points to be above the hyperplane. Constraint (Cη) instead inflates each of those points by a
radius ηi.
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Figure 3: Illustration of the SOC constraint (Cη).

(ii) Representer theorem: For any q ∈ [Q], let fη,q = vq + wq where vq belongs to10

V := span
(
{f0,i}i∈I , {k(xn, ·)}n∈[N ], {Di,xk(x̃i,m, ·)}m∈[Mi],i∈[I]

)
⊂ Fk

while wq is in the orthogonal complement of V in Fk (wq ∈ V ⊥ := {w ∈ Fk : 〈w, v〉k = 0, ∀v ∈
V }). Let v := (vq)q∈[Q] ∈ (Fk)Q. As constraint (Cη) holds for (fη, bη),

(b0 −Ubη)i + ηi‖(Wfη − f0)i‖k ≤ min
m∈[Mi]

Di(Wfη − f0)i (x̃i,m) ,∀i ∈ [I].

However (v, bη) also satisfies (Cη) since ‖(Wv − f0)i‖k ≤ ‖(Wfη − f0)i‖k and Di(Wv −
f0)i (x̃i,m) = Di(Wfη − f0)i (x̃i,m):∥∥∥∥∥ (Wfη − f0)i

∥∥∥∥∥
2

k

=

∥∥∥∥∥ ∑
q∈[Q]

Wi,q fη,q︸︷︷︸
vq+wq

−f0,i

∥∥∥∥∥
2

k

=

∥∥∥∥∥ ∑
q∈[Q]

Wi,qvq − f0,i︸ ︷︷ ︸
∈V

+
∑
q∈[Q]

Wi,qwq︸ ︷︷ ︸
∈V ⊥

∥∥∥∥∥
2

k

=

∥∥∥∥∥ ∑
q∈[Q]

Wi,qvq − f0,i

∥∥∥∥∥
2

k

+

∥∥∥∥∥ ∑
q∈[Q]

Wi,qwq

∥∥∥∥∥
2

k

≥

∥∥∥∥∥ ∑
q∈[Q]

Wi,qvq − f0,i

∥∥∥∥∥
2

k

= ‖(Wv − f0)i‖2k ,

Di(Wfη − f0)i (x̃i,m) = Di

∑
q∈[Q]

Wi,q fη,q︸︷︷︸
vq+wq

−f0,i

 (x̃i,m)

= Di(Wv − f0)i (x̃i,m) +Di

∑
q∈[Q]

Wi,qwq

 (x̃i,m)

= Di(Wv − f0)i (x̃i,m) +

〈∑
q∈[Q]

Wi,qwq, Di,xk (x̃i,m, ·)

〉
k︸ ︷︷ ︸

=0

using the derivative-reproducing property of kernels, and that
∑
q∈[Q]Wi,qwq ∈ V ⊥, while

Di,xk (x̃i,m, ·) ∈ V . The regularizer Ω is assumed to be strictly increasing in each argument
‖fη,q‖k. As ‖fη,q‖2k = ‖vq‖2k + ‖wq‖2k, and (fη,bη) minimizes L, wq = 0 necessarily; in other
words fη,q ∈ V for all q ∈ [Q].

10The linear hull of a finite set of points (vm)m∈[M ] in a vector space is denoted by span({vm}m∈[M ]) =
{
∑

m∈[M ] amvm | am ∈ R, ∀m ∈ [M ]}.
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(iii) Performance guarantee: From (i), we know that the solution (fη,bη) of (Pη) is also admissible
for (P). Discretizing the shape constraints is a relaxation of (P). Hence vdisc ≤ v̄ ≤ vη .

Let us fix any (pf ,pb) ∈ (Fk)
Q × RP belonging to the subdifferential of L(·, ·) + χC(·, ·) at

point (f̄ , b̄), where χC is the characteristic function of C, i.e. χC(u,v) = 0 if (u,v) ∈ C and
χC(u,v) = +∞ otherwise. Since

(
f̄ , b̄
)

is the optimum of (P), for any (f , b) admissible for (P),∑
q∈[Q]

〈pf,q, fq − f̄q〉k + 〈pb,b− b̄〉2 ≥ 0, (15)

where pf = (pf,q)q∈[Q]. Hence using the (µfq , µb)-strong convexity of L w.r.t. (fq,b) we get

L (fη, bη) ≥ L
(
f̄ , b̄
)

+
∑
q∈[Q]

〈
pfη,q, fη,q − f̄q

〉
k

+
〈
pb, bη − b̄

〉
2

+
∑
q∈[Q]

µfq
2
‖fη,q − f̄q‖2k

(16)

+
µb
2

∥∥bη − b̄∥∥22 .
As vη − vdisc ≥ L (fη, bη)− L

(
f̄ , b̄
)
, using the non-negativity (15) for (fη, bη), one gets from (16)

the claimed bound (9).

To prove (10), recall that
(
f̄ , b̄
)

satisfies (C) and that we assume B = RP . Let ηi =

maxm∈[Mi] ηi,m, i ∈ [I] with ηi,m defined in (12), and b̃ =
(
b̃i
)
i∈[I] ∈ RI with

b̃i := ηi
∥∥(Wf̄ − f0

)
i

∥∥
k
. (17)

As U is full-row rank, one can define its right inverse (UU+ = I) as U+ =
(
U>U

)−1
U>. Then

the pair
(
f̄ , b̄+ U+b̃

)
satisfies (Cη) since for any m ∈ [Mi]

ηi
∥∥(Wf̄ − f0

)
i

∥∥
k

= b̃i =
(
UU+b̃

)
i
≤
(
UU+b̃

)
i
+
(
Ub̄− b0

)
i
+Di

(
Wf̄ − f0)i(x̃i,m

)︸ ︷︷ ︸
≥0

=
(
U
(
b̄ + U+b̃

)
− b0

)
i
+Di

(
Wf̄ − f0)i(x̃i,m

)
.

Thus,
(
f̄ , b̄+ U+b̃

)
is admissible for (Pη) and as (fη, bη) is optimal for (Pη), we have

L (fη, bη)− L
(
f̄ , b̄
)
≤ L

(
f̄ , b̄+ U+b̃

)
− L

(
f̄ , b̄
) (a)

≤ Lb
∥∥U+b̃

∥∥
2
≤ Lb

∥∥U+
∥∥∥∥b̃∥∥

2

≤ Lb
∥∥U+

∥∥√I∥∥b̃∥∥∞ (b)

≤ Lb
∥∥U+

∥∥‖η‖∞√I max
i∈[I]

∥∥(Wf̄ − f0
)
i

∥∥
k

(c)
= Lbcf‖η‖∞,

where (a) stems from the local Lipschitz property of L (
∥∥U+b̃

∥∥
2
≤ cf‖η‖∞), (b) holds by (17), and

(c) follows from the definition of cf . Combined with (16), this gives the bound (10).

B Shape-constrained kernel ridge regression

In this section we illustrate in kernel ridge regression (KRR, (3)) the importance of enforcing hard
shape constraints in case of increasing noise level. We consider a synthetic dataset of N = 30 points
from the graph of a quadratic function where the values {xn}n∈[N ] ⊂ R were generated uniformly
on [−2, 2]. The corresponding y-coordinates of the graph were perturbed by additive Gaussian noise:

yn = x2n + εn (∀n ∈ [N ]), {εn}n∈[N ]
i.i.d.∼ N

(
0, ξ2

)
.

We impose a monotonically increasing shape constraint on the interval [xl, xu] = [0, 2], and study
the effect of the level of the added noise (ξ) on the desired increasing property of the estimate without
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Figure 4: (a): Illustration for kernel ridge regression. Observation: quadratic function perturbed
with additive Gaussian noise. Shape constraint: monotone increasing property on [0, 2]. Compared
techniques: regression without (KRR) and with hard shape constraint (SOC). (b): Violation of the
shape constraint for the unconstrained KRR estimator as a function of the amplitude of the added
Gaussian noise. Error measures: median of the proportion (left) and amount (right) of the violation of
the monotone increasing property on [0, 2]. Dashed lines: lower and upper quartiles. (c): Evolution
of the optimal objective values vη and vdisc when increasing the number M of discretization points of
the constraints on [0, 2]. (d): Computation time of (Pη) depending on the convex optimization solver
(SeDuMi or MOSEK) selected.
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(KRR) and with monotonic shape constraint (SOC). Here σ = 0.5 and λf = 10−4, while ξ varies in
the interval [0, 4].

Fig. 4(a) provides an illustration of the estimates in case of a fixed noise level ξ = 1. There is a good
match between the KRR and SOC estimates outside of the interval [0, 2], while the proposed SOC
technique is able to correct the KRR estimate to enforce the monotonicity requirement on [0, 2]. In
order to assess the performance of the unconstrained KRR estimator under varying level of noise, we
repeated the experiment 1000 times for each noise level ξ and computed the proportion and amount11

of violation of the monotonicity requirement. Our results are summarized in Fig. 4(b). The figure
shows that the error increases rapidly for KRR as a function of the noise level, and even for very
low level of noise the monotonicity requirement does not hold. These experiments demonstrate that
shape constraints can grossly be violated when facing noise if they are not enforced in an explicit and
hard fashion. To illustrate the tightening property of Theorem 3, i.e. that vdisc ≤ v̄ ≤ vη, Fig. 4(c)
shows the evolution of the optimal values vη and vdisc when increasing the number of discretization
points (M ) of the constraints on the constraint interval [0, 2]. Since by increasing M , we decrease η,
the value vη decreases, whereas vdisc increases as the discretization incorporates more constraints.
Larger value of M naturally increases the polynomial computation time but not necessarily at the
worst cubic expense, as shown in Fig. 4(d); the choice of the solver has also importance as it may
provide a factor of two gain.

C Examples of handled shape constraints

In order to make the paper self-contained, in this section we provide the reformulations using deriva-
tives of the additional shape constraints briefly mentioned at the end of Section 2: n-monotonicity
(s = n; Chatterjee et al., 2015), (n− 1)-alternating monotonicity (Fink, 1982), monotonicity w.r.t.
unordered weak majorization (s = 1; Marshall et al., 2011, A.7. Theorem) or w.r.t. product ordering
(s = 1), or supermodularity (s = 2; Simchi-Levi et al., 2014, Section 2).

Particularly, n-monotonicity (n ∈ N∗) writes as f (n)(x) ≥ 0 (∀x). (n−1)-alternating monotonicity12

(n ∈ N∗) is similar: for n = 1 non-negativity and non-increasing properties are required; for n ≥ 2
(−1)jf (j) has to be non-negative, non-increasing and convex for ∀j ∈ {0, . . . , n − 2}. The other
examples are

• Monotonicity w.r.t. partial ordering: These generalized notions of monotonicity (u 4 v ⇒
f(u) ≤ f(v)) rely on the partial orderings u 4 v iff

∑
j∈[i] uj ≤

∑
j∈[i] vj for all i ∈ [d]

(unordered weak majorization) and u 4 v iff ui ≤ vi (∀i ∈ [d]) (product ordering). For C1

functions mononicity w.r.t. the unordered weak majorization is equivalent to

∂e1f(x) ≥ . . . ≥ ∂edf(x) ≥ 0 (∀x).

Monotonicity w.r.t. product ordering for C1 functions can be rephrased as

∂ejf(x) ≥ 0, (∀j ∈ [d], ∀x).

• Supermodularity: Supermodularity means that f(u∨v)+f(u∧v) ≥ f(u)+f(v) for all u,v ∈
Rd, where maximum and minimum are meant coordinate-wise, i.e. u ∨ v := (max(uj , vj))j∈[d]
and u ∧ v := (min(uj , vj))j∈[d] for u,v ∈ Rd. For C2 functions this property corresponds to

∂2f(x)

∂xi∂xj
≥ 0 (∀i 6= j ∈ [d],∀x).

11These performance measures are defined as 1
2

∫ 2

0
max(0,−f ′(x))dx and

∫ 2

0
maxy∈[0,x][f(y)− f(x)]dx.

By construction both measures are zero for SOC.
12For instance, the generator of a d-variate Archimedean copula can be characterized by (d− 2)-alternating

monotonicity (Malov, 2001; McNeil and Neslehová, 2009).
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