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Abstract

Deterministic-policy actor-critic algorithms for continuous control improve the
actor by plugging its actions into the critic and ascending the action-value gradient,
which is obtained by chaining the actor’s Jacobian matrix with the gradient of
the critic with respect to input actions. However, instead of gradients, the critic
is, typically, only trained to accurately predict expected returns, which, on their
own, are useless for policy optimization. In this paper, we propose MAGE, a
model-based actor-critic algorithm, grounded in the theory of policy gradients,
which explicitly learns the action-value gradient. MAGE backpropagates through
the learned dynamics to compute gradient targets in temporal difference learning,
leading to a critic tailored for policy improvement. On a set of MuJoCo continuous-
control tasks, we demonstrate the efficiency of the algorithm in comparison to
model-free and model-based state-of-the-art baselines.

1 Introduction

Reinforcement learning (RL) [36, 52] studies sequential decision making problems, in which an agent
aims at maximizing the cumulative reward it collects in an environment. One of the most popular
classes of algorithms for RL are policy gradient methods [10, 53], which involve differentiable control
policies improved by gradient ascent. They feature suitability to environments with continuous state
and action spaces, and compatibility with state-of-the-art deep learning [42] methods. Policy gradient
algorithms often employ an actor-critic [26] scheme: an actor, which determines the control policy,
is evaluated using a critic. Thus, the degree of actor’s improvement is limited by the information
provided by the critic, naturally raising the question of how the critic should be trained.

Typically, algorithms that use powerful function approximators [18, 28] learn the critic by temporal
difference [50], optimizing for an accurate prediction of the expected return of the actor. For
deterministic-policy continuous-control [28, 47], however, the value provided by the critic is neither
used for improving the policy nor for acting in the environment [53]. Instead, only the action-gradient
of the value function, i.e., the gradient of the critic w.r.t. the action performed by the actor, is employed
during policy optimization. Specifically, the policy gradient is obtained through the computation of
the action-value gradient, by chaining the actor’s Jacobian with the action-gradient of the critic.

Learning the critic by value rather than by action-gradient of the value relies on hazy smoothness
assumptions on the real value function [47]. This means that, in conventional temporal difference
learning, the critic learns action-value gradients implicitly, which could harm the performance of a
deterministic policy gradient algorithm.

In this paper, we propose Model-based Action-Gradient-Estimator Policy Optimization (MAGE), a
continuos-control deterministic-policy actor-critic algorithm that explicitly trains the critic to provide
accurate action-gradients for the use in the policy improvement step. Motivated by both the theory on
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Deterministic Policy Gradients [47] and practical considerations, MAGE uses temporal difference
methods to minimize the error on the action-value gradient. For this, the algorithm leverages a trained
dynamics model as a proxy for a differentiable environment and techniques reminiscent of double
backpropagation [12]. On a challenging continuous control benchmark [6, 55], we show that MAGE
is significantly more sample-efficient than state-of-the-art model-free and model-based baselines.

The rest of the paper is organized as follows. In Section 2, we provide the notation and background on
deterministic policy gradients. Our algorithm, together with its theoretical motivation, is introduced
in Section 3, followed by empirical results in Section 4. In Section 5, we present some of the related
work and its relationship with our approach.

2 Background

2.1 Preliminaries

Consider a discrete-time Markov Decision Process [36] (MDP), defined asM = (S,A, p, r, γ, µ),
where S is the space of possible states, A is the space of possible actions, p : S ×A → ∆ (S) is the
transition model, r : S×A → R is the known and differentiable reward function, γ is the discount fac-
tor, µ ∈ ∆ (S) is the initial state distribution. The behavior of the agent is described by a deterministic
policy πθ : S → A, belonging to a parametric space of policies Π = {πθ : θ ∈ Θ ⊆ Rn}, for which
we will occasionally omit the parameter subscript. Let dπµ be the γ-discounted state distribution in-
duced by policy πθ , defined as dπµ(s) = (1− γ)

∑∞
t=0 γ

t Pr(st = s|π, µ). The total reward collected
by an agent is quantified with action-value function Qπ(s, a) = E [

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a]
and performance function J(θ) = Es∼µ [Qπ(s, πθ(s))].

Practical algorithms can employ an approximate action-value function Q̂ and an approximate dynam-
ics model p̂, which, most commonly, are parametric function approximators specified by the spaces
Q = {Qφ : φ ∈ Φ ⊆ Rh} and P = {pω : ω ∈ Ω ⊆ Rk}.

2.2 Deterministic Policy Gradients and TD-learning

Policy gradient methods improve the policy πθ by ascending the direction of the gradient of its
performance function J(θ). The Deterministic Policy Gradient Theorem [47] provides a practical
way to calculate this gradient. It shows that, under some mild regularity conditions on the MDP, the
gradient of the performance of a deterministic policy πθ is given by:

∇θJ(θ) =
1

1− γ

∫

S
dπµ(s)∇aQπ(s, a)

∣∣
a=πθ(s)

∇θπθ(s)ds. (1)

This result can be interpreted through the lens of the chain rule applied to the action-value gradient
∇θQπ: the policy gradient does not directly depend on the gradient of dπµ, and can be obtained by
just chaining the actor’s Jacobian∇θπθ with the action-gradient of the value function ∇aQπ .

The theorem motivates a family of policy gradient actor-critic algorithms, such as DDPG [28] and
TD3 [18]. Similarly to the classical policy iteration [52], the evaluation of a policy π ∈ Π (called
actor in this context) is interleaved with its improvement w.r.t the approximate action-value function
Q̂ ∈ Q (called critic). Specifically, the typical desideratum consists in finding a critic Q̂ which
minimizes the policy evaluation error:

Q̂ ∈ arg min
Q̃∈Q

E
s∼dπµ

∣∣∣δπ,Q̃(s, π(s))
∣∣∣ , (2)

where δπ,Q̃(s, a) = Qπ(s, a) − Q̃(s, a) is a deviation w.r.t the true state-action value. Given
the lack of knowledge about the transition model, Qπ needs to be approximated. A common
approximation technique consists in employing the temporal difference (TD) error [50], defined
as δ̂π,Q̃(s, a, s′) = r(s, a) + γQ̃(s′, π(s′))− Q̃(s, a), giving rise to a bootstrapped optimization
criterion for Q̂:

Q̂ ∈ arg min
Q̃∈Q

E
s ∼ dπµ

s′ ∼ p(·|s, π(s))

∣∣∣δ̂π,Q̃(s, π(s), s′)
∣∣∣ . (3)

2



Minimizing the TD-error, albeit under rather strong assumptions, enjoys convergence guarantees [52,
56]. Once a critic is learned, the actor πθ can be improved by maximizing the action-value function
for actions produced by the policy:

πθ ∈ arg max
π̃θ∈ΠΘ

E
s∼dπµ

[
Q̂(s, π̃θ(s))

]
. (4)

The above can be seen as a generalization of the policy improvement step in classical policy iteration,
which relies on maximization over a discrete action space that cannot be easily carried out in
continuous spaces. In practice, to reduce the computational burden, the problems in Equation 3
and Equation 4 are solved only partially (e.g., by using a single optimization step) at each iteration,
similarly to generalized policy iteration [52].

3 Learning Action-Value Gradients

In this section, we discuss theoretically how to learn a useful critic in the context of deterministic
policy gradients. Then, we make the theoretical insights concrete and, guided by practical considera-
tions, present Model-based Action-Gradient-Estimator Policy Optimization (MAGE), a novel policy
optimization algorithm.

3.1 How to Learn a Useful Critic?

An actor can only be as good as allowed by its critic. Thus, obtaining an effective critic is one of
the most crucial passages for any actor-critic algorithm. In the previous section, we outlined the
most common method to train the critic, consisting in the minimization of the temporal difference
error. However, when the learned action-value function will not be perfect, as common in policy
optimization with function approximation, minimizing the TD-error does not guarantee that the critic
will be effective for the goal of solving the control problem. Instead, the following result provides
foundations for a more grounded objective function for critic learning.

Proposition 3.1. Let Π be a parametric space of Lπ-Lipschitz continuous differentiable deterministic
policies, Q a space of approximate value functions and ‖ · ‖ any p-norm. Given π ∈ Π and Q̂ ∈ Q,
the norm of the difference between the true policy gradient ∇θJ(θ) and its approximation ∇̂θJ(θ),
which uses Q̂, can be upper bounded as:

‖∇θJ(θ)− ∇̂θJ(θ)‖ ≤ Lπ
1− γ E

s∼dπµ

∥∥∥∥∇aδπ,Q̂(s, a)
∣∣∣
a=π(s)

∥∥∥∥ .

The proposition (see Appendix A for the proof) is a direct consequence of the Deterministic Policy
Gradient Theorem and is thus valid when deterministic policies are employed. The Lipschitz
assumption for π is easily satisfied for many policy classes of practical use, e.g., neural networks [16].

Proposition 3.1 suggests that it is the norm of the action-gradient of the policy evaluation error instead
of its value that should be minimized to reduce the bias introduced by the use of the approximate
value function Q̂. To minimize the bound, a proxy for the unknown Qπ is needed. To this aim, it is
possible to follow the approach of traditional TD-learning, substituting the evaluation error δπ,Q̂ with
the TD-error δ̂π,Q̂. This leads to the following optimization problem:

Q̂ ∈ arg min
Q̃∈Q

E
s ∼ dπµ

s′ ∼ p(·|s, π(s))

∥∥∥∇aδ̂π,Q̃(s, π(s), s′)
∥∥∥ . (5)

Notice that computing the gradient w.r.t. the action of the TD-error δ̂π,Q̂ requires taking into account
the effect of action a on the transition to the subsequent state in the environment s′, i.e., backpropa-
gating through the environment dynamics p. Since p is not available in typical RL settings, especially
in a differentiable form, it needs to be substituted with an approximate model p̂, as commonly
done in model-based RL [7, 10, 23]. An environment model gives rise to imaginary transitions
(s, π(s), ŝ), where ŝ ∼ p̂(·|s, π(s)). Given differentiable model, policy, and action-value function,
the action-gradient can be effectively computed by leveraging standard automatic differentiation
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Figure 1: Graph describing the computation of δ̂πθ,Q̂, when using policy πθ, model p̂, action-value
function Q̂. Nodes and edges represent functions and variables, respectively. To compute ∇aδ̂πθ,Q̂,
all the paths from the output back to a must be considered, including the one highlighted in cyan,
which involves the environment dynamics. Therefore, an approximate differentiable model p̂ needs
to be learned in order to make all the required paths accessible.

tools [5]. The corresponding computational graph is depicted in Figure 1. This leads to a viable way
to obtain Q̂:

Q̂ ∈ arg min
Q̃∈Q

E
s ∼ dπµ

ŝ ∼ p̂(·|s, π(s))

∥∥∥∇aδ̂π,Q̃(s, π(s), ŝ)
∥∥∥ . (6)

Even in the general case of a stochastic model, differentiating through the resulting computations
is still possible for many commonly used model classes via the reparametrization trick [21]. Using
an approximate model p̂ implies a tradeoff, since additional bias is injected into the estimation of
the critic. Nonetheless, the use of p̂ is the most direct way to solve the optimization problem in
Equation 6 and to obtain a Q̂ that provides a more accurate policy gradient w.r.t. the typical critic.

3.2 Model-based Action-Gradient-Estimator Policy Optimization

The outlined procedure for learning the value function requires an approximate model pω, thus
naturally suggesting its integration into a model-based policy optimization framework. A model-
based actor-critic method involves three steps during each iteration: learning the model pω , updating
the action-value function Qφ and improving the policy πθ. In the following, we consider neural
networks as function approximators to represent the three modules, although any class of differentiable
models could be leveraged. Our approach is inspired by Dyna [51], and employs an approximate
dynamics model for generating 1-step imaginary on-policy transitions starting from observed states
stored in a replay buffer. Those transitions are then employed to learn Qφ, and, in turn, leveraged for
computing an improvement direction for the parameters of the policy πθ.

In preliminary experiments, we found that directly solving the minimization problem in Equation 6 is
hard in practice. During the optimization, the parameters are prone to be trapped in local-minima,
which leads to degenerate solutions. A demonstration of this phenomenon is detailed in Appendix B.1.
The root cause of this effect is unknown and suggests the existence of a tradeoff between the easier
minimization of the TD-error and the more theoretically grounded minimization of its action-gradient.

We propose as a remedy the introduction of a constraint into the optimization problem. We argue that,
among the possible solutions, a natural one is constraining the optimization landscape by bounding
the traditional TD-error (see Equation 3), and thus solving the following optimization problem:

min
φ̃∈Φ

E
s ∼ dπµ

ŝ ∼ pω(·|s, π(s))

∥∥∥∥∇aδ̂
π,Q

φ̃(s, a, ŝ)
∣∣∣
a=π(s)

∥∥∥∥

s.t. E
s ∼ dπµ

ŝ ∼ pω(·|s, π(s))

∣∣∣δ̂π,Qφ̃(s, π(s), ŝ)
∣∣∣ ≤ λ.

(7)

As the above expressions already require non-trivial gradient computations, we avoid the use of
complex and expensive methods for nonlinear programming. Instead, we resort to penalty function
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Algorithm 1 Model-based Action-Gradient-Estimator Policy Optimization (MAGE)
Input: Initial buffer B, set of parameter vectors {ω,φ,θ}

for each iteration do
Collect transition (s, a, s′) acting according to exploratory version of πθ
B ← B ∪ {(s, a, s′)}
for each model learning step do
ω ← ω − αp∇ω`(s, a, s′;ω), (s, a, s′) ∼ B

end for
for each policy optimization step do

Extract state s after sampling (s, ·, ·) ∼ B
φ̄← φ

δ̂(s, a, ŝ;φ)← r(s, a) + γQφ̄(ŝ, πθ(ŝ))−Qφ(s, a), a = πθ(s), ŝ ∼ pω(·|s, a)

φ← φ− αQ∇φ
(∥∥∥∇aδ̂(s, a, ŝ;φ)

∣∣
a=πθ(s)

∥∥∥+ λ
∣∣∣δ̂(s, a, ŝ;φ)

∣∣∣)
θ ← θ + απ∇θQφ(s, πθ(s))

end for
end for

methods [49] by regularizing the original objective by using the TD-error. A similar approach has
been used in the past in, e.g., Proximal Policy Optimization (PPO, [45]) to approximately solve
different constrained optimization problems.

Eventually, the parameters of Qφ are learned by descending the gradient

∇φL(s, a, ŝ;φ,θ,ω) = ∇φ
(∥∥∥∇aδ̂πθ,Qφ(s, a, ŝ)

∣∣
a=πθ(s)

∥∥∥+ λ
∣∣∣δ̂πθ,Qφ(s, a, ŝ)

∣∣∣
)

(8)

on an imaginary transition (s, a, ŝ). This expression requires computing second-order gradients,
which would be computationally expensive if computed w.r.t. to the high-dimensional space of
parameters Φ of the Q-function. Here, however, the optimization is affordable since the gradients are
computed w.r.t., typically low dimensional, actions. Notice also that the computational overhead of
the second term in Equation 8 is minimal, since evaluating the TD-error δ̂π,Qφ(s, a, ŝ) is anyway,
when using automatic differentiation, required to compute its gradient.

We plug our critic training method into a model-based Dyna-like algorithm, giving rise to Model-
based Action-Gradient-Estimator Policy Optimization (MAGE), which is presented2 in Algorithm 1.
At each iteration, the dynamics model pω is trained to maximize the likelihood of the transitions
stored in the experience replay buffer B, or, equivalently, to minimize an appropriate loss function `:

ω ∈ arg min
ω̃∈Ω

E
(s,a,s′)∼B

[`(s, a, s′; ω̃)] . (9)

Then, for one or more steps, the TD-error for the current policy and action-value function is computed,
and used together with its action-gradient to update Qφ, which in turn is leveraged to improve πθ.

4 Experiments

4.1 Sample-Efficient Continuous Control with MAGE

Algorithm settings The general structure of MAGE is compatible with many actor-critic algorithms
with deterministic policies. In this experiment, we employ TD3 [18], a popular, state-of-the-art
extension to DDPG [28], as a base policy optimization method. This amounts to the addition of target
policy smoothing, delayed policy updates, clipped double Q-learning and target functions. We call
this version of our algorithm MAGE-TD33. After each step of environment interaction, we add the
collected transition in the replay buffer B, train the approximate model pω, and update critic and
actor 10 times. We employ a single value of λ = 0.2 for all the environments, since we found MAGE
to be reasonably robust to the choice of this hyperparameter (see Appendix B). In order to reduce
the impact of model bias, MAGE leverages an ensemble of 8 probabilistic Gaussian-output models,
trained by maximum likelihood estimation.

2For simplicity of presentation, an abstract version of MAGE is considered in Algorithm 1. Any actor-critic
algorithm with deterministic actor can be then used to instantiate MAGE into a practical incarnation.

3The PyTorch [34] implementation, based on [46], is available at https://github.com/nnaisense/MAGE.
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Figure 2: Performance in terms of average return of MAGE on continuous control benchmarks.
MAGE compares favorably to the three baselines on all the environments (5 runs, 95% c.i.).

Baselines and environments We consider one model-based and two model-free algorithms as
baselines. The first one is Dyna-TD3, which uses a classical TD-error loss, otherwise being identical
to MAGE-TD3. It resembles 1-step horizon Model-based Policy Optimization (MBPO [23]), but uses
a deterministic policy optimized by TD3. Apart from that, we compared MAGE against TD3 and its
sample-efficient variant [57], which employs multiple updates for each environment step and trades
off computational efficiency and, potentially, stability [32] for sample efficiency. Specifically, for
a fair comparison with MAGE-TD3, we execute 10 critic and actor updates after each interaction
with the environment. We employ environments from OpenAI Gym [6] and the MuJoCo physics
simulator [55] as continuous control benchmarks, assuming, for all the environments, the availability
of a differentiable reward function (we will later show that MAGE behaves well also in the absence of
this assumption). Additional details concerning the experimental setting are reported in Appendix D.

Results Figure 2 shows the learning curves for the average return of all the approaches. Since
our primary interest is MAGE’s sample efficiency, we show the first 105 steps of environment
interaction. The results show that MAGE is able to learn at least as fast as all the baselines on all
the environments, confirming the intuitive advantage of directly optimizing for the accuracy of the
estimated action-value gradient. Interestingly, no superiority of the vanilla Dyna-TD3 on its simple
data-efficient version can be observed: this demonstrates that there is no intrinsic advantage in terms
of sample-efficiency for model-based reinforcement learning, but it is instead highly environment-
and algorithm-dependent. On the other hand, increasing the number of offline updates for model-free
algorithms can hurt performance in some environments, as it is the case, for instance, on the Pusher-v2
environment. Note that, in contrast with Dyna-TD3, that only leverages the model as a generator for
additional transitions w.r.t. the ones that can be obtained in the environment, MAGE makes deeper
use of the learned model of the dynamics in order to unlock a peculiar learning modality that would
be impossible in a model-free setting. In Appendix B, we also show that MAGE-TD3 matches the
asymptotic performance of its model-free counterpart.

4.2 Understanding MAGE

Action-Gradient Estimation MAGE was designed to obtain a critic that is maximally useful
for policy improvement by yielding accurate action-value gradients. How much better does it
predict them compared to the traditional TD-learning? To investigate this question, we employ the
Pendulum-v0 environment, using a differentiable oracle in place of the approximate dynamics model.
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We fix a randomly initialized actor, and train only
its critic with both MAGE-TD3 and its Dyna coun-
terpart. During training, for each transition on a
trajectory, we compute the true action-gradient as
∇aQπ(st, at) = ∇a

∑H−1
t′=t γ

t′r(st′ , at′)|at′=πθ(st′ ) and
compare it to the action-gradient ∇aQ̂ provided by the
learned critic. The results, shown in Figure 7, indicate
that the MAGE’s critic progressively learns an accurate
estimate of the action-gradient; by contrast, the one trained
using traditional temporal difference completely fails in
predicting it. The results undermine the common assump-
tion that minimizing the TD-error yields also a minimiza-
tion of the error on the gradients. The difference can
explain the superior sample efficiency of MAGE over clas-
sical TD-learning. We believe the surprising observation

that traditional approaches are able to learn a reasonably good policy even when the learned gradient
is very different from the real one is in line with recent analyses on the mismatch between the
empirical behavior of policy gradient approaches and their conceptual features [22].

Reward Availability Throughout the presentation and evaluation of MAGE, we assumed
complete knowledge of the reward function r of the underlying Markov Decision Process.
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Figure 4: Performance of MAGE on
Pusher-v2 using an estimated reward
function r̂ (5 runs, 95% c.i.).

While this assumption is natural in many real-world set-
tings [10] and thus commonly employed in other model-
based reinforcement learning methods [7, 11, 21], its role
is particularly crucial in our algorithm. In traditional tem-
poral difference learning, given a transition (s, a, ŝ), the
reward r(s, a) constitutes the only grounding element in
the objective function. The reward function plays an even
stronger role as a grounding element for bootstrapping in
MAGE, since both its value r(s, a) and its action-gradient
∇ar(s, a) are needed: while the former can be usually ob-
served in the environment, the latter can only be computed
with complete knowledge of the underlying function. In
our experiments on the sample efficiency of MAGE, we
employed the ground-truth reward function (with ground-
truth gradients): a natural question is whether MAGE still
performs reasonably well if an estimated reward function
r̂, learned from data, is used in place of the real r. To
answer this question, we evaluate a version of MAGE in which an approximate reward function r̂
is learned by using a neural network approximator and minimizing the mean squared error on the
rewards observed in the environment. The results, perhaps surprising, are reported in Figure 4 for
the Pusher-v2 environment (see Appendix B.2 for the complete results). They show that, for the
commonly employed continuous control benchmarks, the performance of our method is only mini-
mally degraded by the use of an approximate reward function in place of the real one, thus suggesting
inherent robustness to inaccurate evaluations of the reward function as well as its action-gradient.

5 Related Work

Policy gradients are among the most popular methods in reinforcement learning. A variety of
algorithms have been proposed for the estimation of the policy gradient, either involving only the
policy [4, 32, 61] or also a value function [33, 44, 45]. The latter category of algorithms is reffered
to as actor-critic methods [26, 35]. Among them, the ones based on the Deterministic Policy
Gradient [28, 47] leverage the action-gradient of the critic. When using function approximation, the
quality of the learned critic is of paramount importance [3]: for instance, enforcing on the critic the
compatiblity conditions [47] ensures an unbiased estimate of the policy gradient.

Developed around such conditions, GProp [2] is, to the best of our knowledge, the only method
that explicitly optimizes for the accuracy of the learned action-value gradient. It is significantly
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different w.r.t. MAGE, being model-free and based on gradient estimation via noisy perturbations
together with an additional deviator network. Importantly, while GProp’s deviator network is a
function approximator that outputs an estimate for the action-gradient, recent theoretical [39] and
practical [40] insights outside of RL suggest that learning the action-gradient by second-order
differentiation, as we propose in MAGE, is not only simpler to implement w.r.t. GProp and similar
procedures [59], but also fundamentally more effective when using neural network approximators.

The technique we use for learning the action-gradient relies on the differentiation of the TD-error and,
thus, of the Bellman equation. This is related to a broad class of methods called value gradients [8, 14,
21, 41], in which the policy is improved by backpropagating through the unrolled Bellman equation.
Those approaches, however, learn the value function by standard temporal difference [21]. Another
classical method, named Dual Heuristic Programming (DHP) [13, 35, 60], learns the gradient of
the state-value function in a model-based setting, leading to a TD-learning procedure that resembles
our approach. However, DHP has the main goal of improving generalization of the value function
and exploration, and is fundamentally different from MAGE, that aims at learning an accurate
action-gradient of the critic and is motivated by the Deterministic Policy Gradient Theorem.

More broadly, inside and outside of reinforcement learning, several algorithms incorporate gradient
penalties into the loss function used for training a neural network. This technique, known as double
backpropagation [12], has been employed in a number of applications, for instance increasing
generalization capabilities [12, 38], enforcing Lipschitz constants [19, 20, 30], or encouraging
robustness to adversarial examples [48]. Particularly related to our approach is Sobolev training [9],
which leverages the availability of the derivatives of a target function to explicitly try to learn both
value and gradient of it during supervised training; in our case, no ground-truth gradient is available
and we use the action-gradient of the TD-target as a proxy.

Our method learns the action-gradient in the context of model-based policy optimization [10, 54, 58].
We build upon the classical Dyna framework [25, 51], in which a learned model is used for generating
imaginary transitions, then employed for training a value function. Our algorithm, which learns a
Q-function from model-generated data but only optimizes the policy by using real data, is related
to the approaches that compute the policy gradient by using a model-based value function together
with trajectories sampled in the environment [1, 11, 21, 23]. In practice, we leverage an ensemble of
models, which has been shown to improve performance in a variety of contexts [7, 23, 27].

Finally, our work is related in spirit to decision-aware model learning (DAML) [11, 15, 24]. In
DAML approaches, the model of the dynamics of the environment is learned by explicitly considering
how it will be used for improving the control policy: this is the same rationale behind the learning
objective used in MAGE for the critic, focused on how it will be useful for policy optimization, and
not merely on how it will be similar to the true value function.

6 Conclusion

In this paper, we presented MAGE, a model-based actor-critic algorithm with deterministic actor,
which leverages an approximate dynamics model to directly learn the action-value gradient via
temporal difference learning. MAGE employs second-order differentiation to obtain a critic tailored
for policy improvement. The empirical evaluation of MAGE demonstrated its superiority over
model-based and model-free baselines on challenging high-dimensional continuous control tasks.

A limitation of our method is of computational nature: in addition to the cost of model learning paid
also by other model-based actor-critic algorithms, we incur the expense of computing a second-order
gradient in order to train the critic, in result, approximately doubling the training time in comparison
to the Dyna-based policy gradient approach. This can potentially be alleviated by the development of
more efficient automatic differentiation tools, which is, currently, an active area of research [5].

While it is often hard to determine the circumstances under which the addition of an approximate
model to a model-free algorithm is beneficial [23], we have shown that model-based techniques, such
as MAGE’s gradient-learning procedure, can unlock novel learning modalities, otherwise inaccessible.
This can actually be the true power of model-based reinforcement learning. Therefore, apart from
improving MAGE (e.g., by investigating the unconstrained critic learning problem) and generalizing
it (e.g., to value gradients with real trajectories [21] or multi-steps methods [17]), we hope that future
work will reveal other innovative learning schemes that are infeasible in model-free settings.
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Broader Impact

The method presented in this paper is a reinforcement learning algorithm that can be used to control
a system executing real-valued actions in an environment. Therefore, a natural application of it
is in robotics, with positive (e.g., elderly care, resource-efficiency in manufacturing) and negative
(e.g., military) applications. Alongside other deep reinforcement learning algorithms, our method
is computationally intensive and its training can thus require considerable resources (i.e., hardware
and electricity); on the other hand, given that in many real-world scenarios every interaction with a
system implies an economic or environmental cost, the sample efficiency of MAGE is aligned with
the modern principles of responsible artificial intelligence.
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