Appendices

A Auxiliary lemmas

The proofs of Theorem 1 and Theorem 2 require the lemmas provided below.
Lemma 1. The norms $\|\cdot\|_{\infty, 1}$ and $\|\cdot\|_{1, \infty}$ are dual.
Proof. The dual norm of $\|\cdot\|_{\infty, 1}$ assigns each $\mathbf{w} \in \mathbb{R}^{|\mathcal{I}||\mathcal{J}|}$ for finite sets \mathcal{I} and \mathcal{J}, the real number

$$
\sup _{\mathbf{v}:\|\mathbf{v}\|_{\infty, 1} \leq 1} \mathbf{w}^{\mathrm{T}} \mathbf{v}
$$

We have that for \mathbf{v} with $\|\mathbf{v}\|_{\infty, 1} \leq 1$

$$
\begin{aligned}
\mathbf{w}^{\mathrm{T}} \mathbf{v} & =\sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} w_{(i, j)} v_{(i, j)} \leq \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}}\left|w_{(i, j)}\right| \| v_{(i, j)} \mid \\
& \leq \sum_{i \in \mathcal{I}}\left(\max _{j}\left|v_{(i, j)}\right|\right) \sum_{j \in \mathcal{J}}\left|w_{(i, j)}\right| \leq \max _{i \in \mathcal{I}} \sum_{j \in \mathcal{J}}\left|w_{(i, j)}\right| \sum_{i \in \mathcal{I}}\left(\max _{j}\left|v_{(i, j)}\right|\right) \\
& =\|\mathbf{w}\|_{1, \infty}\|\mathbf{v}\|_{\infty, 1} \leq\|\mathbf{w}\|_{1, \infty}
\end{aligned}
$$

So, to prove the result we just need to find a vector \mathbf{u} such that $\|\mathbf{u}\|_{\infty, 1} \leq 1$ and $\mathbf{w}^{\mathrm{T}} \mathbf{u}=\|\mathbf{w}\|_{1, \infty}$. Let $\iota \in \arg \max _{i \in \mathcal{I}} \sum_{j \in \mathcal{J}}\left|w_{(i, j)}\right|$, then \mathbf{u} given by

$$
u_{(i, j)}=\left\{\begin{array}{cc}
1 & \text { if } i=\iota \text { and } w_{(i, j)} \geq 0 \\
-1 & \text { if } i=\iota \text { and } w_{(i, j)}<0 \\
0 & \text { otherwise }
\end{array}\right.
$$

satisfies $\|\mathbf{u}\|_{\infty, 1} \leq 1$ and $\mathbf{w}^{\mathrm{T}} \mathbf{u}=\|\mathbf{w}\|_{1, \infty}$.

Lemma 2. Let $\mathbf{u} \in \mathbb{R}^{|\mathcal{I}||\mathcal{J}|}$ for finite sets \mathcal{I} and \mathcal{J}, and f_{1}, f_{2} be the functions $f_{1}(\mathbf{v})=\|\mathbf{v}\|_{\infty, 1}-$ $\mathbf{1}^{\mathrm{T}} \mathbf{v}+I_{+}(\mathbf{v})$ and $f_{2}(\mathbf{v})=\mathbf{v}^{\mathrm{T}} \mathbf{u}+I_{+}(\mathbf{v})$ for $\mathbf{v} \in \mathbb{R}^{|\mathcal{I}||\mathcal{J}|}$, where

$$
I_{+}(\mathbf{v})=\left\{\begin{array}{cc}
0 & \text { if } \mathbf{v} \succeq \mathbf{0} \\
\infty & \text { otherwise }
\end{array}\right.
$$

Then, their conjugate functions are

$$
\begin{gathered}
f_{1}^{*}(\mathbf{w})=\left\{\begin{array}{cc}
0 & \text { if }\left\|(\mathbf{1}+\mathbf{w})_{+}\right\|_{1, \infty} \leq 1 \\
\infty & \text { otherwise }
\end{array}\right. \\
f_{2}^{*}(\mathbf{w})= \begin{cases}0 & \text { if } \mathbf{w} \preceq \mathbf{u} \\
\infty & \text { otherwise }\end{cases}
\end{gathered}
$$

Proof. By definition of conjugate function we have

$$
f_{1}^{*}(\mathbf{w})=\sup _{\mathbf{v}}\left(\mathbf{w}^{\mathrm{T}} \mathbf{v}-\|\mathbf{v}\|_{\infty, 1}+\mathbf{1}^{\mathrm{T}} \mathbf{v}-I_{+}(\mathbf{v})\right)=\sup _{\mathbf{v} \succeq 0}\left((\mathbf{1}+\mathbf{w})^{\mathrm{T}} \mathbf{v}-\|\mathbf{v}\|_{\infty, 1}\right)
$$

- If $\left\|(\mathbf{1}+\mathbf{w})_{+}\right\|_{1, \infty} \leq 1$, for each $\mathbf{v} \succeq \mathbf{0}, \mathbf{v} \neq \mathbf{0}$ we have

$$
(\mathbf{1}+\mathbf{w})^{\mathrm{T}} \mathbf{v} \leq\left((\mathbf{1}+\mathbf{w})_{+}\right)^{\mathrm{T}} \mathbf{v}=\|\mathbf{v}\|_{\infty, 1}\left(\left((\mathbf{1}+\mathbf{w})_{+}\right)^{\mathrm{T}} \frac{\mathbf{v}}{\|\mathbf{v}\|_{\infty, 1}}\right)
$$

and by definition of dual norm we get

$$
(\mathbf{1}+\mathbf{w})^{\mathrm{T}} \mathbf{v} \leq\|\mathbf{v}\|_{\infty, 1}\left\|(\mathbf{1}+\mathbf{w})_{+}\right\|_{1, \infty} \leq\|\mathbf{v}\|_{\infty, 1}
$$

which implies

$$
(\mathbf{1}+\mathbf{w})^{\mathrm{T}} \mathbf{v}-\|\mathbf{v}\|_{\infty, 1} \leq 0
$$

Moreover, $(\mathbf{1}+\mathbf{w})^{\mathrm{T}} \mathbf{0}-\|\mathbf{0}\|_{\infty, 1}=0$, so we have that $f_{1}^{*}(\mathbf{w})=0$.

- If $\left\|(\mathbf{1}+\mathbf{w})_{+}\right\|_{1, \infty}>1$, by definition of dual norm and using Lemma there exists \mathbf{u} such that $\left((\mathbf{1}+\mathbf{w})_{+}\right)^{\mathrm{T}} \mathbf{u}>1$ and $\|\mathbf{u}\|_{\infty, 1} \leq 1$. Define $\tilde{\mathbf{u}}$ as

$$
\tilde{u}_{(i, j)}=\left\{\begin{array}{cc}
u_{(i, j)} & \text { if } u_{(i, j)} \geq 0 \text { and } 1+w_{(i, j)} \geq 0 \\
0 & \text { if } u_{(i, j)}<0 \text { or } 1+w_{(i, j)}<0
\end{array}\right.
$$

By definition of $\tilde{\mathbf{u}}$ and $\|\cdot\|_{\infty, 1}$ we have

$$
\|\tilde{\mathbf{u}}\|_{\infty, 1} \leq\|\mathbf{u}\|_{\infty, 1} \leq 1
$$

and

$$
(\mathbf{1}+\mathbf{w})^{\mathrm{T}} \tilde{\mathbf{u}}=\left((\mathbf{1}+\mathbf{w})_{+}\right)^{\mathrm{T}} \tilde{\mathbf{u}} \geq\left((\mathbf{1}+\mathbf{w})_{+}\right)^{\mathrm{T}} \mathbf{u}>1
$$

Now let $t>0$ and take $\mathbf{v}=t \tilde{\mathbf{u}} \succeq 0$, then we have

$$
(\mathbf{1}+\mathbf{w})^{\mathrm{T}} \mathbf{v}-\|\mathbf{v}\|_{\infty, 1}=t\left((\mathbf{1}+\mathbf{w})^{\mathrm{T}} \tilde{\mathbf{u}}-\|\tilde{\mathbf{u}}\|_{\infty, 1}\right)
$$

which tends to infinity as $t \rightarrow+\infty$ because $(\mathbf{1}+\mathbf{w})^{\mathrm{T}} \tilde{\mathbf{u}}-\|\tilde{\mathbf{u}}\|_{\infty, 1}>0$, so we have that $f_{1}^{*}(\mathbf{w})=+\infty$.

Finally, the expression for f_{2}^{*} is straightforward since

$$
f_{2}^{*}(\mathbf{w})=\sup _{\mathbf{v} \succeq \mathbf{0}}\left((\mathbf{w}-\mathbf{u})^{\mathrm{T}} \mathbf{v}\right) .
$$

B Proof of Theorem 1 1

Let set $\widetilde{\mathcal{U}}$ and function $\widetilde{\ell}(\mathrm{h}, \mathrm{p})$ be given by

$$
\begin{gathered}
\tilde{\mathcal{U}}=\left\{\mathrm{p}: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \text { s.t. } \mathbf{p} \succeq \mathbf{0},\|\mathbf{p}\|_{1, \infty} \leq 1\right\} \\
\widetilde{\ell}(\mathrm{h}, \mathrm{p})=\mathbf{b}^{\mathrm{T}} \boldsymbol{\mu}_{b}^{*}-\mathbf{a}^{\mathrm{T}} \boldsymbol{\mu}_{a}^{*}-\nu^{*}+\mathbf{p}^{\mathrm{T}}\left(\boldsymbol{\Phi}\left(\boldsymbol{\mu}_{a}^{*}-\boldsymbol{\mu}_{b}^{*}\right)+\left(\nu^{*}+1\right) \mathbf{1}-\mathbf{h}\right) .
\end{gathered}
$$

In the first step of the proof we show that $\mathrm{h}^{\mathbf{a}, \mathrm{b}}$ satisfying (4) is a solution of optimization problem $\min _{\mathrm{h} \in T(\mathcal{X}, \mathcal{Y})} \max _{\mathrm{p} \in \mathcal{U}} \widetilde{\ell}(\mathrm{h}, \mathrm{p})$, and in the second step of the proof we show that a solution of $\min _{\mathrm{h} \in T(\mathcal{X}, \mathcal{Y})} \max _{\mathrm{p} \in \mathcal{U}} \widetilde{\mathscr{U}}(\mathrm{h}, \mathrm{p})$ is also a solution of $\min _{\mathrm{h} \in T(\mathcal{X}, \mathcal{Y})} \max _{\mathrm{p} \in \mathcal{U}}{ }^{\mathrm{a}, \mathrm{b}} \ell(\mathrm{h}, \mathrm{p})$.
For the first step, note that

$$
\widetilde{\ell}(\mathrm{h}, \mathrm{p})=\mathbf{b}^{\mathrm{T}} \boldsymbol{\mu}_{b}^{*}-\mathbf{a}^{\mathrm{T}} \boldsymbol{\mu}_{a}^{*}-\nu^{*}+\sum_{x \in \mathcal{X}} \mathbf{p}_{x}^{\mathrm{T}}\left(\boldsymbol{\Phi}_{x}\left(\boldsymbol{\mu}_{a}^{*}-\boldsymbol{\mu}_{b}^{*}\right)+\left(\nu^{*}+1\right) \mathbf{1}-\mathbf{h}_{x}\right) .
$$

Then, optimization problem $\min _{\mathrm{h} \in T(\mathcal{X}, \mathcal{Y})} \max _{\mathrm{p} \in \mathcal{U}} \tilde{\ell}(\mathrm{h}, \mathrm{p})$ is equivalent to

$$
\min _{\mathrm{h}_{x} \in \Delta(\mathcal{Y}) \forall x \in \mathcal{X}} \quad \max _{\mathbf{p}_{x} \succeq \mathbf{0},\left\|\mathbf{p}_{x}\right\|_{1} \leq 1 \forall x \in \mathcal{X}} \quad \sum_{x \in \mathcal{X}} \mathbf{p}_{x}^{\mathrm{T}}\left(\mathbf{\Phi}_{x}\left(\boldsymbol{\mu}_{a}^{*}-\boldsymbol{\mu}_{b}^{*}\right)+\left(\nu^{*}+1\right) \mathbf{1}-\mathbf{h}_{x}\right)
$$

that is separable and has solution given by

$$
\mathbf{h}_{x}^{\mathbf{a}, \mathbf{b}} \in \underset{\mathrm{h}_{x} \in \Delta(\mathcal{Y})}{\arg \min } \quad \max _{\mathbf{p}_{x} \succeq \mathbf{0},\left\|\mathbf{p}_{x}\right\|_{1} \leq 1} \mathbf{p}_{x}^{\mathrm{T}}\left(\mathbf{\Phi}_{x}\left(\boldsymbol{\mu}_{a}^{*}-\boldsymbol{\mu}_{b}^{*}\right)+\left(\nu^{*}+1\right) \mathbf{1}-\mathbf{h}_{x}\right)
$$

for each $x \in \mathcal{X}$. The inner maximization above is given in closed-form by

$$
\begin{aligned}
& \max _{\mathbf{p}_{x} \succeq \mathbf{0},\left\|\mathbf{p}_{x}\right\|_{1} \leq 1} \mathbf{p}_{x}^{\mathrm{T}}\left(\boldsymbol{\Phi}_{x}\left(\boldsymbol{\mu}_{a}^{*}-\boldsymbol{\mu}_{b}^{*}\right)+\left(\nu^{*}+1\right) \mathbf{1}-\mathbf{h}_{x}\right) \\
& \quad=\left\|\left(\boldsymbol{\Phi}_{x}\left(\boldsymbol{\mu}_{a}^{*}-\boldsymbol{\mu}_{b}^{*}\right)+\left(\nu^{*}+1\right) \mathbf{1}-\mathbf{h}_{x}\right)_{+}\right\|_{\infty} \geq 0
\end{aligned}
$$

that takes its minimum value 0 for any $\mathbf{h}_{x}^{\mathbf{a}, \mathbf{b}} \succeq \boldsymbol{\Phi}_{x}\left(\boldsymbol{\mu}_{a}^{*}-\boldsymbol{\mu}_{b}^{*}\right)+\left(\nu^{*}+1\right) \mathbf{1}$.
For the second step, if $h^{\mathbf{a}, \mathbf{b}}$ is a solution of $\min _{\mathrm{h} \in T(\mathcal{X}, \mathcal{Y})} \max _{\mathrm{p} \in \tilde{\mathcal{U}}} \tilde{\ell}(\mathrm{h}, \mathrm{p})$ we have that

$$
\begin{equation*}
\min _{\mathrm{h} \in T(\mathcal{X}, \mathcal{Y})} \max _{\mathrm{p} \in \widetilde{\mathcal{U}}} \widetilde{\ell}(\mathrm{~h}, \mathrm{p})=\max _{\mathrm{p} \in \widetilde{\mathcal{U}}} \widetilde{\ell}\left(\mathrm{~h}^{\mathbf{a}, \mathbf{b}}, \mathrm{p}\right) \geq \max _{\mathrm{p} \in \mathcal{U}^{\mathbf{a}, \mathbf{b}}} \ell\left(\mathrm{h}^{\mathbf{a}, \mathbf{b}}, \mathrm{p}\right) \geq \min _{\mathrm{h} \in T(\mathcal{X}, \mathcal{Y})} \max _{\mathrm{p} \in \mathcal{U}^{\mathbf{a}, \mathbf{b}}} \ell(\mathrm{h}, \mathrm{p}) \tag{16}
\end{equation*}
$$

where the first inequality is due to the fact that $\mathcal{U}^{\mathbf{a}, \mathbf{b}} \subset \widetilde{\mathcal{U}}$ and $\widetilde{\ell}(\mathrm{h}, \mathrm{p}) \geq \ell(\mathrm{h}, \mathrm{p})$ for $\mathrm{p} \in \mathcal{U}^{\mathbf{a}, \mathbf{b}}$ because

$$
\mathbf{b}^{\mathrm{T}} \boldsymbol{\mu}_{b}^{*}-\mathbf{a}^{\mathrm{T}} \boldsymbol{\mu}_{a}^{*}+\mathbf{p}^{\mathrm{T}} \boldsymbol{\Phi}\left(\boldsymbol{\mu}_{a}^{*}-\boldsymbol{\mu}_{b}^{*}\right) \leq 0
$$

by definition of $\mathcal{U}^{\mathbf{a}, \mathbf{b}}$ and since $\boldsymbol{\mu}_{a}^{*}, \boldsymbol{\mu}_{b}^{*} \succeq \mathbf{0}$.
Since $\ell(\mathrm{h}, \mathrm{p})$ is continuous and convex-concave, and both $\mathcal{U}^{\mathbf{a}, \mathbf{b}}$ and $T(\mathcal{X}, \mathcal{Y})$ are convex and compact, the min and the \max in $R^{\mathbf{a}, \mathrm{b}}=\min _{\mathrm{h} \in T(\mathcal{X}, \mathcal{Y})} \max _{\mathrm{p} \in \mathcal{U}^{\mathrm{a}, \mathrm{b}}} \ell(\mathrm{h}, \mathrm{p})$ can be interchanged (see e.g., [14]) and we have that $R^{\mathbf{a}, \mathbf{b}}=\max _{\mathrm{p} \in \mathcal{U}^{\mathbf{a}, \mathrm{b}}} \min _{\mathrm{h} \in T(\mathcal{X}, \mathcal{Y})} \ell(\mathrm{h}, \mathrm{p})$. In addition,

$$
\min _{\mathrm{h} \in T(\mathcal{X}, \mathcal{Y})} \ell(\mathrm{h}, \mathrm{p})=\min _{\mathrm{h} \in T(\mathcal{X}, \mathcal{Y})} \mathbf{p}^{\mathrm{T}}(\mathbf{1}-\mathbf{h})=\mathbf{p}^{\mathrm{T}} \mathbf{1}-\|\mathbf{p}\|_{\infty, 1}
$$

because the optimization problem above is separable for $x \in \mathcal{X}$ and

$$
\begin{equation*}
\max _{\mathrm{h}_{x} \in \Delta(\mathcal{Y})} \mathbf{p}_{x}^{\mathrm{T}} \mathbf{h}_{x}=\left\|\mathbf{p}_{x}\right\|_{\infty} \tag{17}
\end{equation*}
$$

Then $R^{\mathbf{a}, \mathbf{b}}=\max _{\mathbf{p} \in \mathcal{U}^{\mathbf{a}, \mathbf{b}}} \mathbf{p}^{\mathrm{T}} \mathbf{1}-\|\mathbf{p}\|_{\infty, 1}$ that can be written as

$$
\begin{array}{cc}
\max _{\mathbf{p}} & \mathbf{p}^{\mathrm{T}} \mathbf{1}-\|\mathbf{p}\|_{\infty, 1}-I_{+}(\mathbf{p}) \\
\text { s. t. } & -\mathbf{p}^{\mathrm{T}} \mathbf{1}=-1 \tag{18}\\
& \mathbf{a} \preceq \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{p} \preceq \mathbf{b}
\end{array}
$$

where

$$
I_{+}(\mathbf{p})=\left\{\begin{array}{cc}
0 & \text { if } \mathbf{p} \succeq \mathbf{0} \\
\infty & \text { otherwise }
\end{array}\right.
$$

The Lagrange dual of the optimization problem (18) is

$$
\begin{equation*}
\min _{\boldsymbol{\mu}_{a}, \boldsymbol{\mu}_{b} \in \mathbb{R}^{m}, \nu \in \mathbb{R}}^{\text {s.t. }} \quad \mathbf{b}^{\mathrm{T}} \boldsymbol{\mu}_{b}-\mathbf{a}^{\mathrm{T}} \boldsymbol{\mu}_{a}-\nu+f^{*}\left(\mathbf{\Phi}\left(\boldsymbol{\mu}_{a}-\boldsymbol{\mu}_{b}\right)+\nu \mathbf{1}\right) \tag{19}
\end{equation*}
$$

where f^{*} is the conjugate function of $f(\mathbf{p})=\|\mathbf{p}\|_{\infty, 1}-\mathbf{p}^{\mathrm{T}} \mathbf{1}+I_{+}(\mathbf{p})$ (see e.g., section 5.1.6 in [15]). Then, optimization problem (19) becomes (3) using the Lemma 2 above.

Strong duality holds between optimization problems (18) and (3) since constraints in (18) are affine. Then, if $\boldsymbol{\mu}_{a}^{*}, \boldsymbol{\mu}_{b}^{*}, \nu^{*}$ is a solution of (3) we have that $R^{\mathbf{a}, \mathbf{b}}$ is equal to the value of

$$
\begin{equation*}
\max _{\mathrm{p}} \mathbf{p}^{\mathrm{T}} \mathbf{1}-\|\mathbf{p}\|_{\infty, 1}-I_{+}(\mathbf{p})-\left(\mathbf{p}^{\mathrm{T}} \boldsymbol{\Phi}-\mathbf{b}^{\mathrm{T}}\right) \boldsymbol{\mu}_{b}^{*}+\left(\mathbf{p}^{\mathrm{T}} \boldsymbol{\Phi}-\mathbf{a}^{\mathrm{T}}\right) \boldsymbol{\mu}_{a}^{*}+\left(\mathbf{p}^{\mathrm{T}} \mathbf{1}-1\right) \nu^{*} \tag{20}
\end{equation*}
$$

that equals

$$
\max _{\mathrm{p} \in \widetilde{\mathcal{U}}} \mathbf{p}^{\mathrm{T}} \mathbf{1}-\|\mathbf{p}\|_{\infty, 1}+\mathbf{b}^{\mathrm{T}} \boldsymbol{\mu}_{b}^{*}-\mathbf{a}^{\mathrm{T}} \boldsymbol{\mu}_{a}^{*}-\nu^{*}+\mathbf{p}^{\mathrm{T}}\left(\boldsymbol{\Phi}\left(\boldsymbol{\mu}_{a}^{*}-\boldsymbol{\mu}_{b}^{*}\right)+\nu^{*} \mathbf{1}\right)
$$

since a solution of the primal problem (18) belongs to $\tilde{\mathcal{U}}$ and is also a solution of (20). Therefore,

$$
\begin{aligned}
R^{\mathbf{a}, \mathbf{b}} & =\max _{\mathrm{p} \in \widetilde{\mathcal{U}}} \min _{\mathrm{h} \in T(\mathcal{X}, \mathcal{Y})} \ell(\mathrm{h}, \mathrm{p})+\mathbf{b}^{\mathrm{T}} \boldsymbol{\mu}_{\boldsymbol{b}}^{*}-\mathbf{a}^{\mathrm{T}} \boldsymbol{\mu}_{a}^{*}-\nu^{*}+\mathbf{p}^{\mathrm{T}}\left(\boldsymbol{\Phi}\left(\boldsymbol{\mu}_{a}^{*}-\boldsymbol{\mu}_{b}^{*}\right)+\nu^{*} \mathbf{1}\right) \\
& =\max _{\mathrm{p} \in \widetilde{\mathcal{U}}} \min _{\mathrm{h} \in T(\mathcal{X}, \mathcal{Y})} \widetilde{\ell}(\mathrm{h}, \mathrm{p})=\min _{\mathrm{h} \in T(\mathcal{X}, \mathcal{Y})} \max _{\mathrm{p} \in \tilde{\mathcal{U}}} \widetilde{\ell}(\mathrm{~h}, \mathrm{p})
\end{aligned}
$$

where the last equality is due to the fact that $\tilde{\ell}(\mathrm{h}, \mathrm{p})$ is continuous and convex-concave, and both $\widetilde{\mathcal{U}}$ and $T(\mathcal{X}, \mathcal{Y})$ are convex and compact. Then, inequalities in (16) are in fact equalities and $\mathrm{h}^{\mathbf{a}, \mathbf{b}}$ is solution of $\min _{\mathrm{h} \in T(\mathcal{X}, \mathcal{Y})} \max _{\mathrm{p} \in \mathcal{U}^{\mathrm{a}, \mathrm{b}}} \ell(\mathrm{h}, \mathrm{p})$.

C Proof of Theorem 2

The result is a direct consequence of the fact that for any $p \in \mathcal{U}^{\mathbf{a}, \mathbf{b}}$

$$
\min _{\widetilde{\mathrm{p}} \in \mathcal{U}^{\mathbf{a}, \mathbf{b}}} \ell(\mathrm{h}, \widetilde{\mathrm{p}}) \leq \ell(\mathrm{h}, \mathrm{p}) \leq \max _{\widetilde{\mathrm{p}} \in \mathcal{U}^{\mathbf{a}, \mathbf{b}}} \ell(\mathrm{h}, \widetilde{\mathrm{p}})
$$

and

$$
\begin{aligned}
& \min _{\widetilde{\mathrm{p}} \in \mathcal{U}^{\mathbf{a}, \mathbf{b}}} \ell(\mathrm{h}, \widetilde{\mathrm{p}})=\min _{\widetilde{\mathrm{p}} \in \mathcal{U}^{\mathbf{a}, \mathbf{b}}} \widetilde{\mathbf{p}}^{\mathrm{T}}(\mathbf{1}-\mathbf{h}) \\
& \max _{\widetilde{\mathrm{p}} \in \mathcal{U}^{\mathbf{a}, \mathbf{b}}} \ell(\mathrm{h}, \widetilde{\mathrm{p}})=-\min _{\widetilde{\mathrm{p}} \in \mathcal{U}^{\mathbf{a}, \mathbf{b}}} \widetilde{\mathbf{p}}^{\mathrm{T}}(\mathbf{h}-\mathbf{1}) .
\end{aligned}
$$

The expression for $\kappa^{\mathbf{a}, \mathbf{b}}(q)$ in (7) is obtained since

$$
\begin{array}{cc}
\min _{\widetilde{\mathbf{p}} \in \mathcal{U}^{\mathbf{a}, \mathbf{b}}} \widetilde{\mathbf{p}}^{\mathrm{T}}(-\mathbf{q})=\min _{\widetilde{\mathbf{p}}} & \widetilde{\mathbf{p}}^{\mathrm{T}}(-\mathbf{q})+I_{+}(\widetilde{\mathbf{p}}) \\
\text { s. t. } & -\mathbf{1}^{\mathrm{T} \widetilde{\mathbf{p}}=-1} \tag{21}\\
& \mathbf{a} \preceq \boldsymbol{\Phi}^{\mathrm{T}} \widetilde{\mathbf{p}} \preceq \mathbf{b}
\end{array}
$$

where

$$
I_{+}(\widetilde{\mathbf{p}})=\left\{\begin{array}{cc}
0 & \text { if } \widetilde{\mathbf{p}} \succeq \mathbf{0} \\
\infty & \text { otherwise }
\end{array}\right.
$$

Then, the Lagrange dual of the optimization problem (21) is

$$
\begin{equation*}
\max _{\boldsymbol{\mu}_{a}, \boldsymbol{\mu}_{b} \in \mathbb{R}^{m}, \nu \in \mathbb{R}}^{\text {s.t. }} \quad \mathbf{a}^{\mathrm{T}} \boldsymbol{\mu}_{a}-\mathbf{b}^{\mathrm{T}} \boldsymbol{\mu}_{b}+\nu-f^{*}\left(\boldsymbol{\Phi}\left(\boldsymbol{\mu}_{a}-\boldsymbol{\mu}_{b}\right)+\nu \mathbf{1}\right) \tag{22}
\end{equation*}
$$

where f^{*} is the conjugate function of $f(\widetilde{\mathbf{p}})=\widetilde{\mathbf{p}}^{\mathrm{T}}(-\mathbf{q})+I^{+}(\widetilde{\mathbf{p}})$ that leads to using Lemma

D Proof of Theorem 3

Firstly, with probability at least $1-\delta$ we have that $\mathrm{p}^{*} \in \mathcal{U}^{\mathbf{a}_{n}, \mathbf{b}_{n}}$ and

$$
\left\|\boldsymbol{\tau}_{\infty}-\boldsymbol{\tau}_{n}\right\|_{2} \leq\|\mathbf{d}\|_{2} \sqrt{\frac{\log m+\log \frac{2}{\delta}}{2 n}}
$$

because, using Hoeffding's inequality [19] we have that for $i=1,2, \ldots, m$

$$
\mathbb{P}\left\{\left|\tau_{\infty, i}-\tau_{n, i}\right|<t_{i}\right\} \geq 1-2 \exp \left\{-\frac{2 n^{2} t_{i}^{2}}{n d_{i}^{2}}\right\}
$$

so taking $t_{i}=d_{i} \sqrt{\frac{\log m+\log \frac{2}{\delta}}{2 n}}$ we get

$$
\mathbb{P}\left\{\left|\tau_{\infty, i}-\tau_{n, i}\right|<d_{i} \sqrt{\frac{\log m+\log \frac{2}{\delta}}{2 n}}\right\} \geq 1-2 \exp \left\{-\log m-\log \frac{2}{\delta}\right\}=1-\frac{\delta}{m}
$$

and using the union bound we have that

$$
\begin{aligned}
\mathbb{P}\left\{\left|\tau_{\infty, i}-\tau_{n, i}\right|<d_{i} \sqrt{\frac{\log m+\log \frac{2}{\delta}}{2 n}},\right. & i=1,2, \ldots, m\} \\
& \geq 1-m+\sum_{i=1}^{m} \mathbb{P}\left\{\left|\tau_{\infty, i}-\tau_{n, i}\right|<d_{i} \sqrt{\frac{\log m+\log \frac{2}{\delta}}{2 n}}\right\} \\
& \geq 1-\delta
\end{aligned}
$$

For the first inequality in (9), we have that $R\left(\mathrm{~h}^{\mathbf{a}_{n}, \mathbf{b}_{n}}\right) \leq R^{\mathbf{a}_{n}, \mathbf{b}_{n}}$ with probability at least $1-\delta$ since $\mathrm{p}^{*} \in \mathcal{U}^{\mathbf{a}_{n}, \mathbf{b}_{n}}$ with probability at least $1-\delta$.
For the second inequality in (9), let μ^{*}, ν^{*} be the solution with minimum euclidean norm of (6) for $\mathbf{a}=\boldsymbol{\tau}_{\infty} ;\left[\left(\boldsymbol{\mu}^{*}\right)^{+},\left(-\boldsymbol{\mu}^{*}\right)^{+}, \nu^{*}\right]$ is a feasible point of (3) because $\boldsymbol{\mu}^{*}=\left(\boldsymbol{\mu}^{*}\right)^{+}-\left(-\boldsymbol{\mu}^{*}\right)^{+}$and $\boldsymbol{\mu}^{*}, \nu^{*}$ is a feasible point of (6). Hence

$$
R^{\mathbf{a}_{n}, \mathbf{b}_{n}} \leq \mathbf{b}_{n}^{\mathrm{T}}\left(-\boldsymbol{\mu}^{*}\right)^{+}-\mathbf{a}_{n}^{\mathrm{T}}\left(\boldsymbol{\mu}^{*}\right)^{+}-\nu^{*}=R^{\boldsymbol{\tau}_{\infty}}+\left(\mathbf{b}_{n}-\boldsymbol{\tau}_{\infty}\right)^{\mathrm{T}}\left(-\boldsymbol{\mu}^{*}\right)^{+}+\left(\boldsymbol{\tau}_{\infty}-\mathbf{a}_{n}\right)^{\mathrm{T}}\left(\boldsymbol{\mu}^{*}\right)^{+}
$$

$$
\begin{gathered}
=R^{\boldsymbol{\tau}_{\infty}-}\left(\boldsymbol{\tau}_{\infty}-\boldsymbol{\tau}_{n}-\mathbf{d} \sqrt{\frac{\log m+\log \frac{2}{\delta}}{2 n}}\right)^{\mathrm{T}}\left(-\boldsymbol{\mu}^{*}\right)^{+}+\left(\boldsymbol{\tau}_{\infty}-\boldsymbol{\tau}_{n}+\mathbf{d} \sqrt{\frac{\log m+\log \frac{2}{\delta}}{2 n}}\right)^{\mathrm{T}}\left(\boldsymbol{\mu}^{*}\right)^{+} \\
=R^{\boldsymbol{\tau}_{\infty}}+\left(\boldsymbol{\tau}_{n}-\boldsymbol{\tau}_{\infty}\right)^{\mathrm{T}} \boldsymbol{\mu}^{*}+\sqrt{\frac{\log m+\log \frac{2}{\delta}}{2 n}} \mathbf{d}^{\mathrm{T}}\left(\left(\boldsymbol{\mu}^{*}\right)^{+}+\left(-\boldsymbol{\mu}^{*}\right)^{+}\right)
\end{gathered}
$$

Then the result is obtained using Cauchy-Schwarz inequality and the fact that $\|\left(\boldsymbol{\mu}^{*}\right)^{+}+$ $\left(-\boldsymbol{\mu}^{*}\right)^{+}\left\|_{2}=\right\| \boldsymbol{\mu}^{*} \|_{2}$.
For the result in (10), note that using Theorem 2 and since $\mathrm{p}^{*} \in \mathcal{U}^{\mathbf{a}_{n}, \mathbf{b}_{n}}$ with probability at least $1-\delta$ we have that

$$
R\left(\mathrm{~h}^{\boldsymbol{\tau}_{n}}\right) \leq \max _{\mathrm{p} \in \mathcal{U}^{\mathbf{a}}, \mathbf{b}_{n}} \ell\left(\mathrm{~h}^{\boldsymbol{\tau}_{n}}, \mathrm{p}\right)=\min _{\boldsymbol{\Phi}\left(\boldsymbol{\mu}_{a}-\boldsymbol{\mu}_{a}\right)+\nu \mathbf{1} \preceq \mathbf{h}^{\tau_{n}-\mathbf{1}}} \mathbf{b}_{n}^{\mathrm{T}} \boldsymbol{\mu}_{b}-\mathbf{a}_{n}^{\mathrm{T}} \boldsymbol{\mu}_{a}-\nu
$$

so that, if $\boldsymbol{\mu}_{n}^{*}, \nu_{n}^{*}$ is the solution with minimum euclidean norm of for $\mathbf{a}=\boldsymbol{\tau}_{n}$, we have that $R\left(\mathrm{~h}^{\boldsymbol{\tau}_{n}}\right) \leq \mathbf{b}_{n}^{\mathrm{T}}\left(-\boldsymbol{\mu}_{n}^{*}\right)^{+}-\mathbf{a}_{n}^{\mathrm{T}}\left(\boldsymbol{\mu}_{n}^{*}\right)^{+}-\nu_{n}^{*}$ because $\boldsymbol{\mu}_{n}^{*}=\left(\boldsymbol{\mu}_{n}^{*}\right)^{+}-\left(-\boldsymbol{\mu}_{n}^{*}\right)^{+}$and $\boldsymbol{\Phi} \boldsymbol{\mu}_{n}^{*}+\nu_{n}^{*} \mathbf{1} \preceq \mathbf{h}^{\tau_{n}}-\mathbf{1}$ by definition of $\mathbf{h}^{\tau_{n}}$. Therefore, the result is obtained since

$$
\begin{aligned}
R\left(\mathrm{~h}^{\boldsymbol{\tau}_{n}}\right) & \leq\left(\boldsymbol{\tau}_{n}+\mathbf{d} \sqrt{\frac{\log m+\log \frac{2}{\delta}}{2 n}}\right)^{\mathrm{T}}\left(-\boldsymbol{\mu}_{n}^{*}\right)^{+}-\left(\boldsymbol{\tau}_{n}-\mathbf{d} \sqrt{\frac{\log m+\log \frac{2}{\delta}}{2 n}}\right)^{\mathrm{T}}\left(\boldsymbol{\mu}_{n}^{*}\right)^{+}-\nu_{n}^{*} \\
& =R^{\boldsymbol{\tau}_{n}}+\mathbf{d}^{\mathrm{T}} \sqrt{\frac{\log m+\log \frac{2}{\delta}}{2 n}}\left(\left(\boldsymbol{\mu}_{n}^{*}\right)^{+}+\left(-\boldsymbol{\mu}_{n}^{*}\right)^{+}\right) .
\end{aligned}
$$

For the result in (11), note that using Theorem 2 and since $\mathrm{p}^{*} \in \mathcal{U}^{\tau \infty}$ we have that

$$
R\left(\mathrm{~h}^{\boldsymbol{\tau}_{n}}\right) \leq \max _{\mathrm{p} \in \mathcal{U}^{\boldsymbol{\tau}} \infty} \ell\left(\mathrm{h}^{\boldsymbol{\tau}_{n}}, \mathrm{p}\right)=\min _{\boldsymbol{\Phi} \boldsymbol{\mu}+\nu \mathbf{1} \preceq \mathbf{h}^{\boldsymbol{\tau}_{n}-\mathbf{1}}}-\left(\boldsymbol{\tau}_{\infty}\right)^{\mathrm{T}} \boldsymbol{\mu}-\nu
$$

so that, if $\boldsymbol{\mu}_{n}^{*}, \nu_{n}^{*}$ is the solution with minimum euclidean norm of (6) for $\mathbf{a}=\boldsymbol{\tau}_{n}$, we have that $R\left(\mathrm{~h}^{\boldsymbol{\tau}_{n}}\right) \leq-\left(\boldsymbol{\tau}_{\infty}\right)^{\mathrm{T}} \boldsymbol{\mu}_{n}^{*}-\nu_{n}^{*}$ because $\boldsymbol{\Phi} \boldsymbol{\mu}_{n}^{*}+\nu_{n}^{*} \mathbf{1} \preceq \mathbf{h}^{\tau_{n}}-\mathbf{1}$ by definition of $\mathbf{h}^{\tau_{n}}$. Let $\boldsymbol{\mu}^{*}, \nu^{*}$ be the solution with minimum euclidean norm of (6) for $\mathbf{a}=\tau_{\infty}$, the result is obtained since

$$
\begin{align*}
R\left(\mathrm{~h}^{\boldsymbol{\tau}_{n}}\right) & \leq-\left(\boldsymbol{\tau}_{\infty}\right)^{\mathrm{T}} \boldsymbol{\mu}_{n}^{*}-\nu_{n}^{*}+\boldsymbol{\tau}_{n}^{\mathrm{T}} \boldsymbol{\mu}_{n}^{*}-\boldsymbol{\tau}_{n}^{\mathrm{T}} \boldsymbol{\mu}_{n}^{*}+\left(\boldsymbol{\tau}_{\infty}\right)^{\mathrm{T}} \boldsymbol{\mu}^{*}+\nu^{*}-\left(\boldsymbol{\tau}_{\infty}\right)^{\mathrm{T}} \boldsymbol{\mu}^{*}-\nu^{*} \\
& =\left(\boldsymbol{\tau}_{n}-\boldsymbol{\tau}_{\infty}\right)^{\mathrm{T}} \boldsymbol{\mu}_{n}^{*}+R^{\boldsymbol{\tau}_{\infty}}-\boldsymbol{\tau}_{n}^{\mathrm{T}} \boldsymbol{\mu}_{n}^{*}-\nu_{n}^{*}+\left(\boldsymbol{\tau}_{\infty}\right)^{\mathrm{T}} \boldsymbol{\mu}^{*}+\nu^{*} \\
& \leq\left(\boldsymbol{\tau}_{n}-\boldsymbol{\tau}_{\infty}\right)^{\mathrm{T}} \boldsymbol{\mu}_{n}^{*}+\left(\boldsymbol{\tau}_{\infty}-\boldsymbol{\tau}_{n}\right)^{\mathrm{T}} \boldsymbol{\mu}^{*}+R^{\boldsymbol{\tau}_{\infty}} \tag{23}\\
& \leq\left\|\boldsymbol{\tau}_{n}-\boldsymbol{\tau}_{\infty}\right\|_{2}\left\|\boldsymbol{\mu}_{n}^{*}-\boldsymbol{\mu}^{*}\right\|_{2}+R^{\boldsymbol{\tau}_{\infty}}
\end{align*}
$$

where (23) is due to the fact that $-\boldsymbol{\tau}_{n}^{\mathrm{T}} \boldsymbol{\mu}_{n}^{*}-\nu_{n}^{*} \leq-\boldsymbol{\tau}_{n}^{\mathrm{T}} \boldsymbol{\mu}^{*}-\nu^{*}$ since $\boldsymbol{\mu}^{*}, \nu^{*}$ is a feasible point of (6) for $\mathbf{a}=\tau_{n}$.

