
A Probability Mass Function of MPF

We begin by deriving two different expressions for the probability mass function of MPF , which we
will reference in other proofs throughout the supplement.

Lemma 1. The probability mass function (pmf) of MPF can be expressed as:

Pr[MPF (�q) = r] = pr
�

π

1

n!

�

s:π(s)<π(r)

(1− ps)

where π is a permutation and pr = exp
�

�
2Δ (qr − q∗)

�
.

Proof. Let Xs be the event that the sth coin is heads, and let π be a random permutation. The events
Xs are independent. The rth item is selected if Xr is true, and Xs is false for all s that come before
r in the permutation π, that is:

Pr[MPF (�q) = r] = Pr

�
Xr ∩

� �

s:π(s)<π(r)

¬Xs

��

=
Pr[Xr]

n!

�

π

�

s:π(s)<π(r)

(1− Pr[Xs])

=
pr
n!

�

π

�

s:π(s)<π(r)

(1− ps).

Lemma 2. An equivalent expression for the probability mass function of MPF is:

Pr[MPF (�q) = r] = pr
�

S⊆R
r/∈S

(−1)|S|

|S|+ 1

�

s∈S

ps.

Proof. Let Xs again denote the event that the sth coin is heads. Let π be a random permutation and
let Ys be the event Xs ∩ (π(s) < π(r)), or “the sth coin is heads and appears before the rth coin in
the random permuation”. Note that the events Xr and Ys are independent for r �= s.

By independence and the inclusion-exclusion principle:

Pr[MPF (�q) = r] = Pr
�
Xr ∩

�
¬
�

s�=r

Ys

��

= Pr[Xr]
�
1− Pr

� �

s�=r

Ys

��

= Pr[Xr]
�
1−

�

S⊆R
r/∈S
|S|≥1

(−1)|S| Pr
� �

s∈S

Ys

��

We now split the event
�

s∈S YS , or “all coins in S appear before r and are heads”, into the conjunction
of the events “all coins in S appear before r” and “all coins in S are heads”, and continue as:
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Pr[MPF (�q) = r] = Pr[Xr]

�
1−

�

S⊆R
r/∈S
|S|≥1

(−1)|S| · Pr
� �

s∈S

�
π(s) < π(r)

��
· Pr

� �

s∈S

Xs

��

= Pr[Xr]
�
1−

�

S⊆R
r/∈S
|S|≥1

(−1)|S| 1

|S|+ 1

�

s∈S

Pr[Xs]
�

= Pr[Xr]
�

S⊆R
r/∈S

(−1)|S|

|S|+ 1

�

s∈S

Pr[Xs]

= pr
�

S⊆R
r/∈S

(−1)|S|

|S|+ 1

�

s∈S

ps

B Proofs for Section 3: Permute-and-Flip Mechanism

In this section, we first prove Proposition 2, which gives simplifed sufficient conditions for privacy for
a regular mechanism. We then use Proposition 2 to prove Theorem 1, which establishes the privacy
of permute-and-flip. Finally, we prove Proposition 3, which shows that permute-and-flip satisfies the
recurrence used in the derivation.
Proposition 2. A regular mechanism M : Rn → R is �-differentially private if:

Pr[M(�q) = r] ≥ exp (−�) Pr[M(�q + 2Δ�er) = r]

for all (�q, r), where �er is the unit vector with a one at position r.

Proof. Let M be a regular mechanism satisfying:

Pr[M(�q) = r] ≥ exp (−�) Pr[M(�q + 2Δ�er) = r] (9)

Our goal is to show that M is differentially private, i.e., if for all �q ∈ Rn, r ∈ R, and �z ∈ [−Δ,Δ]n,

Pr[M(�q) = r] ≤ exp (�) Pr[M(�q + �z) = r]

Using this assumption together with the regularity of M, we obtain:

Pr[M(�q) = r] ≤ exp (�) Pr[M(�q − 2Δ�er) = r] by Equation (9)

= exp (�) Pr[M(�q +Δ�1− 2Δ�er) = r] by shift-invariance
≤ exp (�) Pr[M(�q + �z) = r] by monotonicity

Thus, we conclude that M is differentially-private, as desired. This completes the proof.

Before proving Theorem 1, we will argue regularity.
Lemma 3. MPF is regular.

Proof. We will establish the three conditions: symmetry, shift-invariance, and monotonicity.

• Symmetry: Consider pr as defined in the definition of MPF , and let �p � = Π�p denote the same
vector on the permuted quality scores. Now note that every permutation is equally likely for both
�p and �p �, and that the only difference is that pr = p�π(r). Hence Pr[M(�q) = r] = Pr[M(Π�q) =

π(r)], which implies M is symmetric as desired.
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• Shift-invariance: MPF is shift-invariant because on only depends on �q through qr − q∗. Adding
a constant to �q does not change qr − q∗.

• Monotonicity: Monotonicity follows from the pmf of the mechanism:

Pr[MPF (�q) = r] = pr
�

π

1

n!

�

s:π(s)<π(s)

(1− ps)

.

Assume without loss of generality that q∗ = 0 and note that pr = exp ( �
2Δqr). Clearly, the

expression above is monotonically increasing in pr (and hence qr) and monotonically decreasing
in ps (and hence qs). Hence MPF satisfies the monotonicity property.

Because MPF is symmetric, shift-invariant, and monotonic, it is regular.

Theorem 1. The Permute-and-Flip mechanism MPF is regular and �-differentially private.

Proof. Lemma 3 established regularity. It remains to argue that MPF is differentially-private. Let �q
and r be arbitrary. By Proposition 2, it suffices to show that

Pr[MPF (�q) = r] ≥ exp (−�) Pr[MPF (�q + 2Δ�er) = r]

or equivalently,

log Pr[MPF (�q + 2Δ�er) = r]− log Pr[MPF (�q) = r] ≤ �.

Assume without loss of generality that maxs�=r qs = 0, so that qr is a maximum score if and only if
qr ≥ 0. Let fr(�q) = log Pr[MPF (�q) = r]. Then is enough to show that ∂

∂qr
fr(�q) ≤ �

2Δ for all �q,
since

log Pr[MPF (�q + 2Δ�er) = r]− log Pr[MPF (�q) = r] = fr(�q + 2Δ�er)− fr(�q)

=

� qr+2Δ

qr

∂

∂qr
fr(�q)

���
qr=t

dt

The final equality is justified because, by the definition of the pmf for MPF , the function fr(�q) is
continuous. Furthermore, there is at most one point of non-differentiability of the partial derivative
(at t = 0, when the rth score becomes equal to the maximum), so, if needed, the integral can be split
into two parts about t = 0. This integral is bounded by � as long the partial derivative ∂fr

∂qr
is bounded

by �
2Δ .

Using the expression for the probability mass function of MPF from Lemma 2, we have:

fr(�q) = log Pr[MPF (�q) = r] = log

�
pr

�

S⊆R
r/∈S

(−1)|S|

|S|+ 1

�

s∈S

ps

�

We will show using this formula that ∂fr
∂qr

is always bounded by �
2Δ . We examine the cases when

qr < 0 and qr ≥ 0 separately.

Case 1: qr < 0. In this case, observe that ps = exp
�

�
2Δqs

�
does not depend on qr for s �= r.

Therefore, differentiating the formula for fr(�q) gives

∂fr
∂qr

=
∂fr
∂pr

∂pr
∂qr

=
� 1

Pr[M(�q) = r]

�

S⊆R
r/∈S

(−1)|S|

|S|+ 1

�

s∈S

ps

��
pr

�

2Δ

�

=
�

2Δ

Pr[M(�q) = r]

Pr[M(�q) = r]
=

�

2Δ
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Case 2: qr ≥ 0. In this case, because qr is the maximum score, we have ps = exp
�

�
2Δ (qs − qr)

�

for all r. We therefore proceed by differentiating fr(�q) using this expression for ps:

∂fr
∂qr

=
1

Pr[MPF (�q) = r]

∂

∂qr
Pr[MPF (�q) = r]

=
1

Pr[MPF (�q) = r]

∂

∂qr

�

S⊆R
r/∈S

(−1)|S|

|S|+ 1

�

s∈S

exp
� �

2Δ
(qs − qr)

�

=
1

Pr[MPF (�q) = r]

∂

∂qr

�

S⊆R
r/∈S

(−1)|S|

|S|+ 1
exp

�
− |S| �

2Δ
qr

� �

s∈S

exp
� �

2Δ
qs

�

=
1

Pr[MPF (�q) = r]

�

S⊆R
r/∈S

(−1)|S|

|S|+ 1
exp

�
− |S| �

2Δ
qr

��
− |S| �

2Δ

� �

s∈S

exp
� �

2Δ
qs

�

=
1

Pr[MPF (�q) = r]

�

S⊆R
r/∈S

(−1)|S|

|S|+ 1

�
− |S| �

2Δ

� �

s∈S

ps

=
� �

2Δ

� −1

Pr[MPF (�q) = r]

�

S⊆R
r/∈S

(−1)|S|

|S|+ 1
|S|

�

s∈S

ps

We now seek to show that

−1

Pr[MPF (�q) = r]

�

S⊆R
r/∈S

(−1)|S|

|S|+ 1
|S|

�

s∈S

ps ≤ 1

Equivalently, by multiplying both sides by Pr[MPF (�q) = r] and rearranging, we would like to show:

Pr[MPF (�q) = r] +
�

S⊆R
r/∈S

(−1)|S|

|S|+ 1
|S|

�

s∈S

ps ≥ 0

Substituting the expression for Pr[MPF (�q) = r] and simplifying, the expression on the left-hand
side above becomes:

�

S⊆R
r/∈S

(−1)|S|

|S|+ 1

�

s∈S

ps +
�

S⊆R
r/∈S

(−1)|S|

|S|+ 1
|S|

�

s∈S

ps =
�

S⊆R
r/∈S

(−1)|S|

|S|+ 1

�

s∈S

ps

�
1 + |S|

�

=
�

S⊆R
r/∈S

(−1)|S| �

s∈S

ps

=
�

s∈R\{r}
(1− ps)

The final equality can be seen directly by multiplying out
�

s∈R\{r}(1− ps) or (equivalently) via the
inclusion-exclusion formula. The final expression is the probability that the coins for all s ∈ R \ {r}
are “tails”, and is clearly non-negative, as desired.

This completes the proof.
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Remark 1. When the quality function is monotonic in the sense that adding an individual to the
dataset can only increase qr (and not decrease it), MPF offers �

2 -differential privacy. The proof is
largely the same, but the worst-case neighbor from Proposition 2 now occurs when �q � = �q +Δ�er.

Proposition 3. MPF solves the recurrence relation in Equation (6).

Proof. We proceed in cases:

Case 1: qr = q∗

Because MPF (�q) is a valid probability distribution for all �q, and it is symmetric, it must satisfy case
2 of the recurrence relation.

Case 2: qr < q∗

Note that the pmf of MPF is:

Pr[MPF (�q) = r] = pr
�

π

1

n!

�

s:π(s)<π(r)

(1− ps)

Pr[MPF (�q + (q∗ − qr)�er) = r] = p�r
�

π

1

n!

�

s:π(s)<π(r)

(1− ps)

where pr = exp ( �
2Δ (qr − q∗)) and p�r = exp ( �

2Δ (q∗ − q∗)) = 1. By comparing terms, it is clear
that

Pr[MPF (�q) = r] = exp (
�

2Δ
(qr − q∗)) Pr[MPF (�q + (q∗ − qr)�er) = r]

Hence, MPF solves case 1 of the recurrence relation. This completes the proof.

C Proofs for Section 4: Comparison with Exponential Mechanism

In this section, we first prove Theorem 2, which shows that the permute-and-flip error is no worse
than the exponential mechanism for any score vector. We then prove Proposition 4 and Proposition 5,
which analyze the worst-case expected errors of the two mechanisms and give tight lower bounds on
expected error as the number of items n increases.

C.1 Proof of Theorem 2

We first prove two lemmas. The first lemma establishes a monotonicity property for the factor of the
pmf from Lemma 1 excluding pr, i.e., the function gr(�q) such that Pr[MPF (�q) = r] = pr · gr(�q).
The second lemma gives a useful fact about partial sums of a non-decreasing sequence.

Lemma 4. If qr ≤ qs, then gr(�q) ≤ gs(�q), where

gr(�q) =
1

n!

�

π

�

t:π(t)<π(r)

(1− pt)

Proof. Recall that pr = exp
�

�
2Δ (qr − q∗)

�
. Note that if qr ≤ qs then 1 − pr ≥ 1 − ps. We will

show that gs(�q)− gr(�q) ≥ 0.
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gs(�q)− gr(�q) =
1

n!

�

π

� �

t:π(t)<π(s)

(1− pt)−
�

t:π(t)<π(r)

(1− pt)
�

(a)
=

1

n!

�

π:π(r)<π(s)

� �

t:π(t)<π(s)

(1− pt)−
�

k:π(t)<π(r)

(1− pt)
�

+
1

n!

�

π:π(r)>π(s)

� �

t:π(t)<π(s)

(1− pt)−
�

t:π(t)<π(r)

(1− pt)
�

(b)
=

1

n!

�

π:π(r)<π(s)

�

t:π(t)<π(s)

(1− pt)−
1

n!

�

π:π(r)>π(s)

�

t:π(t)<π(r)

(1− pt)

(c)
=

1

n!

�

π:π(r)<π(s)

(1− pr)
�

t:π(t)<π(s)
t�=r

(1− pt)−
1

n!

�

π:π(r)>π(s)

(1− ps)
�

t:π(t)<π(r)
t�=s

(1− pt)

(d)
= (ps − pr)

� 1

n!

�

π:π(r)<π(s)

�

t:π(t)<π(s)
t�=s

(1− pt)
�

(e)

≥ 0

Above, (a) breaks the sum up into permutations where r precedes s and vice versa. Step (b) cancels
common terms (those that do not contain 1− pr or 1− ps). Step (c) makes the dependence on 1− pr
and 1− ps explicit. Step (d) rearranges terms and uses a variable replacement on the second sum
(replacing r with s). Step (e) uses the fact that both terms are non-negative.

Lemma 5. Let �f ∈ Rn be an arbitrary vector satisfying:

1. f1 ≤ f2 ≤ · · · ≤ fn

2.
�n

r=1 fr = 0

Then for all s = {1, . . . , n}, the following holds

s�

r=1

fr ≤ 0

Proof. Let m be any index satisfying fm ≤ 0 and fm+1 ≥ 0. If t ≤ m, the claim is clearly true, as
it is a sum of non-positive terms. If t > m, we have

�s
r=1 fr ≤ �n

r=1 fr = 0. In either case the
partial sum is non-positive, and the claimed bound holds.

Theorem 2. MPF is never worse than MEM . That is, for all �q ∈ Rn and all t ≥ 0,

E[E(MPF , �q)] ≤ E[E(MEM , �q)], Pr[E(MPF , �q) ≥ t] ≤ Pr[E(MEM , �q) ≥ t]

Proof. We will prove the probability statement first, after which the expected error result will
follow easily. Assume without loss of generality (by symmetry) that q1 ≤ q2 ≤ · · · ≤ qn. Let
fr(�q) = Pr[MPF (�q) = r] − Pr[MEM (�q) = r] and let s denote the largest index satisfying
qs ≤ q∗ − t. Then Pr[E(MPF , �q) ≥ t] − Pr[E(MEM , �q) ≥ t] =

�s
r=1 fr(�q) and our goal is to

show:
s�

r=1

fr(�q) ≤ 0

for all s ∈ {1, . . . , n}. We first argue that fr monotonically increases with qr, i.e., f1 ≤ f2 ≤ · · · ≤
fn.

Note that fr(�q) can be expressed as pr[gr(�q)− hr(�q)], where
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gr(�q) =
1

n!

�

π

�

t:π(t)<π(r)

(1− pt)

hr(�q) =
1�

t∈R pt

Further, notice that the sequence hr (as r ranges from 1 to n) is constant-valued, while, from
Lemma 4, we know that gr is also non-decreasing. Thus the sequence gr − hr is also non-decreasing.
This, together with the fact that pr is non-negative and also non-decreasing, we know that fr is
non-decreasing. This fact together with Lemma 5 shows

�s
r=1 fr(�q) ≤ 0, as desired.

The ordering of expected errors now follows directly. Specifically, the expected error can be expressed
in terms of the (complementary) cumulative distribution function as:

E[E(M, �q)] =

� ∞

0

Pr[E(M, �q) ≥ t]dt.

We have already shown that Pr[E(MPF , �q) ≥ t] ≤ Pr[E(MEM , �q) ≥ t]. Thus:

E[E(MPF , �q)]− E[E(MEM , �q)] =

� ∞

0

Pr[E(MPF , �q) ≥ t]− Pr[E(MEM , �q) ≥ t]dt ≤ 0

Thus, we conclude E[E(MPF , �q)] ≤ E[E(MEM , �q)], as desired.

C.2 Proofs for Worst-Case Error Analysis

Proposition 4. The worst-case expected errors for both MEM and MPF occur when �q =
(c, . . . , c, 0) ∈ Rn for some c ≤ 0. Let p = exp

�
�

2Δc
�
. The expected errors for score vectors

of this form are:

E[E(MEM , �q)] =
2Δ

�
log

�1
p

��
1− 1

1 + (n− 1)p

�
, (7)

E[E(MPF , �q)] =
2Δ

�
log

�1
p

��
1− 1− (1− p)n

np

�
. (8)

The worst-case expected errors are found by maximizing Equations (7) and (8) over p ∈ (0, 1].

Proof. Assume without loss of generality that q∗ = 0 and note that pr = exp ( �
2Δqr).

Part 1: MEM

The (negative) expected error of MEM can be expressed as:

−E[E(MEM , �q)] = −q∗ +
�

r

qr
pr�
s ps

=
2Δ

�

1�
s ps

�

r

pr log (pr)

Our goal is to show this is minimized when p1 = · · · = pn−1. We procede by way of contradiction.
Assume WLOG p1 < p2. We will argue that we can replace p1 and p2 with new values that decrease
the objective. First write the negative expected error as a function of p1 and p2, treating everything
else as a constant.

f(p1, p2) =
1

p1 + p2 + a

�
p1 log (p1) + p2 log (p2) + b

�

We will show that f(p1+p2

2 , p1+p2

2 ) < f(p1, p2).
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f
�p1 + p2

2
,
p1 + p2

2

�
=

1

2p1+p2

2 + a

�
2
(p1 + p2)

2
log (

p1 + p2
2

) + b

�

=
1

p1 + p2 + a

�
2
(p1 + p2)

2
log (

p1 + p2
2

) + b

�

<
1

p1 + p2 + a

�
p1 log (p1) + p2 log (p2) + b

�

= f(p1, p2)

Above, the inequality follows from the strict convexity of p log (p). Thus, f(p1, p2) is not a minimum,
which is a contradiction.

Plugging in pn = 1 and pr = p for r < n, we obtain:

E[E(MEM , �q)] = −2Δ

�

(n− 1)p log p

1 + (n− 1)p

= −2Δ

�
log (p)

(n− 1)p

1 + (n− 1)p

= −2Δ

�
log (p)

�
1− 1

1 + (n− 1)p

�

=
2Δ

�
log

�1
p

��
1− 1

1 + (n− 1)p

�

Part 2: MPF

The (negative) expected error of MPF can be expressed as:

−E[E(MPF , �q)] = −q∗ +
�

r

qrpr
�

π

1

n!

�

s:π(s)<π(r)

(1− ps)

=
2Δ

�

�

r

pr log (pr)
�

π

1

n!

�

s:π(s)<π(r)

(1− ps)

We wish to show that this is minimized when p1 = · · · = pn−1 = c for some c ∈ (0, 1). We
proceed by way of contradiction. Assume without loss of generality p1 < p2 and let f(p1, p2) =
−E[E(MPF , �q)] be the negative expected error when treating everything constant except p1 and p2.
Note that f can be expressed as:

f(p1, p2) = p1 log (p1)[a(1− p2) + b] + p2 log (p2)[a(1− p1) + b]

− c(1− p1)− c(1− p2)− d(1− p1)(1− p2)− e

where a, b, c, d, e ≥ 0. We proceed in cases, by showing that we can always find new values for p1
and p2 that reduces f

Case 1: p1 log (p1) < p2 log (p2)

Set p2 ← p1.

The second term in the sum is (strictly) less by the assumption of case 1. Every other term is strictly
less because p1 < p2, which implies (1− p1) > (1− p2) or equivalently −(1− p1) < −(1− p2).

Case 2: p1 log (p1) ≥ p2 log (p2)
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Set p1 = p2 ← p1+p2

2 .

Consider breaking up the sum into two pieces; i.e., f(p1, p2) = fA(p1, p2) + fB(p1, p2) where:

fA(p1, p2) = p1 log (p1)[a(1− p2) + b] + p2 log (p2)[a(1− p1) + b]

fB(p1, p2) = −c(1− p1)− c(1− p2)− d(1− p1)(1− p2)− e

We have:

fA

�p1 + p2
2

,
p1 + p2

2

�
= 2

p1 + p2
2

log
�p1 + p2

2

��
a
�
1− p1 + p2

2

�
+ b

�

= (p1 + p2) log
�p1 + p2

2

��
a(1− p1) + b+ a(1− p2) + b

�

<
1

2
·
�
p1 log (p1) + p2 log (p2)

��
a(1− p1) + b+ a(1− p2) + b

�

=
1

2

�
p1 log (p1)[a(1− p1) + b] + p1 log (p1)[a(1− p2) + b]

+ p2 log (p2)[a(1− p1) + b] + p2 log (p2)[a(1− p2) + b]
�

< p1 log (p1)[a(1− p2) + b] + p2 log (p2)[a(1− p1) + b]

= fA(p1, p2)

Above, the first step follows from linearity, and the second step follows from the convexity of p log (p)
and non-negativeness of the linear term. The fourth step uses the assumption that p1 log (p1) ≥
p2 log (�p2) (Case 2), and the fact that a(1− p1) + b > a(1− p2) + b and log (p2) < 0.

fB

�p1 + p2
2

�
= −2c

�
1− p1 + p2

2

�
− d

�
1− p1 + p2

2

�2

− e

= −c(1− p1)− c(1− p2)− d
�
1− p1 + p2

2

�2

− e

< −c(1− p1)− c(1− p2)− d(1− p1)(1− p2)− e

= fB(p1, p2)

Above, the first step follows from linearity, and the second step follows from the fact that the area of
a square is always larger than the area of a rectangle with the same perimeter.

We have shown that fA and fB are both reduced, so f as a whole is also reduced.

To derive the expected error for a quality score vector of this form, we use a simple probabilistic
argument. There are n − 1 items with probability p coins, and one item with a probability 1 coin.
The probability of selecting an item corresponding to a probability p coin is

�n
i=1

1
n (1− (1− p)i−1)

where the index of the sum represents the location of the probability 1 item in the permutation and
1− (1− p)i−1 is the probability that at least one of the probability p coins before position i comes
up heads. Using the formula for a geometic series, this simplifies to 1− 1−(1−p)n

np . Thus, recalling
that c = 2Δ

� log (p), the expected error can be expressed as:

E[E(MPF , �q)] = c
�
1− 1− (1− p)n

np

�

= −2Δ

�
log (p)

�
1− 1− (1− p)n

np

�

=
2Δ

�
log

�1
p

��
1− 1− (1− p)n

np

�
.
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This completes the proof.

Proposition 5. For �q = (c, . . . , c, 0) ∈ Rn with c = − 2Δ
� log n, the expected error E[E(MPF , �q)]

of permute-and-flip is at least Δ
2� log (n). This implies that E[E(MEM , �q)] ≥ Δ

2� log (n) as well, and
that the upper bounds of Proposition 1 and Corollary 1 are within a factor of four of being tight.

Let c = − 2Δ
� log (n) and note that p = 1

n in Equation (8). Plugging in p to Equation (8) and
simplifying, we obtain:

E[E(MPF , �q)] =
2Δ

�
log (n)

�
1− 1− (1− 1

n )
n

n 1
n

�

=
2Δ

�
log (n)

�
1− 1

n

�n

≥ 2Δ

�
log (n)

1

4

=
Δ

2�
log (n)

This completes the proof.

D Proofs for Section 5: Optimailty of Permute-and-Flip

In this section we prove Proposition 6, about Pareto optimality of permute-and-flip, and Theorem 3,
about “overall” optimality.
Proposition 6 (Pareto Optimality). If E[E(MPF , �q)] > E[E(M, �q)] for some regular mechanism M
and some �q ∈ Rn

2Δ, then there exists �q � ∈ Rn
2Δ such that E[E(MPF , �q

�)] < E[E(M, �q �)].

Proof. Note that the expected error of the mechanism can be expressed as:

E[E(M, �q)] =
�

r∈R
qr<q∗

Pr[M(�q) = r](q∗ − qr)

Since E[E(MPF , �q)] > E[E(M, �q)], then Pr[MPF (�q) = r] > Pr[M(�q) = r] for some r where
qr < q∗. By Lemma 6, there must be some �q � where E[E(M, �q �)] > E[E(MPF , �q

�)]. This
completes the proof.

Lemma 6. If Pr[M(�q) = r] < Pr[MPF (�q) = r] for some r where qr < q∗, then there exists a �q �

such that E[E(M, �q �)] > E[E(MPF , �q
�)].

Proof. Let �q � = �q + (q∗ − qr)�er. By the differential privacy and regularity of M and the recursive
construction of MPF , we know:

Pr[M(�q) = r] ≥ exp
� �

2Δ
(qr − q∗)

�
Pr[M(�q �) = r]

Pr[MPF (�q) = r] = exp
� �

2Δ
(qr − q∗)

�
Pr[MPF (�q

�) = r]

Combining the above with the assumption of the Lemma, we obtain:

Pr[M(�q ) = r] < Pr[MPF (�q ) = r]

Note that �q �
r = �q �

∗. We proceed by way of induction:

Base Case: n�
∗ = n− 1.

There is a single s such that q�s < q�∗, and it must be the case that Pr[M(�q �) = s] > Pr[MPF (�q
�) =

s] by the symmetry and sum-to-one constraint on M and MPF . Thus, it follows immediately that
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E[E(MPF , �q
�)] < E[E(M, �q �)] because M places more probability mass on the candidate s that

increases the expected error (i.e., q�∗ − q�s > 0).

Induction Step: Assume Lemma 6 holds when n�
∗ = k + 1. We will show that Lemma 6 holds for

n�
∗ = k.

We proceed in two cases:

Case 1: Pr[M(�q �) = s] ≥ Pr[MPF (�q
�) = s] for all s such that q�s < q�∗.

The inequality must be strict for some s, because the inequality is strict for all r where qr = q∗
by the regularity/symmetry of M and MPF . Thus, it follows immediately that E[E(MPF , �q

�)] <
E[E(M, �q �)] because M places more probability mass on the candidates s that increase the expected
error (i.e., q�∗ − q�s > 0).

Case 2: Pr[M(�q �) = s] < Pr[MPF (�q
�) = s] for some s such that q�s < q∗.

Applying the induction hypothesis Lemma 6 using �q � (now with n�
∗ = k + 1), we see that the claim

must be true for n�
∗ = k, as desired.

Theorem 3 (Overall Optimality). For all regular mechanisms M and all � ≥ log ( 12 (3 +
√
5)),

�

�q∈Q

E[E(MPF , �q)] ≤
�

�q∈Q

E[E(M, �q)]

where Q = {�q ∈ Rn
2Δ : q∗ − qr ≤ 2Δk, q∗ = 0} for any integer constant k ≥ 0.

For the above optimality criteria, the best mechanism can be obtained by solving a simple linear
program. The variables of the linear program correspond to the probabilities the mechanism assigns
to different (�q, r) pairs, and the constraints are those required for differential privacy and regularity
(which are all linear).

Denote the optimization variables as xr(�q) := Pr[M(�q) = r] for all �q ∈ Q and all r ∈ R. Then the
linear program for the optimal regular mechanism can be expressed as:

maximize
x

�

�q∈Q

�

r

xr(�q)qr

subject to xr(�q) ≥ exp (−�)xr(�q
�) ∀�q, r (privacy)

xr(�q) = xπ(r)(Π�q) ∀�q, r,π (symmetry)
�

r

xr(�q) = 1 ∀�q (sum-to-one)

xr(�q) ≥ 0 ∀�q, r
The first constraint enforces differential privacy for a regular mechanism as in Proposition 2, where
�q � is the worst-case neighbor of �q. We assumed the maximum entry of every score vector is zero,
which is without loss of generality due to shift invariance. To ensure that �q � has maximum entry zero,
we use separate expressions for �q � depending on whether or not qr = 0:

�q � =

�
�q + 2Δ�er qr < 0

�q + 2Δ(�er −�1) qr = 0

The second constraint ensures the mechanism is symmetric, and the final two constraints ensure the
mechanism corresponds to a valid probability distribution.

To measure how close to optimal permute-and-flip is for � below the threshold, we can solve
this linear program numerically, and compare the solution to permute-and-flip. Observe that the
linear program has a large number of redundant variables from the symmetry constraint (e.g.,
x1(−2,−8, 0) = x3(0,−8,−2)). These variables can be grouped into equivalence classes, and the
redundant ones can be eliminated, keeping only a single one from each equivalence class. This
drastically reduces the number of variables and also allows us to eliminate the symmetry constraints.
Using this trick, the resulting linear program is significantly smaller, but the size still grows quickly
with n and k, and is only feasible to solve for relatively small n and k.
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Relaxed LP Our goal is to show that MPF solves the linear program. To do so, we will consider
the following relaxation of the linear program:

maximize
x

�

�q∈Q

�

r

xr(�q)qr

subject to − xr(�q) + exp
� �

2Δ
qr

�
xr(�q − qr�er) ≤ 0 qr < 0 (privacy)

n∗xr(�q) +
�

s:qs<0

xs(�q) = 1 qr = 0 (symmetry, sum-to-one)

xr(�q) ≥ 0

In this linear program:

• There is exactly one constraint per optimization variable (excluding non-negativity constraints).
• The first set of constraints corresponds to a subset of the privacy constraints from the original,

corresponding only to (�q, r) pairs with qr < 0. In addition, we performed substitutions of the form

xr(�q) ≥ exp (−�)xr(�q + 2Δ�er)

≥ exp (−2�)xr(�q + 4Δ�er)

≥ . . .

≥ exp
� �

2Δ
qr

�
xr(�q − qr�er),

where �q − qr�er is the quality score vector obtained by setting qr = 0.
• The sum-to-one and symmetry constraints are merged into a single constraint when qr = 0, and

other symmetry constraints are dropped.

These constraints correspond exactly to the ones in the recurrence defining MPF in Section 3.1.
This means that MPF satisfies these constraints with equality, by construction. Furthermore, since
MPF is feasible in the full LP (because it is a private, regular mechanism), if MPF is optimal for
the relaxed LP it is also optimal for the full LP.

Constructing a dual optimal solution We can show that MPF is optimal by constructing a
corresponding optimal solution to the dual linear program:

minimize
y

�

�q

�

r:qr=0

yr(�q)

subject to n∗yr(�q)−
k�

t=1

yr(�q − 2Δt�er) exp (−t�) ≥ qr qr = 0

− yr(�q) +
�

s:qs=0

ys(�q) ≥ qr qr < 0

yr(�q) ≥ 0 qr < 0

Because there is exactly one constraint for each optimization variable, we have used the same indexing
scheme for the dual variables. Note that the non-negativity constraints apply only to (�q, r) pairs with
qr < 0.

To prove optimality, the dual solution and MPF should satisfy complementary slackness: for each
positive primal variable, the corresponding dual constraint should be tight. However, all primal
variables are positive. Therefore, all dual constraints must be tight. By treating dual constraints as
equalities, we obtain a recurrence for y similar to the one used to derive MPF :

yr(q) =





0 qr = 0, n∗ = 1

− 1
n∗

�k
t=1 yr(�q − 2Δt�er) exp (−t�) qr = 0

−qr +
�

s:qs=0 ys(q) qr < 0

Like the recurrence for MPF , this recurrence is well-founded and defines a unique dual solution
y. The order of evaluation is reversed for the dual variables, and the base case occurs when n∗ = 1
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(rather than n∗ = n). We will now argue that, whenever � ≥ log
�
1
2 (3 +

√
5)
�
, the resulting dual

solution is feasible. This, together with complementary slackness, which is satisfied by construction,
implies that MPF and y are optimal solutions to the primal and dual programs, respectively.

Let y solve the recurrence above for � ≥ log
�
1
2 (3 +

√
5)
�
. To show that y is feasible, we will argue

inductively that these finer-grained bounds hold:

−2Δ

n∗
≤ yr(�q) ≤ 0 if qr = 0 (10)

0 ≤ yr(�q) ≤ −qr if qr < 0 (11)

Note that Equation (11) includes the dual feasibility constraints.

We prove Equations (10) and (11) by induction on the n∗, the number of zero (i.e., maximum) entries
of �q. For the base case, when n∗ = 1, yr(q) = −qr, so Equations (10) and (11) hold.

Now let �q be a score vector with n∗ > 1 entries equal to zero, and assume that Equations (10) and (11)
hold for all score vectors with fewer than n∗ zeros. By Case 1 of the recurrence, for r such that
qr = 0, we have

yr(�q) = − 1

n∗

k�

t=1

yr(�q − 2Δt�er) exp (−t�)

≥ − 1

n∗

k�

t=1

2Δt exp (−t�)

≥ −2Δ

n∗

∞�

t=1

t exp (−t�)

≥ −2Δ

n∗
.

In the second line, we used the fact that yr(�q − 2Δt�er) ≤ −(�q − 2Δt�er)r = 2Δt, which follows
from Equation (11) by the induction hypothesis, since �q − 2Δt�er is a score vector with n∗ − 1 zeros.
In the third line, we used the fact that

�∞
t=1 t exp(−t�) ≤ 1 whenever � ≥ log

�
1
2 (3 +

√
5)
�
, which

is stated and proved in Lemma 7 below.

It is also clear that

yr(�q) = − 1

n∗

k�

t=1

yr(�q − 2Δt�er) exp (−t�) ≤ 0,

since, again by Equation (11) and the induction hypothesis, each term of the sum is non-nonegative.

We have now established that Equation (10) holds for all score vectors with n∗ or fewer zeros, which
we use to prove that Equation (11) holds under the same conditions. By Case 2 of the recurrence,
when qr < 0 we have

yr(�q) = −qr +
�

s:qs=0

ys(�q)

≥ −qr +
�

s:qs=0

−2Δ

n∗

≥ −qr − 2Δ

≥ 0.

In the second line, we used, from Equation (10) that ys(�q) ≥ − 2Δ
n∗

. Similarly, we have

yr(�q) = −qr +
�

s:qs=0

ys(�q) ≤ −qr

because ys(�q) ≤ 0.
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This completes the inductive proof, and establishes that the dual solution y is feasible. This in turn
completes the proof that MPF is optimal.

Lemma 7. If � ≥ log
�
1
2 (3 +

√
5)
�
, then

�∞
k=1 k exp (−k�) ≤ 1.

Proof. The infinite sum is equal to:
exp (�)

[1− exp (�)]2

Making the substitution exp (�) = 1 + z, we have:

exp (�)

[1− exp (�)]2
≤ 1 ⇐⇒ 1 + z

z2
≤ 1 ⇐⇒ 1 + z ≤ z2

The solution to the quadratic equation 1 + z = z2 is the golden ratio, φ = 1
2 (1 +

√
5), so the

inequality holds whenever z ≥ φ, or whenever � ≥ log (1 + φ) = log
�
1
2 (3 +

√
5)
�
.

E Dynamic Programming Algorithm

In this section, we derive an efficient O(n2) dynamic programming algorithm to calculate the
probabilities. Recall the expression for the pmf from Lemma 2:

Pr[MPF (�q) = r] = pr
�

S⊆R
r/∈S

(−1)|S|

|S|+ 1

�

s∈S

ps.

To evaluate the probabilities efficiently, we can break up the sum into groups where |S| = k. Then,
using dynamic programming, we can calculate these sums efficiently and use them to compute the
desired probabilities.

Let
S(k, r) =

�

S⊆R
|S|=k

max(S)≤r

�

s∈S

ps.

And note that S(k, r) satisfies the recurrence:

S(k, r) = S(k, r − 1) + prS(k − 1, r − 1).

S(k, r − 1) is the sum over subsets not including r, and prS(k − 1, r − 1) is the sum over subsets
including r. Using the above recursive formula together with the base cases S(0, r) = 1 and
S(k, 0) = 0, we can compute S(k, r) for all (k, r) in O(n2) time.

S(k, n) is then the sum over all subsets of size k. Let T (k, r) denote the sum over all size k subsets
not including r:

T (k, r) =
�

S⊆R
|S|=k
r/∈S

�

s∈S

ps.

and note that T (k, r) satisfies the recurrence:

T (k, r) = S(k, n)− prT (k − 1, r)

with T (0, r) = 1. T (k, r) can also be calculated in O(n2) time. The final answer is then:
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Pr[MPF (�q) = r] = pr

n�

k=0

(−1)k

k + 1
T (k, r)

which can be computed in O(n) time for each r. Thus, the overall time complexity of this dynamic
programming procedure is O(n2).

F Report Noisy Max

A popular alternative to the exponential mechanism for private selection is report noisy max, which
works by adding Laplace noise with scale 2Δ

� to the score for each candidate, then returns the
candidate with the largest noisy score.

Reasoning about report noisy max analytically and exactly is challenging, and we are not aware
of a simple closed form expression for its probability mass function. To compute the probability
of returning a particular candidate, we must reason about the probability that one random variable
(the noisy score for that candidate) is larger than n− 1 other random variables (the scores for other
candidates), which in general requires evaluating a complicated integral. Specifically, let f(x) denote
the probability density function of Lap( 2Δ� ) and let F (x) denote its cumulative density function.

Pr[MNM (�q) = r] =

� ∞

−∞
f(x)

�

s�=r

F (qr − qs + x)dx

If we consider quality score vectors of the form �q = (c, . . . , c, 0), the expression simplies to:

Pr[MNM (�q) = n] =

� ∞

−∞
f(x)F (x− c)n−1dx

Due to symmetry, the expected error can be expressed as:

E[E(MNM , �q)] = −c
�
1− Pr[MNM (�q) = n]

�

While it is not obvious how to simplify this expression further, we can readily evaluate the integral
numerically to obtain the expected error. Doing so allows us to compare report noisy max with the
exponential mechanism and permute-and-flip. Figure 4 plots the expected error of report noisy max
alongside the exponential mechanism and permute-and-flip for quality score vectors of the form
�q = (c, c, 0). It shows that report noisy max is better than the exponential mechanism when c is
closer to 0 but is worse when c is much smaller than 0. We made similar observations for different
values of n as well. Thus, we conclude that neither one Pareto dominates the other. On the other hand,
permute-and-flip is always better than both mechanisms for all c. Note that in contrast to Figure 1a,
we plot c on the x-axis instead of p = exp

�
�

2Δc
�
, because it is not clear if report noisy max only

depends on c through p.

This comparison covers a particular class of quality score vectors which allow for a simple and
tractable exact comparison. Further comparison with report noisy max would be an interesting future
direction.

G Extra Experiments

In Figure 5 and Figure 6, we measure the expected error of MEM and MPF on the mode and
median problem for five different datasets from the DPBench study [20]. The conclusions are the
same for each dataset: the improvement increases with �, and for the range of � that offer reasoanble
utility, the improvement is close to 2×. In Figure 7, we compare the expected error of MEM and
MPF on both problems, for the value of � satisfying E[E(MEM , �q)] = 50.
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Figure 4: Expected error of three mechanisms on quality score vectors of the form �q = (c, c, 0)
assuming � = 1.0 and Δ = 1.0.
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(e) PATENT

Figure 5: Expected error of MEM and MPF on five datasets for the mode problem.
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Figure 6: Expected error of MEM and MPF on five datasets for the median problem.
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Figure 7: Expected error of MEM and MPF on five datasets for both problems.
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