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Abstract

We prove new explicit upper bounds on the leverage scores of Fourier sparse
functions under both the Gaussian and Laplace measures. In particular, we study
s-sparse functions of the form f(x) = > 5_, a;e'*” for coefficients a; € C
and frequencies \; € R. Bounding Fourier sparse leverage scores under various
measures is of pure mathematical interest in approximation theory, and our work
extends existing results for the uniform measure [Erd17, CP19a]. Practically, our
bounds are motivated by two important applications in machine learning:

1. Kernel Approximation. They yield a new random Fourier features algorithm
for approximating Gaussian and Cauchy (rational quadratic) kernel matrices. For
low-dimensional data, our method uses a near optimal number of features, and its
runtime is polynomial in the statistical dimension of the approximated kernel matrix.
It is the first “oblivious sketching method” with this property for any kernel besides
the polynomial kernel, resolving an open question of [AKM*17, AKK*20b].

2. Active Learning. They can be used as non-uniform sampling distributions
for robust active learning when data follows a Gaussian or Laplace distribution.
Using the framework of [AKM™19], we provide essentially optimal results for
bandlimited and multiband interpolation, and Gaussian process regression. These
results generalize existing work that only applies to uniformly distributed data.

1 Introduction

Statistical leverage scores have emerged as an important tool in machine learning and algorithms,
with applications including randomized numerical linear algebra [DMMO6a, Sar06], efficient kernel
methods [AM15, MM17, AKM ™17, LTOS19, SK19, LHCT20, FSS19, KKP*20], graph algorithms
[SS11, KS16], active learning [DWH18, CVSK16, MMY 15, AKM™19], and faster constrained and
unconstrained optimization [LS15, AKK*20a].

The purpose of these scores is to quantify how large the magnitude of a function in a particular class
can be at a single location, in comparison to the average magnitude of the function. In other words,
they measure how “spiky” a function can be. The function class might consist of all vectors y € R"
which can be written as Ax for a fixed A € R"*, all degree ¢ polynomials, all functions with
bounded norm in some kernel Hilbert space, or (as in this paper) all functions that are s-sparse in
the Fourier basis. By quantifying where and how much such functions can spike to large magnitude,
leverage scores help us approximate and reconstruct functions via sampling, leading to provably
accurate algorithms for a variety of problems.

Formally, for any class F of functions mapping some domain S to the complex numbers C, and any
probability density p over S, the leverage score 7r ,(x) for z € S is:
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Readers who have seen leverage scores in the context of machine learning and randomized algorithms
[SS11, MMY15, DM16] may be most familiar with the setting where F is the set of all length n
vectors (functions from {1,...,n} — R) which can be written as Ax for a fixed matrix A € R"*,
In this case, p is taken to be a discrete uniform density over indices 1, ..., n, and it is not hard to
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check that (1) is equivalent to more familiar definitions of “matrix leverage scores”.

When F is the set of all degree ¢ polynomials, the inverse of the leverage scores is known as
the Christoffel function. In approximation theory, Christoffel functions are widely studied for
different densities p (e.g., Gaussian on R or uniform on [—1, 1]) due to their connection to orthogonal
polynomials [Nev86]. Recently, they have found applications in active polynomial regression
[RW12, HD15, CCM ™15, CM17] and more broadly in machine learning [PBV18, LP19].

We study leverage scores for the class of Fourier sparse functions. In particular, we define:?
S
Ts = f:f(a:):ZajeZ)‘jz,ajEC,/\jER ) (2)
j=1

where each J; is the frequency of a complex exponential with coefficient a;. For ease of notation we
will denote the leverage scores of 7 for a distribution p as 7, ,,(x) instead of the full 71, ,,(z).

In approximation theory, the Fourier sparse leverage scores have been studied extensively, typically
when p is the uniform density on a finite interval [Tur84, Naz93, BE96, K6s08, Lubl15, Erd17].
Recently, these scores have also become of interest in algorithms research due to their value in
designing sparse recovery and sparse FFT algorithms in the “off-grid” regime [CKPS16, CP19b,
CP19a]. They have also found applications in active learning for bandlimited interpolation, Gaussian
process regression, and covariance estimation [AKM ™19, MM20, ELMM?20].

1.1 Closed form leverage score bounds

When studying the leverage scores of a function class over a domain S, one of the primary objectives
is to determine the scores for all x € S. This can be challenging for two reasons:

e For finite domains (e.g., functions on § = {1,...,n}) it may be possible to directly solve
the optimization problem in (1), but doing so is often computationally expensive.

o For infinite domains (e.g., functions on S = [—1, 1]), 77 , () is itself a function over S,
and typically does not have a simple closed form that is amenable to applications.

Both of these challenges are addressed by shifting the goal from exactly determining 7r ,(x) to upper
bounding the leverage score function. In particular, the objective is to find some function 7z ;, such
that 7z ,(x) > 77 p(2) forall z € S and [, _ ¢ Tr p(2)dy is as small as possible.

For linear functions over finite domains, nearly tight upper bounds on the leverage scores can be
computed more quickly than the true scores [MDMW 12, CLM*15]. Over infinite domains, it is
possible to prove for some function classes that 7r ,(x) is always less than some fixed value C,
sometimes called a Nikolskii constant or coherence parameter [HD15, Migl5, AC20]. In other cases,
simple closed form expressions can be proven too upper bound the leverage scores. For example,
when F is the class of degree ¢ polynomials and p is uniform on [—1, 1], the (scaled) Chebyshev

density 7 ,(z) = :\(/‘% upper bounds the leverage scores [Lor83, AKM™19].

1.2 Our results

The main mathematical results of this work are new upper bounds on the leverage scores 75 ,(-) of the
class of s-sparse Fourier functions 7, when p is a Gaussian or Laplace distribution. These bounds
extend known results for the uniform distribution, and are proven by leveraging several results from

"In particular, (1) is equivalent to the definition 77 , (i) = a] (AT A)™'a; where a; is the i" row of A, and
to 77,5 (1) = |lus |3, where u; is the i"™ row of any orthogonal span for A’s columns. See [AKM™17] for details.

It can be observed that any degree s polynomial can be approximated to arbitrarily high accuracy by a
function in 7, by driving the frequencies A1, ..., As to zero and taking a Taylor expansion. So the leverage
scores of T actually upper bound those of the degree s polynomials [CKPS16].



approximation theory on concentration properties of exponential sums [Tur84, BE95, BE06, Erd17].
We highlight the applicability of our bounds by developing two applications in machine learning:

Kernel Approximation (Section 3). We show that our leverage score upper bounds can be used
as importance sampling probabilities to give a modified random Fourier features algorithm [RR07]
with essentially tight spectral approximation bounds for Gaussian and Cauchy (rational quadratic)
kernel matrices. In fact, we give a black-box reduction, proving that an upper bound on the Fourier
sparse leverage scores for a distribution p immediately yields an algorithm for approximating kernel
matrices with kernel function equal to the Fourier transform of p. This reduction leverages tools from
randomized numerical linear algebra, in particular column subset selection results [DMMO06b, GS12].
We use these results to show that Fourier sparse functions can universally well approximate kernel
space functions, and in turn that the leverage scores of these kernel functions can be bounded using
our Fourier sparse leverage score bounds.

Our results make progress on a central open question on the power of oblivious sketching methods
in kernel approximation: in particular, whether oblivious methods like random Fourier features and
TensorSketch [PP13, CP17, PT20] can match the performance of non-oblivious methods like Nystrom
approximation [GM13, AM15, MM17]. This question was essentially closed for the polynomial
kernel in [AKKT20b]. We give a positive answer for Gaussian and Cauchy kernels in one dimension.

Active Learning (Appendix C). It is well known that leverage scores can be used in active sampling
methods to reduce the statistical complexity of linear function fitting problems like polynomial
regression or Gaussian process (GP) regression [CP19a, CM17]. The scores must be chosen with
respect to the underlying data distribution D to obtain an accurate function fit under that distribution
[PBV18]. Theorems 1 and 2 immediately yield new active sampling results for regression problems
involving s arbitrary complex exponentials when the data follows a Gaussian or Laplacian distribution.

While this result may sound specialized, it’s actually quite powerful due to recent work of [AKM*19],
which gives a black-box reduction from active sampling for Fourier-sparse regression to active
sampling for a wide variety of problems in signal processing and Bayesian learning, including
bandlimited function fitting and GP regression. Plugging our results into this framework gives
algorithms with essentially optimal statistical complexity: the number of samples required depends
on a natural statistical dimension parameter of the problem that is tight in many cases.

We note that any future Fourier sparse leverage score bounds proven for different distributions (beyond
Gaussian, Laplace, and uniform) would generalize our applications to new kernel matrices and data
distributions. Finally, while our contributions are primarily theoretical, we present experiments on
kernel sketching in Section 4. We study a 2-D Gaussian process regression problem, representative
of typical data-intensive function interpolation tasks, showing that our oblivious sketching method
substantially improves on the original random Fourier features method on which it is based [RRO7].

1.3 Notation

Boldface capital letters denote matrices or quasi-matrices (linear maps from finite-dimensional vector
spaces to infinite-dimensional function spaces). Script letters denote infinite-dimensional operators.
Boldface lowercase letters denote vectors or vector-valued functions. Subscripts identify the entries
of these objects. E.g., M ;, is the (j, k) entry of matrix M and z; is the 4™ entry of vector z. I
denotes the identity matrix. < denotes the Loewner ordering on positive semidefinite (PSD) matrices:
N =< M means that M — N is PSD. A* denotes the conjugate transpose of a vector or matrix.

2 Fourier Sparse Leverage Score Bounds

We now state our main leverage score bounds for the Gaussian and Laplace distributions. These
theorems are of mathematical interest and form the cornerstone of our applications in kernel learning:

Theorem 1 (Gaussian Density Leverage Score Bound). Consider the Gaussian density g(x) =
—1_e="/(29%) and let:

U\/ﬂ 2 2
B %6_1/(4U)f0r‘x|26\/§0\/§
Tog(@) = q V{7
E-e~sf0r|x| < 620 - /5.
We have 7, 4(x) < 7 () forall x € Rand [ 7, 4(x) dv = O(s/?).



We do not know if the upper bound of Theorem 1 is tight, but we know it is close. In particular, if
T, is restricted to any fixed set of frequencies Ay > ... > Ag it is easy to show that the leverage
scores integrate to exactly s, and the leverage scores of 7, can only be larger. So no upper bound
can improve on ffooo 7s.9(z) dz = O(s*/%) by more than a O(+/s) factor. Closing this O(+/s) gap,
either by strengthening Theorem 1, or proving a better lower bound would be very interesting.

Theorem 2 (Laplace Density Leverage Score Bound). Consider the Laplace density z(x) =

ﬁae ~12IV2/7 gnd let:

V2

o

_ B ? 7'“3“[/ 69) for |z| > 9v20 - s
Ts,2(x) = . 1+\z|\f/ Sor |z| < 9v/20 - s.

We have 75 ,(x) < 75 () for all z € R and f Ts,2(x) dx = O(slns).

Again, we do not know if Theorem 2 is tight, but [*° 7, .() dz = O(sIn s) cannot be improved
below s. The best known upper bound for the uniform density also integrates to O(sln s) [Erd17].

@ U\ ) for feTs. . —— Example of 77 W’ ‘: for f € Ts.
2 —— Empirical esmnate for 75.(x).

250 —— Empirical estimate for 75 4(x). . _
—-—Possible closed form upper bound 75 (). —-—-Possible closed form upper bound 75 .(z).
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(a) Leverage scores for Gaussian density. (b) Leverage scores for Laplace density.

Figure 1: Empirically computed (see Appendix D for details) estimates for the Fourier sparse leverage
scores, for sparsity s = 5. The solid blue lines are normalized magnitudes of 5-sparse Fourier
functions that “spike” well above their average. Le., they plot | f(x)|? - p(z)/|| |2 for various f € T5.
The leverage score function 75 () is the supremum of all such functions. The dashed red lines are
closed-form upper bounds for the leverage scores: establishing such bounds is our main research
objective. For illustration, the ones plotted here are tighter than what we can currently prove, but they
have the same functional form as Theorems 1 and 2 (just with different constants).

Theorems 1 and 2 are proven in Appendix A and the upper bounds visualized in Figure 1. They build
on existing results for when p is the uniform distribution over an interval [BE06, Erd17]. This case has
been studied since the work of Turdn, who proved the first bounds for 7 and related function classes
that are independent of the frequencies A1, ..., As, and only depend on the sparsity s [Tur84, Naz93].
Our bounds take advantage of the exponentlal form of the Gaussian and Laplace densities e —2” and
e~1#1”. We show how for f € T, to write the weighted function f(z) - p(z) (whose norm under the
uniform density equals f’s under p) in terms of a Fourier sparse function in an extension of 7 that

allows for complex valued frequencies. Combining leverage score type bounds on this extended class
[BEO6, Erd17] with growth bounds based on Turdn’s lemma [Tur84, BE95] yields our results.

When the minimum gap between frequencies in f € 7T, is lower bounded, we also give a tight
bound (integrating to O(s)) based on Ingham’s inequality [Ing36], applicable e.g., in our oblivious
embedding results when data points are separated by a minimum distance.



3 Kernel Approximation

Given data points® z1,...,2, € R and positive definite kernel function k£ : R x R — R, let
K € R"*” be the kernel matrix: K; ; = k(z;, ;) for all ¢, j. K is the central object in kernel
learning methods like kernel regression, PCA, and SVM. Computationally, these methods typically
need to invert or find eigenvectors of K, operations that require O(n?) time. When n is large, this
cost is intractable, even for data in low-dimensions. In fact, even the O(n?) space required to store
K can quickly lead to a computational bottleneck. To address this issue, kernel approximation
techniques like random Fourier features methods [RR07], Nystrom approximation [WS01, GM13],
and TensorSketch [PP13] seek to approximate K by a low-rank matrix.

These methods compute an explicit embedding g : R — C™ with m < n which can be applied to
each data point z;. If G € C™*™ contains g(z;) as its i column, the goal is for K = G*G, which
has rank m, to closely approximate K. ILe., for the inner product K; ; = g(z;)*g(x;) to approximate

K; ;. If the approximation is good, K can be used in place of K in downstream applications. It can
be stored in O(nm) space, admits O(nm) time matrix-vector multiplication, and can be inverted
exactly in O(nm?) time, all linear in n when m is small.

Oblivious Embeddings Like sketching methods for matrices (see e.g., [Woo14]) kernel approxima-
tion algorithms fall into two broad classes.

1. Data oblivious methods choose a random embedding g : R — C™ without looking at the
data x1,...,x,. g(z;) can then be applied independently, in parallel, to each data point.
Oblivious methods include random Fourier features and TensorSketch methods.

2. Data adaptive methods tailor the embedding g : R — C™ to the data z1,...,z,. For
example, Nystrom approximation constructs g by projecting (in kernel space) each x; onto
m landmark points selected from the data.

Data oblivious methods offer several advantages over adaptive methods: they are easy to parallelize,
naturally apply to streaming or dynamic data, and are typically simpler to implement. However, data
adaptive methods currently give more accurate kernel approximations than data oblivious methods
[MM17]. A major open question in the area [AKM™ 17, AKK™20b] is if this gap is necessary.

Our main contribution in this section is to establish that it is not necessary for the commonly used
Gaussian and Cauchy kernels: for low-dimensional data we present a data oblivious method with
runtime linear in n that nearly matches the best adaptive methods in speed and approximation quality.

3.1 Formal results

Prior work on randomized algorithms for approximating K considers several metrics of accuracy.
We study the following popular approximation guarantee [AM15, MM17, AKK*20b]:

Definition 1. For parameters e, X > 0, we say K is an (e, \)-spectral approximation for K if:

(1—)(K+ M) <K+ < (1+¢) (K + AI). 3)

Definition 1 can be used to prove guarantees for downstream applications: e.g., that K is a good
preconditioner for kernel ridge regression with regularization A, or that using K in place of K leads
to statistical risk bounds. See [AKM™17] for details. With (3) as the approximation goal, the data
adaptive Nystrom method combined with leverage score sampling [AM15] yields the best known
kernel approximations among algorithms with runtime linear in n. Specifically, for any positive
semidefinite kernel function the RLS algorithm of [MM17] produces an embedding satisfying (3)
with € = 0 and with m = O(s, log s,) in O(ns3) time where s, is the statistical dimension of K:

Definition 2 (\-Statistical Dimension). The \-statistical dimension sy of a positive semidefinite

. . . def .
matrix K with eigenvalues \1 > ... > A\, > 0 is defined as s), = ZLI ﬁ

3Results are stated for 1D data, where applications of kernel methods include time series analysis and audio
processing. As shown in Section 4, our algorithms easily extend to higher dimensions in practice. In theory,
however, extended bounds would likely incur an exponential dependence on dimension, as in [AKM™ 17].



The statistical dimension is a natural complexity measure for approximation K and the embedding
dimension of O(s) log sy ) from [MM17] is near optimal.* Our main result gives a similar guarantee
for two popular kernel functions: the Gaussian kernel k(z;, z;) = e~ (@i=2))*/(20*) with width o
and the Cauchy kernel k(z;, %) = 1y3—5y775= With width 0. The Cauchy kernel is also called
the “rational quadratic kernel”, e.g., in sklearn [PVGT11].

Theorem 3. Consider any set of data points x1,...,z, € R with associated kernel matrix
K € R™ "™ which is either Gaussian or Cauchy with arbitrary width parameter o. There exists a
randomized oblivious kernel embedding g : R — C™ such that, if G = [g(x1) . . ., g(xy)],with high
probability K = G*G satisfies (3) with embedding dimension m = O(%3 ). G can be constructed in

O(n - s3 /€*) time for Gaussian kernels and O(n - 53 /€*) time for Cauchy kernels.

Theorem 3 is a simplified statement of Corollary 26, proven in Appendix B. There we explicitly
state the form of g, which as discussed in Section 3.2 below, is composed of a random Fourier
features sampling step followed by a standard random projection. For one dimensional data, our
method matches the best Nystrom method in terms of embedding dimension up to a 1/€? factor,
and in terms of running time up to an s} factor. It thus provides one of the first nearly optimal
oblivious embedding methods for a special class of kernels. The only similar known result applies
to polynomial kernels of degree ¢, which can be approximated using the TensorSketch technique
[PP13, MSW19, ANW14]. A long line of work on this method culminated in a recent breakthrough
achieving embedding dimension m = O (¢*s» /€?), with embedding time O(nm) [AKK*20b]. That
method can be extended e.g., to the Gaussian kernel, via polynomial approximation of the Gaussian,
but one must assume that the data lies within a ball of radius R and the embedding dimension suffers
polynomially in R.

3.2 Our approach

Theorem 3 is based on a modified version of the popular random Fourier features (RFF) method from
[RRO7], and like the original method can be implemented in a few lines of code (see Section 4). As
for all RFF methods, it is based on the following standard result for shift-invariant kernel functions:

Fact 4 (Bochner’s Theorem). For any shift invariant kernel k(z,y) = k(z —y) where k : R — R
is a positive definite function with k(0) = 1, the inverse Fourier transform given by py(n) =
Jicr €7 k(t)dt is a probability density function. Le. px(n) > 0 for all ) € R and fneR pe(n) = L.

As observed by Rahimi and Recht in [RRO7], Fact 4 inspires a natural class of linear time randomized
algorithms for approximating K. We begin by observing that K can be written as K = ®*®,
where * denotes the Hermitian adjoint and ® : C* — L, is the linear operator with [®w](n) =

VR - 20 wje 2™ forw € C",n € R.

It is helpful to think of ® as an infinitely tall matrix with n columns and rows indexed by real
valued “frequencies” 7 € R. RFF methods approximate K by subsampling and reweighting rows
(i.e. frequencies) of ® independently at random to form a matrix G € C™*™. K is approximated by
K = G*G. In general, row subsampling is performed using a non-uniform importance sampling
distribution. The following general framework for unbiased sampling is described in [AKM ' 17]:

Definition 3 (Modified RFF Embedding). Consider a shift invariant kernel k : R — R with inverse
Fourier transform py. For a chosen PDF q whose support includes that of py, the Modified RFF
embedding g(x) : R — C™ is obtained by sampling 11, . . . , Ny, independently from q and defining:

[ [pk —27r17]1T —27m7]m ]

It is easy to observe that for the modified RFF method E[g(x)*g(y)] = k(z,y) and thus E[G*G] =
K. So, the feature transformation g(-) gives an unblased approx1mat10n to K for any sampling
distribution ¢ used to select frequencies. However, a good choice for ¢ is critical in ensuring that

*It can be show that embedding dimension m = >, 1[A; > ] is necessary to achieve (3). Then observe
that sy < >°7  1[A: > A\ + % > A, <x i~ For most kernel matrices encountered in practice, the leading term
dominates, so sy is roughly on the order of the optimal m.



G*G concentrates closely around its expectation with few samples. The original Fourier features
method makes the natural choices ¢ = pg, which leads to approximation bounds in terms of
K — K||oo [RRO7]. [AKM*17] provides a stronger result by showing that sampling proportional
to the so-called kernel ridge leverage function is sufficient for an approximation satisfying Definition
1 with m = O(s) log s, /€2) samples. That function is defined as follows:

Definition 4 (Kernel Ridge Leverage Function). Consider a positive definite, shift invariant kernel
k: R — R, a set of points x1, . ..,x, € R with associated kernel matrix K € R"*™, and a ridge
parameter A > 0. The \-ridge leverage score of a frequency 1 € R is given by:

|[@w](n)[*
k() = sup :
weCn , w#0 ||§W||% + AH“’H%

Def. 4 is closely related to the standard leverage score of (1). It measures the worse case concentration
of a function ®w in the span of our kernelized data points at a frequency 7. Since ||®Pw|3 =
w*®*dw = w*Kw, leverage score sampling from this class directly aims to preserve w*Kw for
worse case w and thus achieve the spectral guarantee of Def. 1. Due to the additive error AI in this
guarantee, it suffices to bound the concentration with regularization term \||w||3 in the denominator.

Of course, the above ridge leverage function is data dependent. To obtain an oblivious sketching
method [AKM ™ 17] suggests proving closed form upper bounds on the function, which can be used
in its place for sampling. They prove results for the Gaussian kernel, but the bounds require that data
lies within a ball of radius R, so do not achieve an embedding dimension linear in s) for any dataset.
We improve this result by showing that it is possible to bound the kernel ridge leverage function in
terms of the Fourier sparse leverage function for the density pj, given by the kernel Fourier transform:

Theorem 5. Consider a positive definite, shift invariant kernel k : R — R, any points x1,...,x, €
R and the associated kernel matrix K, with statistical dimension sy. Let s = 6[s)] + 1. Then:

vn € R, TA,K(W) < (2+6s)) " Ts,pk (n).

We prove Theorem 5 in Appendix B. We show that ®w can be approximated by an s = 6[s)] + 1
Fourier sparse function, so bounding how much it can spike (i.e., which bounds the ridge leverage
score of Def. 4) reduces to bounding the Fourier sparse leverage scores. With Theorem 5 in place,
we immediately obtain a modified random Fourier features method for any kernel k, given an upper
bound the Fourier sparse leverage scores of pi. The Fourier transform of the Gaussian kernel is
Gaussian, so Theorem 1 provides the required bound. The Fourier transform of the Cauchy kernel is
the Laplace distribution, so Theorem 2 provides the required bound.

Final Embeddings via Random Projection. In both cases, Theorem 5 combined with our leverage
scores bounds does not achieve a tight result alone, yielding embeddings with m = O(poly(sy)).
To achieve the linear dependence on sy in Theorem 3, we show that it suffices to post-process the
modified RFF embedding g with a standard oblivious random projection method [CNW16]. Proofs
are detailed in Appendix B.3, with a complete statement of the random features + random projection
embedding algorithm given in Corollary 26.

It is worth noting that, given any approximation K = G*G satisfying Definition 1, we can always
apply oblivious random projection to G to further reduce the embedding to the target dimension
O (i—é), while maintaining the guarantee of Definition 1 up to constants on the error parameters.’
Thus, the main contribution of Theorem 3 is achieving a lower initial dimension of G via this
sampling step, which directly translates into a faster runtime to produce the final embedding. Our
initial embedding dimension, and hence runtime depends polynomially on sy and e. Existing work
[AKMT 17, AKK*20b] makes an additional assumption that the data points fall in some radius R, and
their initial embedding dimension and hence runtime suffers polynomially in this parameter. Related
results make no such assumption, but depend linearly on 1/\ [AKM™ 17, LTOS19], a quantity which
can be much larger than s, in the typical case when K has decaying eigenvalues.

SWe also need the slightly stronger condition that K’s statistical dimension is close to that of K. This
condition holds for essentially all known sketching methods.



4 Experimental Results

We now illustrate the potential of Fourier sparse leverage score bounds by empirically evaluating the
modified random Fourier features (RFF) method of Section 3. We implement the method without
the final JL projection, and use simplifications of the frequency distributions from Theorems 1 and
2, which work well in experiments. For data in R4 for d > 1, we extend these distributions to their
natural spherically symmetric versions. See Appendix E for details and Figure 2 for a visualization.

(a) Classical RFF Distribu- (b) Modified RFF Distribu- (c) Classical RFF Distribu- (d) Modified RFF Distribu-
tion, Gaussian kernel. tion, Gaussian kernel. tion, Cauchy kernel. tion, Cauchy kernel.

Figure 2: Distributions used to sample random Fourier features frequencies 7y, . . . , 9. The “Classi-
cal RFF” distributions are from the original paper by Rahimi, Recht [RR07]. The “Modified RFF”
distributions are simplified versions of the leverage score upper bounds from Thoerems 1 and 2. No-
tably, our modified distributions sample high frequencies (i.e. large ¢5 norm) with higher probability
than Classical RFF, leading to theoretical and empirical improvements in kernel approximation.

We compare our method against the classical RFF method on a kernel ridge regression problem
involving precipitation data from Slovakia [NM13], a benchmark GIS data set. See Figure 3 for
a description. The regression solution requires computing (K + AI)~'y, where y is a vector of
training data. Doing so with a direct method is slow since K is large and dense, so an iterative solver
is necessary. However, when cross validation is used to choose a kernel width ¢ and regularization
parameter )\, the optimal choices lead to a poorly conditioned system, which leads to slow convergence.

Slovakia Precipitation Data Slovakia Precipitation, Predicted

50'N 50'N 1600
1000 1500
1400
800 1300
49N 600 49'N - 1200
1100
400 1000
900
20 800

48'N 48N
0 700
600

-200
16 6'E 17E 18'E 19'E 20'E 21E 2'E 2BE

'E 17'E 18'E 19'E 20'E 21E 22'E 23'E 1

Figure 3: The left image shows precipitation data for Slovakia in mm/year at n = 196k locations
on a regular lat/long grid [NM13]. Our goal is to approximate this precipitation function based on
6400 training samples from randomly selected locations (visualized as black dots). The right image
shows the prediction given by a kernel regression model with Gaussian kernel, which was computed
efficiently using our modified random Fourier method along with a preconditioned CG method.

There are two ways to solve the problem faster using a kernel approximation: either K can be used in

place of K when solving (K +AI) "'y, or it can be used as a preconditioner to accelerate the iterative
solution of (K + AI)~ly. We explore the later approach because [AKM ™ 17] already empirically
shows the effectiveness of the former. While their modified RFF algorihm is different than ours in
theory, we both make similar practical simplifications (see Appendix E), which lead our empirically
tested methods to be almost identical for the Gaussian kernel. Results on preconditioning are shown
in Figure 4. Our modified RFF method leads to substantially faster convergence for a given number
of random feature samples, which in turn leads to better downstream prediction error. The superior
performance of the modified RFF method can be explained theoretically: our method is designed
to target the spectral approximation guarantee of Definition 1, which is guaranteed to ensure good
preconditioning for K + \XI [AKM™17]. On the other hand, the classical RFF method actually
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Figure 4: The left plot shows residual convergence when solving miny ||(K + AI)x — y|| using
PCG. Baseline convergence (the black line) is slow, so we preconditioned with both a classical
RFF approximation and our modified RFF approximation. Classical RFF accelerates convergence
in the high error regime, but slows convergence eventually. Our method significantly accelerates
convergence, with better performance as the number of RFF samples increases. On the right, we
show that better system solve error leads to better downstream predictions. The black bar represents
the relative error of a prediction computed by exactly inverting K + AI. An approximate solution
obtained using our preconditioner approaches this ideal error more rapidly than the other approaches.

achieves better error than our method in other metrics like | K — K]||2, both in theory [Trol5] and
empirically (Figure 4). However, for preconditioning, such bounds will not necessarily ensure fast
convergence. The key observation is that the spectral guarantee requires better approximation in the
small eigenspaces of K. By more aggressively sampling higher frequencies that align with these
directions (see Figure 2) the modified method obtains a better approximation.

5
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Figure 5: The left plot compares relative spectral norm errors for randomized kernel approximations
for a Gaussian kernel matrix K. The classical RFF method actually has better error. However, as
shown in the right plot, the modified method better approximates the small eigenvalues of K, which
is necessary for effective preconditioning as it leads to a better relatively condition number.

Broader Impacts

Our work contributes to an improved understanding of sampling for kernel approximation and kernel-
related function approximation problems. It ties together work in machine learning, signal processing,
and approximation theory, which we feel has value in connecting different research communities. Our
results in particular focus on low-dimensional interpolation problems, which arise in application areas
such as geology, ecology and other scientific fields, medical imaging, and wireless communication.
In many of these areas, data driven methods are used to effect positive societal change.

As with all work on efficient learning methods, the algorithms we present, or future variants of them,
have the potential to scale inference to even larger data sets than the current state of the art. This can
lead to a variety of negative impacts. For example, it may drive the proliferation of massive data
collection by corporations and governments for inference tasks, and thus contribute to the associated
privacy risks of this data collection. Kernel methods and Gaussian process regression are extremely
general tools, used in many applications, including those that may have negative society impacts, such
are cell-phone localization, and human and other target tracking. It is possible that our techniques
could be employed in these applications.
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A Leverage Score Bounds

In this section we give proofs of our Fourier sparse leverage score bounds under the Gaussian and
Laplace densities (Theorems 1 and 2). When the minimum gap between frequencies in f € 7 is
bounded, we also give a tight bound (integrating to O(s)) based on Ingham’s inequality, applicable
e.g., in our oblivious embedding results when data points are separated by a minimum distance.

For notation in this section, we let || f||3 = [

g |f(x)]*dz denote the Ly norm of any complex

valued function f : R — C. We denote the L, norm over an interval by | f||?, ;; = fab |f(x)|>dx and
the Ly norm under any density p over R as || f[|2 = [ ¢ [f(z)]* - p(x) dz.

A.1 Foundational bounds

We build on a number of existing bounds on the uniform density leverage scores and re-
lated concentration properties of an extended class of Fourier sparse functions with possi-
bly complex frequencies. This class and its variants have been studied extensively, e.g., in
[Tur84, Naz93, BE9S, BE96, BE0O, K6s08, Lub15, Erd17].

Es=Qf:fl@)=> a;e™" a; €C N\ €Cy. 4)

We also consider the subclasses where £ and &£, which are defined analogously to &, but with
frequencies \; € C required to have non-negative (respectively, non-positive) real components. Note
that our main class of interest 7 defined in (2) is contained in all three of these extended classes.

We first use a bound on the uniform density leverage score at any point « on an interval, in terms of
its distance from the edge of the interval.

Lemma 6. Forany a,b € Rwitha < b, x € (a,b), and f € E; with f # 0:
@ _ :

||f”[2a7b} =~ min(z —a,b—2)’

Lemma 6 is stated, up to a constant factor 2 in Theorem 7.1 [Erd17]. We prove it here for completeness
and improve this constant.

Proof. Tt is shown in equation (3) of [BEO6] that for any g € & with g # 0,
19(0)[?
1917

For z € (a,b), let § = min(z — a,b—x) and g(z) = f (z — ¢ - z). Note that if f € £; and f # 0,
we have g € £ and g # 0. Additionally, we have g(0) = f(z) and [|fII?, ;; = [IfIIf, 5,45 =

d- gl 1j- Applying (5) we then have:

S@P _ lgOP s
1Ry = 5 Tl oy =8

which completes the proof. O

<s. %)

We note that Lemma 6 can be combined with Lemma 3.2 of [Den16], which tightens bounds proven
in [Erd17] and [K6s08] to give the following bound for the uniform density leverage scores:

Corollary 7 (Uniform Density Leverage Score Bound). Consider the uniform density u(z) = 5= for
x € [—o,0], u(z) = 0 otherwise, and let

p— M for|z| <o(1-— —)
77_5,2(‘7;) =93 15 fOVO'( 7TS) < |IE| <o
0f0r|x| >0

We have 7, (x) > 7g () forall x € Rand [ 7y () dz = 2s(1 +In(Fs)) = O(sIn s).

15



Corollary 7 mirrors our Theorems 1 and 2, and as mentioned in Section 2, no upper bound can
improve on the integral of O(sln s) by more than a ln s factor. Understanding if this In s can be
eliminated or if it is necessary is an interesting open question.

We also employ a bound due to Turdan [BE95], which plays a central role in his book [Tur84].

Lemma 8 (Turén’s lemma). Forany g € £} and o, 3 > 0:

901 < (252 gloasn

Turdn’s lemma can be used to bound the growth of any function in £ D 7, outside of an interval in
terms of its norm on that interval.

Lemma 9 (Lemma 12.2 [Erd17]). Foranya € R,d >0, x > a+d, and f € £ :
2e(xr —a)\’
1@< () Wl

Proof. Let f € £ . Let g € £} be defined by g(t) := f(z — t). We define o := z — (a + d) and
B := d. Applying Lemma 8 with g € £ we have

@) =lo0) < (2252 ol = (272 Wl

B
O
Finally, our gap-based result apply to the following restricted class of 7:
Tony =% f:flx)= Zajeﬂjm,aj € C,\; € R with mikn|)\;C —Aj|>y>0,. (6)
, J,
Jj=1

We denote the leverage score of this class with respect to a density p by 75 ., (). In bounding these
scores we use the following bound due to Ingham [Ing36]:

Lemma 10 (Ingram’s Inequality). For any v > 0, f € T, with coefficients a1, ...,as and
T>m/y,

S S
AT Y g2 < 11y < eo(To) Y a2
i=1 j=1
where

4T 72 16T 2
Cl(T,’y) = ? <1 — W) and Cz(T‘7 ’)/) = T <1 + W) .

Setting T = 27/~ in Ingram’s inequality gives:

Corollary 11. Forany v > 0 and f € T ~ with coefficients a1, . . ., as, we have:
6 40 <
g Z |a’j|2 < ||fH[2—27'r/'y,27r/'y} < 7 Z ‘aj‘Q'
j=1 j=1

A.2 Bounds for the Gaussian density

Our leverage score bound for the Gaussian density (Theorem 1) is split into two components — a
uniform bound on 7, 4 () for all 2 € R (Claim 12) and a bound for « restricted to have sufficiently
large magnitude (Claim 13). Combining these two results gives the two part bound of Theorem 1. In

this section we focus solely on the unit width Gaussian density: g(z) = ﬁe“ﬁ. Bounds under this
density can immediately be translated into bounds for any width o > 0 via scaling. While they are
not applicable to our algorithmic results, we give leverage score lower bounds as well, which help

clarify the tightness of the bounds given.

16



_C”Z,for all x € R:

Claim 12 (Gaussian Leverage Bound — Uniform Bound). Letting g(x) ﬁe
5

3. <7Te,9 €08

As a consequence T, g(x) < € - s.

Proof. Forany f € & and a € R, define the shifted and weighted function w,(x) = f(x + a) -

2 .
e~ (@+a)"/2 We can write:
S

] . — 2 — 2 —
wa(z) _ E ajez)\](aH»a)e T /26 a /26 za

j=1
ey (aj e efa2/2> LN
j=1
If welethy(z) =5, (aj ethia . e*a2/2> -e(N=9)% we thus have w, () = e=e"/2. he(z) and
ha(z) € E;. Applying Lemma 6 with [a, b] = [-1, 1] and z = 0 gives:
RO _
ThallZ 1y =
This gives
u 0 2 “ 0 2 0
wOF _ wOF @
lwallz  — llwallf_y 4 e
Plugging in a = x this gives:
f@)P - =e™ Jw, (0)2 -
= <e-s.
/1135 [z I3
where we use that || f||2 = —=||w,]|3 for any a due to the weighting e~(@+0)?/2 Thus, we have

Te, q(x) < e - s, completing the upper bound.

For the lower bound, let w; € & be defined by
s—1
wi(z) = flx =)', flz):= "
=0

We have

lw, (t)]? - et = g2 et = g2t 7

Additionally
/ \wt(x)|26_r2 dx = / |f(z— t)|262m6_z2 dx
teR

z€R

= / |f(z— If)|26_(3c—t)2 dx
z€R

=e / \f(u)|2e_“2 du.
u€R

Since f is a sum of complex exponentials with integer frequencies with period 27, we can bound:

/ |wt(:1c)|26_””2 dz < e’ / |f(u)\26_“2 du
teR

u€R
<et’ </ \f(u)|2e*“2 du) . (2 +2 Ze(k“)2>
0 k=1
< e 3rs ®)

where the last bound follows from the fact that fo7r |f(x)|? dz = ms. Combining (7) and (8) we obtain
the lower bound of the theorem.

O
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Claim 13 (Gaussian Leverage Bound — Large z). Letting g(x) = ﬁe‘ﬁz, when |z| > 64/,

Ts,g() < e /2,

Proof. Applying Lemma 9 with a = 0 and d = x/2 gives that for any f € T:
2
P _ o
e

This gives in turn that:

2
e~ - (46)2S —3/4-2%+6s
Ts,9(7) < @ < e /A aTHGs, )

When |z| > 64/5, 65 < % and so (10) gives 7 4(z) < e(=3/441/6)-2* < o—2?/2 completing the
claim. =

We can prove Theorem 1 directly from Claims 12 and 13.

1 671’2/(202):
o2

Proof of Theorem 1. For the Gaussian density g(z) =

(@) |f(@)]? - e*"/ o)
7'5’ xTr) = Sup 9)
! rer. 7 1 f () Pev?/ (2o dy

Let g(z) = ﬁe_’cz be the Gaussian density with variance 1/2. For any f € Ts, let f, = f(v/20 - ).
Note that f, € T,. We have:

@) e/ o (a/(V20)P e )| fy (x/(V20)? - g ’(m/(ﬂa))_
JENF @R @ dy [ £, (y/(V20))Pemv*/CoD dy V20 [7 | fo ()2 - g(y) dy

Thus, 7, 4(z) = fa - 75 5(z/(V/20)). By Claims 12 and 13, if we define:

{\/1 ce—®?/(40%) for lz| > 6v20 - /5

20

Tsg(?) = ﬁ-e-sfor |z| < 6v20 /5

we have
1

a®) = o T2/ (V20)) < Ty la).

Further,

0o B 6v/20-\/s e-s ) 00 7302/(402) 5/2
Ts,g(x) do = dx + — e de < 12es’/* 41,
0o —6v20-\/5 \/§U g 6v/20-\/5

which completes the theorem. O

A.3 Bounds for the Laplace density

We now give bounds for the Laplace density, again focusing on the unit width case and then proving
Theorem 2 via a simple scaling argument. Again, our bound is split into two components: a uniform
bound for all  and an improved bound for x with large enough magnitude.

Claim 14 (Laplace Leverage Bound — Universal). Letting z(x) = %e“”“", forallz ¢ R

e? s

1+ x|

Te, 2 () <

62'8

1+|z|"

As a consequence, T 4(z) <
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Proof. Assume that x is nonnegative. The same bound holds for negative z, since for any f € &,
letting f'(z) = f(—=x), f' € & as well. For any f € 7, define the weighted function w(z) =
f(z) - J=e*/2. We can see that w(x) € &, as defined in (4) by writing:

V2
L, 1S
w(r) = — a.ehiTe—T/2 _ aeri—1/2)z
\/éj;l J \/5.7221 J

We define the ‘correctly’ weighted function h(x) = f(z) - %64“/2. Note that for any y € [—1, 0],
we have h(y) > e~! - w(y). Thus, we have:
S@P e @R @R, @)
HE T3 =T raery — ¢ Tl paor
Applying Lemma 6 with [a, b] = [1, 22 + 1] then gives:
[f@)?ge” Ty Jw(@)? e’ s
>~ € - = )
772 Tl gy~ 140

completing the claim. O

Claim 15 (Laplace Leverage Bound — Large z). Lefting z(x) = %e"’”‘, when |z| > 18s,

To(w) < e II/S,

Proof. The proof is close to that of Claim 13 for the Gaussian density. As in Claim 14, assume
without loss of generality that x is nonnegative, so > 12s.Applying Lemma 9 with ¢ = 0 and
d = x/2 gives that for any f € Ty:

M < (4@)25.

2
17T s
This gives:
—T . (4 2s
rus(o) € efi/? < e, (10)
When = > 18s, 6s < % and so (10) gives 7, 4(z) < e(=1/241/3)a* < o=2/6 completing the
claim. O]

We can prove Theorem 2 directly from Claims 15 and 14.

Proof of Theorem 2. As in the proof of Theorem 2, we can observe that for the Laplace density
2(x) = ﬁ -e~1#1V2/7 if we let Z(x) = Le~I*! be the density with variance 2, we have: 7, . (z) =

V2 .7, .(xV/2/0). By Claims 14 and 15, if we define:
) V2 | o—|2lv2/(60) for lz| > 9v20 - s
To,z(x) =

o

ﬁ-ﬂformg%/ia-s

o 1+]z|vV2/0
we have
1
Ts,2\X) = —= * Ts,z 33\/5 o) < Ts ().
(@) = o T s(1V2)0) < Tox(x)
Further,
00 2\/2e2 9V20s 93 [
/ Ts(2) do = V2 / S gy 22 o 2V2/(60) gy
& g 0 1+|$|\@/U 0 J9y32o-s
18s 1 00
:2525'/ d$+2/ e /% dg
0 1+ 18s
< 2e®s-In(18s+1) +1,
which completes the theorem. 0
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A.4 Gap-based bounds

Finally, we show how to obtain tighter bounds for the Gaussian density when considering functions
in 75 ~, whose frequencies have minimum gap v > 0 (see (6)). We show:

Claim 16. Letting g(z) = ﬁe_mz,for allx € R:

2

Tog(2) < (% 64”2/72> -seT T

The above leverage score upper bound is just a scaling of the data density e==". For v = (1),
it integrates to O(s), within a constant factor of the lower bound [ _. 7 4.4(2) dz > s given by
restricting 7 ., to just just a single fixed set of frequencies.

Claim 16 can be turned into a leverage score bound for the Gaussian density of any width, using the
simple scaling argument of Theorem 1 giving:

Theorem 17 (Gaussian Leverage Bound — Gap Condition). Consider the Gaussian density with

variance o > 0, g(z) = %\/ge*ﬁ/(z"%, and let:

- Y /o ) L —2?/0%)
<|-= . . . .
Tsy,g(T) < (6 e S Voo e

We have 7 . g(x) < sy g() forall x € Rand [, 75y q(x)ds =3 eI fxs,

Proof of Claim 16. Consider f € T, with f(z) := 327, aje*i® and minj  [Ar, — Aj| > > 0.
Combining the Cauchy-Schwarz inequality with Ingham’s inequality (Lemma 10), we obtain

2

S o S N 9 S
F@))2 =D ae™ | < D[] [ D layP?
Jj=1 j=1 j=1
y 2
2m [y S )
_E aje”‘f'”’ dx
6 =27 /Yy j=1
< (164”2/72) s/ 1f(z)2e " da.
6 R
Hence
’y 7T2 2 —IZ
g(@) 1@ < (3 /") sem" 2,
completing the claim. O

B Kernel Approximation

As discussed in Section 3, our result on oblivious kernel embedding (Theorem 3) is based on a result
from [AKM™17], which shows that strong kernel approximations can be obtained via random Fourier
features methods which sample by the kernel ridge leverage scores of Definition 4:

Theorem 18 (Kernel Embedding via Leverage Score Sampling, [AKM*17]). Let sy, denote the
A-statistical dimension of K. Given a function Ty k (n) with:

Ak (m) > k() foralln € Rand T déf/ Tk (n)dn,
neR

if we apply modified RFF sampling (Definition 3) with density q(n) = ﬂ%(") and sample size

= w, then with probability > 1 — §, G*G is an (e, \)-spectral approximation of K.
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B.1 Kernel leverage score bounds via Fourier sparse approximation

To make use of Theorem 18, we need access to an upper bound 7 k (77) on the kernel ridge leverage
scores. We remark that fneR Tk (n)dn = tr(K + AI)7'K) = s, [AKMT17]. Thus, if 7 x(n) is

a tight bound, Theorem 18 yields an embedding dimension m = O(s) /€2). Our goal is to obtain a
nearly tight bound by reducing the problem of bounding 7 k to that of bounding the Fourier sparse
leverage score under the density pj given by the kernel Fourier transform. We prove:

Theorem 5. Consider a positive definite, shift invariant kernel k : R — R, any points x4, ..., x, €
R and the associated kernel matrix K, with statistical dimension sy. Let s = 6[s)] + 1. Then:

VneR, 7ak(n) < (2+68)) Tsp, (1)

As discussed in Section 3, we prove Theorem 5 by first showing that any function ®w in the span of
our kernelized data points is well approximated by via an O(sy) sparse Fourier function.

This Fourier sparse approximation result is based on the well-known fact that any matrix with bounded
statistical dimension can be well approximated via projection onto a small subset of rows or columns
[DMMO06b, GS12, BDMI14]. In particular, we show via a simple reformulation of known results:

Theorem 19 (Row Subset Selection). Consider the setting of Theorem 5. Fort = 6 - [s)], there
exists a subset of t indices i1, ...,i C [n] and Z € R!*"™ such that, letting ®; : Ct — Ly be the

operator with [®,w](n) = \/pr(n) - Z;Zl wie i (i.e., the operator containing the t columns
of ® corresponding to the indices i1, . . . ,14):

tr(K — Z7®; ®,Z) < 3\s) and Z'®;®,Z < K.

Proof. Let B € R™*™ be any matrix squareroot of K with BTB = K. Since B'B = ®*® it
suffices to prove the existence of a subset of indices i1, ... ,i; C [n] and a matrix Z € R**" such
that, letting B, contain the columns of B corresponding to those indices:

tr(K — Z"TBTB,Z) < 3\sy and Z' B! B,Z < K. (11)

Let Z = B/ B. Letting P; = BB be the orthogonal projection matrix onto the columns of By,
we can see that Z'B] B,Z = BTP?B = BTP;B. We first observe that for any x € R":

xT'Z"BI'B,Zx = |P;Bx|3 < ||Bx|? = x'Kx,

which proves that ZTB7 B;Z =< K, giving the second part of (11). To prove the first part of (11) we
employ an optimal column-based matrix reconstruction result [GS12], Theorem 1.1, which shows
that there exists a set of s = 6 - [ s ] indices such that:

HB—BtZ”%“ < 1.5HB—B2[SHH%‘7 (12)

where By, is the best rank-2[ s, | approximation to B (given by projecting B onto its top 2[sy |
singular vectors). Since B;Z is the projection of B onto the column space of B, we can write via the
Pythagorean theorem:

|B — B,Z||% = |B||% — |B/Z||% = tr(B"B) — tr(Z"B!'B,Z) = tr(B"B — Z'BI'B,Z).
Thus, in combination with (12), if we can show ||B — By, 1 |% < 2As, we will have
tr(BTB — ZTBTB,Z) < 3)s),

yielding the first part of (11) and the theorem. This bound follows from the fact that |B—Bra, 1|3 =
Z?:Q( sx]+1 Ai(K). We can apply the following claim, which quantifies the eigenvalue decay of a
matrix in terms of its statistical dimension:

Claim 20. For any positive semidefinite K € R™*"™ with statistical dimension s

n

> X(K) < 2xs).

i=2|’sx.|+1
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Proof. Let I, be the number of eigenvalues of K that are > \. We have:
Iy
Z i Z Z

i=I\+1
1 1 «
> . — A
>5 Dty D
i=Ix+1

’L

where the second line follows from that fact that \; (K) > Afori < I and A\;(K) < Afori > I
Rearranging we have 2[s)] > 2s) > I and 25\ > 5 Zz 1 i (K), and in turn:

n n

1
25y > 3 > N(K) = 2)s, > > N(K).
i=2[sx]+1 i=2[sx]+1

O

Claim 20 directly gives that | B — Bary, 117 = 2oiior,, 141 Ai(K) < 2Xsy, completing the proof
of Theorem 19. O

Proof of Theorem 5. Applying Theorem 19 we can bound the kernel leverage score by breaking the
function @w into its projection onto ®;, which after a change of density is a t = [6s,]-sparse
Fourier function in 7, and the residual.

_ |[®w](n)[? 2[®,Zw](n)|* | 2[[®w](n) — [®:Zw](n)]?
TAK(n) = sup < 2 2 2 2
ween,wzo [BW[[3 + A[wl[3 = [[@w]]3 + Aw|3 [@w(|3 + Allwl[3
2||P.Z 2 9@ — |P:Z 2
A2z | 2A(@wl) ~ [BZWOP
[ @wll3 Allwl[3
Since by Theorem 19, ZT<I’2‘ ®,7 < K we have
|®w|32 = w Kw > w!ZT®;®,Zw = | ®,Zw|3,
which combined with (13) gives:
2|[®.Zw](n)]* | 2|[®w](n) — [®:Zw](n)|*
k() <
|®:Zw]|3 Alwl3
2[[@w](n) — [®:Zw](n)]?
< 27, () + (14)
b Alwl3
The second bound follows from the fact that w € 7;. It remains to bound the second term
Pe(n

of (14). Let z(n) € C™ be the vector with z(n); = |e=2™"%5 — ! _ Z; ~e‘2”"“k} “/pe(n).
Then we can bound via Cauchy-Schwarz:

[@w](n) — [®Zw](m)* _ |z(n)*w[* _ [lz()l3

N3 TR T )
We bound ||z(n)]|3 as:
Claim 21. Let z(n) € C™ be as defined above. ||z(n)||3 < Ti41,p, (1) - 3As.
Combining Claim 21 with (14) and (15) yields:
TAK() < 271, (1) + 671115, (1) - 53 < (24 651) - o119, (1)
which completes the theorem after recalling that we set ¢ = [s)] in Theorem 19. O
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Proof of Claim 21. Consider the function g;(n) = z(n); and g(n) = >_7_, |g;(m)* = [|lz(n)|3.

gi(n) = |77 =3 " Z(k, j) - e /()
k=1

def g,
L g T¢11 and so:

and thus, h(n) e
lg;(m* _ pr(n) - [h(n)|?

< Tt 1, (1)

lgillz —  IRl2,
This gives:
lz)l3 =g < merame(m) - > lgsll3
Jj=1 j=1
— Tri (1) - (K — 27 838,Z)
< Tev1p (1) - 352,
where the last bound follows from Theorem 19. O

B.2 Oblivious kernel embedding via keverage score-based RFF

We finally combine our Fourier sparse leverage score bounds of Theorems 1 and 2 with the kernel
ridge leverage score bound of Theorem 5 and the leverage score sampling result of Theorem 18 to
give oblivious kernel embedding results for the kernels corresponding to the Fourier transforms of
the Gaussian and Laplace densities — i.e., the Gaussian and Cauchy (rational quadratic) kernel.

Corollary 22 (Modified RFF Embedding — Gaussian Kernel). Consider any set of points

Z1,...,Tn € Randthe associated Gaussian kernel matrix K € R"*" with K; ; = e~ (@i—w3)?/(20%)
Let sy, be the M-statistical dimension of K, s = 6[s\| + 1, and q(n) be the density proportional to:

2.2 2
gl 7 for|n| > 22 /s
- sforln < 2. .

5/2. oe(s
The modified RFF embedding (Def. 3) with density q(n) and sample size m = O Lw ,

€

satisfies G*G is an (e, \)-spectral approximation of K with probability > 1 — §. The embedding
g(x;) € C™, can be constructed obliviously in O(m) time.

Proof. For the Gaussian kernel with width o, the Fourier transform density is also Gaussian with
. 1.
variance InZo2-
2_2 2

. 2
p(n) = / 2™t =307t — g/ - e 20 TN,
teR

Applying Theorem 5 we have: 7\ k(1) < (2 4 6sy) - Ts p, (1) for s = 6]s)] + 1. In turn, applying
Theorem 1 gives 7\ k(1) < 7a k(1) where:

el = {205 V2o e T o ] > 22 s
’ (2—|—6S,\)~7T\/§6~0'~8f01‘|77‘S%-\/g.

Thus, by Theorem 18, if we let ¢(n) be the density proportional to 7y k (), a random Fourier features
approximation satisfies the guarantee of the Theorem with sample size m given by:

o (f A (m)dn 'log(SA/5)> i <si/2 -log(s,\/5)> |

€2 €2

since by Theorem 1, [, _p Tax(n)dn = (2+ 6s2) - O(s3/2) = 0(s3/?).

Finally, we observe that ¢(n) is just a mixture of a Gaussian density with a uniform density, and
hence can be sampled from in O(1) time. Thus each embedding g(z;) € C™ can be constructed
obliviously in O(m) time. O
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We give a very similar result for the Cauchy (also known as rational quadratic) kernel using our
Laplacian distribution leverage score bound of Theorem 2.

Corollary 23 (Modified RFF Embedding — Cauchy Kernel). Consider any set of points 1,...,T, €
R and the associated Cauchy kernel matrix K € R™" with K; ; = m Let s), be the
i

A-statistical dimension of K, s = 6[sx| + 1, and q(n) be the density proportional to:
o [T or ol = 22
an 2 o;
THnror Jor Il < afr

. . . . . o 53 log(sx)-log(sx/d)
The modified RFF embedding (Def. 3) with density q(n) and sample size m = O | 2=522L 252000

satisfies G*G is an (e, \)-spectral approximation of K with probability > 1 — 6. The embedding
g(x;) € C™, can be constructed obliviously in O(m) time.

Proof. For the Cauchy kernel with width o, the Fourier transform density is a Laplace density:
. 1
_ 2mint _ —|n|-20m
= e ———=dt=om-e .
w0 = [
Applying Theorem 5 we have: 7\ k(1) < (2 4 6sy) - Ts p, (1) for s = 6]sx] + 1. In turn, applying
Theorem 2 gives 7y k(1) < 7x k(1) where:
(2 + 6sy) - 207 - e~ 11177/3 for |n| > s
k() =

2
(2+6$)\) 20'77' Wfor |7]| < 96.

Thus, by Theorem 18, if we let ¢(77) be the density proportional to 7 k (17), a random Fourier features
approximation satisfies the guarantee of the theorem with sample size m given by:

h—0 (anR Tk (n)dn 'log(sx/fs)) 0 (8§ log(sx) 'log(S/\/5>> ’

€2 €2
since by Theorem 2, fneR K (n)dn = (24 6sy) - O(slogs) = O(s3 log sy).

Finally, observe that ¢(7) is just a mixture of a Laplacian density with a density of the form W

Both can be sampled from in O(1) time using, e.g., inverse transform sampling. Thus each embedding
g(x;) can be constructed obliviously in O(m) time. O

B.3 Final embedding via random projection

Corollaries 22 and 23 give oblivious embeddings into poly(s)) dimensions via leverage score-based
RFF sampling. These oblivious embeddings can be further compressed via standard oblivious random
projection time to give an oblivious embedding algorithm achieving the target dimension, linear in
sx. Specifically we apply a stable rank approximate matrix multiplication result from [CNW16]:

Theorem 24 (Random Projection Spectral Approximation). For any Z € R™ * and M = ZZ"
with \-statistical dimension sy, if II € R**"™ has independent sub-Gaussian entries with variance

1/m form = O (%5(1/5))’ then with probability > 1 — 6, ZYITI' Z" is an (e, \)-spectral
approximation of M.

A simple example of II that satisfies the theorem is one with independent +1/+/m entries. See
[CNW16] for more details on sketching matrices that may be used, including sparse ones.

Proof. Let B = (M + AI)~'/2Z. To prove the theorem it suffices to show that with probability
>1—0,|BII" BT — BB, < € as this gives:

—el < BOII'BT — BB < eI
—e(M + XI) < ZIIITT ZT — ZZ" < (M + A1)
M — e(M + ) < ZIIITTZT < M + ¢(M + )
(1 —€)(M + AT) < ZITITT Z7 + A\ < (1 4 €)(M + AI),
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which gives the theorem.

To prove that |BIIIT?B” — BB” ||, < e with probability > 1 — § we invoke Theorem 1 of
[CNW16], which gives that for our setting of m, with probability > 1 — ¢:

|IBIII"B” — BB |2 < c- (| B3 + IB]|:/s»). (16)
We have ||B||2 = [|(M + AXI)~'/2M(M + AI)~'/2||5 < 1. Additionally,

IBI% = i
-0

_5)\7

(M+M1%WM+MVW)
il
(M

Ai

=

7

giving that ||B||2/sx = 1. Thus, by (16) we have with probability > 1—4, |BIIII' BT —-BB” ||, <
2¢, which completes the theorem after adjusting constants.

To apply Theorem 24 to the modified RFF embeddings produced by Corollaries 22 and 23, we must
argue that these embeddings preserve statistical dimension. We do this via an extension of Theorem
18. Variants of this type of bound are known in the finite matrix approximation setting (e.g., Lemma
20 of [CMM17])).

Theorem 25 (Leverage Score Sampling Preserves Kernel Statistic Dimension). Consider the setting
of Theorem 18. Letting s)\(G*G) and s\(K) be the A-statistical dimensions of G*G and K
respectively, with probability > 1 — 6 we have: s\(G*G) < 4s)(K).

Proof. Following Definition 3, the 5" row of G is given by \/% . d)m where d’m € C" has
(b, 11 = e 2™k . /pr(n;). We can write:
sx(G*G) = tr(G*G(G*G + AXI) 1)
= tr(G(G*G +AI)7'GY)
1o
ms q

JG' G+ o, .

Assuming that the spectral approximation guarantee of Theorem 18 holds, we have (G*G + \I)~!
1;@‘” (K+AM) g, <26, (K+ )¢, ife < 1/2. This gives:

m

\ 2 1, _ 2 = k(1))
MGG < =) ) (K+A)'p, =— ) —
m;q(m) v K m; a(n;)
where we use that 7, k (7;) = ¢, (K + )\I)’lqﬁm. This is well known in the finite-dimensional

setting, and was proven in [AKM™17] in the kernel setting. Let S = 2 Py T*q’z?(gj ) From above
with probability > 1 — 4, we have s)(G*G) < S. Further:

E[S] = 2E [W] - 2/61R mak (n)dn = 25(K).

Additionally, by design we have chosen ¢(7)) = 2 K(") for T 4 f cr TAK(n)dn and 7y k(1) >
Tx,k (7). Thus T*E‘i(?) < T. So by a standard Hoeffdlng bound,
Pr[S > 45, (K)] < e~ 2msx(K) T < e 2m,

since T' = [ Tax(m)dn > [, g Tax(n)dn = s\(K). Finally, since m = Q(log(1/4)), the
bound holds with probability at least 1 — §. Overall, via a union bound, we have with probability
1—-20, s)(G*G) < S < 4s,(K), completing the proof after adjusting constants on 4.

O
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Combining Theorem 24 and 25 with Corollaries 22 and 23 gives:

Corollary 26 (Oblivious Embedding Full Result). Consider any set of points x1,...,z, € R
and an associated Gaussian kernel matrix K € R™*". Let sy be the \-statistical dimension of K,
G € R pe the modified RFF embedding of Corollary 22, and I1 € R™ ™ haye independent sub-

. . . . 5/2 5 )
Gaussian entries with variance 1/m. Then for m' = O (W) andm = O (M),

letting Z = G*I1, with probability > 1 — 8, ZZ" is an (e, \)-spectral approximation of K. The
embedding z(x;) € C™ can be computed obliviously in O(m’ - m) = poly(sx,log(1/6),1/€) time.
The same bound holds for the Cauchy kernel using the RFF embedding of Corollary 23 with the
"— 0 (Si 10g(SA)'210g(SA/5)).

m

C Active Learning

We next consider a general active learning problem that encompasses classic problems in both signal
processing and machine learning, including e.g., bandlimited function approximation and active
Gaussian process regression. Informally, given the ability to make noisy measurements of some
function f, the goal is to fit a function f with small deviation from f under some data density p,
under the assumption that f has Fourier transform constrained according to some frequency density q.
For example, when ¢ is uniform on a bounded interval, f is bandlimited. When ¢ Gaussian, f obeys
a ‘soft bandlimit’ tending towards using lower frequencies with higher density under q.

Throughout this section we use the following notation: for any density p over R let Lo (p) denote the
space of square integrable functions with respect to p, i.e., f with [ f[2 = [, ¢ |f(z)|?p(z)dz < oco.

For f, g € La(p) we denote the inner product {f, g), def fweR f(@)*g(z)p(x)dz, where f(x)* is the
conjugate transpose of f(x). For a linear operator M : Lo(p) — Lo(q) we define the operator norm
as || M|lop o SUDPfe Ly (p): ) £ll,=1 |[M fllg- We define the weighted Fourier transform with respect to
data and frequency densities p and q as:

Definition 5 (Weighted Fourier Transform). Let p,q be probability densities on R. Define the
weighted Fourier transform F, , : L2(p) — La(q) by:®

Fpa £1(n) / F(@)e 2 p()da. (17

The adjoint F; , such that (g, Fp, o f)q = (F; 49 f)p is the inverse Fourier transform operator:

(7 9] (@) & /R g(m)e> e q(n)dn. (18)

With Definition 5 in place we can formally define our main active regression problem of interest:

Problem 6 (Active Function Fitting). Let p, q be probability densities on R representing data and
frequency densities respectively. Suppose a time domain function y € La(p) can be written as
y = F, , 9 for some frequency domain function g € La(q) and, for any x € supp(p), we can query
y(x) + n(x) for some fixed noise function n € Lo(p). Then, for error parameter A > 0, our goal is
to recover, using as few queries as possible, an approximation § € Lo(p) satisfying:

ly = 7l2 < Cllnll2 + Allgll2, (19)

where C > 1 is a fixed positive constant.

The first error term of (19) depends on ||n||?, which in general is necessary since the noise is
adversarial. Information theoretically, we might hope to achieve C' = 1, but we focus on achieving
with a small constant factor of this ideal bound. The second term || gH3 is also necessary in general:
it is higher when y’s Fourier energy under the frequency density g is larger, making y harder to learn.
By decreasing A we obtain a better approximation, but at the cost of higher sample complexity.

SAs in [AKM™T19], we can generalize the weighted Fourier transform to be weighted by any two measures
over R. This allows, for example, the use of discrete measures. We focus on the case when the measures
correspond to density functions p, g for simplicity of exposition.
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As discussed, Problem 6 captures a wide range of classical function fitting problems. See [AKM™19]
for details and an exposition of prior work.

e When ¢ is uniform on an interval [-F, F'], f = F g is bandlimited with bandlimit F'.
Thus Problem 6 corresponds bandlimited approximation, which lies at the core of modern
signal processing and Nyquist sampling theory [Whil5, Nyq28, Kot33, Sha49]. Typically,
this problem is considered over an infinite time horizon with access to infinite samples at a
certain rate. Significant work also studies the problem in the finite sample regime, when p is
uniform over an interval [LP61, LP62, SP61, XRYO01, OR14].

e When ¢ is uniform on an interval [—F, F], f = Fp.q9 is bandlimited with bandlimit F'.
Thus Problem 6 corresponds bandlimited approximation, which lies at the core of modern
signal processing and Nyquist sampling theory [Whil5, Nyq28, Kot33, Sha49]. Typically,
this problem is considered over an infinite time horizon with access to infinite samples at a
certain rate. Significant work also studies the problem in the finite sample regime, when p is
uniform over an interval [LP61, LP62, SP61, XRYO01, OR14].

e When q is a general density, Problem 6 is closely related to Gaussian process regression
(also kriging/kernel ridge regression) [HS93, RWO06, Stel12] over data distribution p with
covariance kernel £, given by the Fourier transform of ¢. ¢ corresponds to the expected
power spectral density of a Gaussian process drawn with this covariance kernel. For example,
if g is Gaussian, k, is the Gaussian kernel. If ¢ is Cauchy, £, is the exponential kernel. If ¢
is a mixture of Gaussians, so is k4, a so-called spectral mixture kernel [WA13].

Related to the last example above, it is not hard to show that Problem 6 can be solved by an infinite
dimensional kernel ridge regression problem, where the kernel space corresponds to the class of
functions F; jw for w € Ly(q) and the input is the noisy function y + n.

Claim 27 (Claim 4 of [AKM™19]). Consider the setting of Problem 6. Let § € Lo(q) satisfy:

* o~ 2 ~112 : * 2 2
i~ I MAIE <O i (150~ mIE Al 0

for some C' > 1. Then
ly = Fp 49ll5 < 2CXl|gll7 +2(C + 1) Inlf3.
That is, §j = F,; ,g solves Problem 6 with error parameters \' = 2C\ and C' = 2(C + 1).
We note that Claim 4 of [AKM™ 19] is stated in the case when p is the uniform density on an interval,
however the proof is via a simple application of triangle inequality and holds for any density p.

Throughout this section, we will employ several results from [AKM™ 19] that are stated in the case
when p is uniform on an interval but generalize to any density p.

C.1 Active function fitting via kernel leverage score sampling

Of course, the optimization problem of Claim 27 cannot be solved exactly, as it requires full access
to y + n on supp(p). The key idea is to solve the problem approximately by sampling x € supp(p)
according to their ridge leverage scores and querying y at these sampled points.

Definition 7 (Kernel operator ridge leverage function). For probability densities p, q on R and ridge
parameter A > 0, define the \-ridge leverage function for x € R as:
" 2
p(x) - [[Fwl(@)]
{weLa(a) fwlly>0) IF5,qwllf + AllwlZ

Tp.ga(T) = 21

The above ridge leverage scores are closely related to the standard leverage scores of (1), for the class
of functions f = F .w for w € Ly(g), which we fit in Problem 6. Intuitively, we hope to sample
our function in locations where this class can place significant mass (weighted by the data density p),
so that we can accurately solve the regression problem of Claim 27.

Typically however, the standard leverage scores of the class F,  w will be unbounded. For example,
when ¢ is uniform on an interval, this is the space of all bandlimited functions, which may be
arbitrarily spiky. The ridge scores account for this by including a regularization term involving ||w ||(21
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which controls the energy of the function and in turn, how spiky it can be. As Problem 6 allows error
in terms of [|wl|2, sampling by these scores still suffices. We note that if ||w||2 were allowed to be
unbounded, i.e., if we set A = 0, it would be impossible to Problem 6 for most common frequencies
densities ¢ with a finite number of samples.

Definition 7 is closely related to Definition 4 with two key differences: 1) the leverage function
is defined are over data points € R rather than frequencies 7 € R and 2) both the data and
frequency domains are continuous, while in Definition 4 the data domain was a discrete set of n
points. Notationally, a minor difference is that in Definition 4 the density p is ‘baked into’ the Fourier

operator ® through a weighting of /p(n) on each of its rows.

The ridge leverage function of Definition 7 has received recent attention in the machine learning
literature [PBV18, LP19, FSS19]. F, jw lies in the kernel Hilbert space corresponding to the kernel
kq whose Fourier transform is ¢. ||w||2 is the norm of the function in the kernel Hilbert space.
[PBV18] focuses on bounding the leverage function in the limit as A — 0. In this limiting case, the
function can be shown to converge to a simple transformation of the data density p. It is due to this
kernel interpretation, which we will see more clearly in our following bounds, that we use the term
kernel operator ridge leverage function.

As in the discrete kernel matrix case, the ridge leverage scores integrate to the statistical dimension of
the associated kernel operator, which in this case is infinite dimensional.

Definition 8 (Kernel operator statistical dimension). For probability densities p, q define the kernel
operator Kp 4 : La(p) — La(p) as KCp g = F; (Fp.q- The A-statistical dimension of ICy, 4 is defined:

Spar L r(Kpg (Kp.g + AT)™ Z i + X (22)
P7q

where T is the identity operator on Lo(p) and \;(K, ) is the ith largest eigenvalue of K, 4. By
Theorem 5 of [AKM*19], [ Tp g A (%)dT = 5p g 2.

The work of [AKM™19] shows that the kernel operator statistical dimension s, 4\ essentially
characterizes the sample complexity of Problem 6. Under very mild assumptions (see Section 6 of
[AKM™19] for details), they show that any algorithm solving Problem 6 must use (s, 4,») samples.
Conversely, by sampling data points according to the kernel operator ridge leverage score function
(Def. 7), one can achieve a sample complexity nearly matching this lower bound:

Theorem 28 (Approximate regression via leverage function sampling — Theorem 6 of [AKM™19]).
Assume that X\ < ||, 4lop.” Consider a function T, 4 x with Ty g\ (T) > Tpgx(x) forall z € R
and let T = fmeR Tpga(@)dx. Let m = c- T - (log T + 1/9) for sufficiently large fixed constant ¢

and let 1, . .., x,, be time points sampled independently according to density h(x) def %*("L) For

jeL ... ym, letw; = mp&;)ﬂ Let F : C™ — Ls(q) be the operator:

m
(1) = wy gy e
j=1

and y,n € R™ be the vectors withy; = w; - y(z;) and n; = w; - n(z;). Let:

§ = arg min [||F*w —(y+ n)||§ + )\||w||3] . (23)
w€L2(q)

With probability > 1 — §:

1F5 49 = (y + )5 + Allglg < 3 L (175 qw = (y + )l + AlwlF] - (24)

pqW
Note that via Claim 27, }';’qg of Theorem 28 thus solves Problem 6 with probability > 1 — § and
with error parameters A’ = 6 and C’ = 8. If 7, , »(z) is a tight upper bound on the leverage scores,
the sample complexity is near linear in s, 4 x = [, . Tp.g. 2 (T)dT.

Also note that the subsampled optimization problem of (23) is just a standard kernel ridge regression
problem, and thus efficiently solvable. Specifically:

"If XA > ||Kp,qllop then (20) is solved to a constant approximation factor by the trivial solution § = 0.
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Claim 29. Consider the set up of Theorem 28. Let k; : R x R — R be the shift-invariant kernel with
Fourier transform q. Let K € R™*™ have K; ; = w; - w; - ky(w;, ;). Then f = F § is given by
f(x) = k(z)Tz where z = (K + \XI) " (y + 1) and k(z) = [wy - ky(x1,2), ..., Wy, - kg(Tm, )]

C.2 Kernel operator leverage score bound via Fourier sparse approximation

In sum, Theorem 28, combined with Claim 29 and Claim 27 let us solve the active function fitting
problem (Problem 6) with near optimal sample complexity, if we can find a sampling distribution
Tp,q,» that tightly upper bounds the true kernel operator leverage function 7, , x. In this section we
show how to do this using the Fourier sparse leverage score bounds of Theorem 1 and 2. We give a
bound based on approximating any function F; ,w via a Fourier sparse function, with sparsity linear
in the statistical dimension s, 4 x. In partlcular we prove the following analog to Theorem 5:

Theorem 30 (Kernel operator leverage function bound). Let s = [36 - s, 4 2] + 1. Forall x € R:
Tpaa (@) < (2+8sp9.0) - o p(T).

In proving Theorem 30, we use the following continuous analog of Theorem 19:
Theorem 31 (Frequency subset selection — Theorem 9 of [AKM™19]). For some s < [36 - Sp.al

there exists a set of frequencies 1y, . ..,ns € C such that, letting Cy : C° — Ly(p) be the operator
[Csw](z) = ijl wie ™% and 7 : Ly(q) — C* be the operator Z = (C:C,)~'CiF} .
tr(Kp,g — CsZZ*CY) < 4N - spgnand Z"CCZ =X Fp o Fp o (25)

Letting f, € La2(q) be given by f.(n) = e*™*" and c,, € C* have j'" entry [c,]; = e~2™"i% we
can write: tr(K,  — C.ZZ*C}) = [, g | fo — Z*c. ||} - p(a)da.

Proof of Theorem 30. The proof closely follows that of Theorem 5. We can bound the ridge leverage
function of Definition 7 by:

p() - [[F5 qwl(@)?
Tpa A (T) = sup . ’ (26)
P weL2(q),||lw| >0 |‘~quw||;2)+/\||wH§

< (@) |[C,Zu)(@)]* | 2p(x) - [[F5w]@) — [C.Zw](x)|?

< 27
IF5qwll3 Mlwlg
Since by Theorem 30, Z*C*C,Z = ]—'p_’q]-';,q we have
1P qwlly = (Fy g, Fp qw)p = (FpgFp g, w)g = (Z°C{CZw, w)q = ||CZuwlf;,
which combined with (13) gives:
(@) 2p(z) - [[Cs Zw(@)* | 2p(@) - [F5,qw](x) — [C.Zw](x)?
pee 1CsZuwl[3 Allwlf
We can observe that C;Zw is an [36 - sp 4.2] = s — 1 sparse Fourier function in 7, , giving:
2p(x) - |[[Fr w](z) — [C.Zw](z)|?
o oa(@) < 2m (@) + () - |[Fp,qw](z) — [ J@)I” 28)

Allwl[Z

It thus remains to bound the second term. Let c, € C* have j** entry [c,|; = e~2mMiT ¢ is

the ‘row’ of the operator C corresponding to z and we have [C,Zw|(z) = ¢l Zw. Similarly, let
fz € La(q) be given by f.(n) = €%, We can write:

|[Fp.qw](2) = [CsZw(@)|* = [{fo — Z*cuyw)qg|* < || fo — Zresllf - [wll}
via Cauchy-Schwarz. Plugging back into (28) gives

20(x) - || fo — Z*cy]|?
(@) < 21,y ) 4 L2 Bl )

The theorem then follows from (29) combined with the following claim:
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Claim 32. p(z) - || fo — Z*c.||? < 75 p(7) - 4X8p 4.0

q

Proof. Let f,) € La(p) be given by f,,(z) = > and let z,, € C* be the ‘column’ of Z correspond-
ing to 7). Formally, as Z = (C:C,) 'C}F; . 2z, = (C;C,) "' CLf,. We have f, — C,z, € T,
and thus:
p(x) - |fy(x) = [Cszy)(2)[”
1fn = Cszll3

< 7'8,1)(33)~
This gives:
p@) [ 1)~ [Coml@)Pamin < run(e)- [ 115, = oty atnldn
neR neRrR
Note that f,,(z) = f5(n) and C,z,(x) = [Z*c,](n). Thus we can simplify to:

P() - | fe — Za 2 < 7ap(a) / . / @) = Oy (o) Ppla)a(u)dad

= rup(z) - / o= B pla)da
pAS

= Ts p(x) - tr(kCp g — CsZZ*CY)
< Top(@) - 4ASp.g.a,

where the last two bounds follow from Theorem 31. O

C.3 Active regression bounds

We conclude by combining the leverage score sampling result of Theorem 28, and Claim 29 with
the kernel operator leverage score upper bound of Theorem 30 to solve Problem 6 with sample
complexity depending polynomially on the statistical dimension s, 4 .

Corollary 33 (Active Function Fitting — Gaussian or Exponential Density). Consider the active
regression set up of Problem 6. Let p be the Gaussian density p(z) = ﬁe‘zz/ (20%),

For any frequency density ¢ and 0 < X < [|[Kp qllop, let sp.q.x be the A-statistical dimension of
Kpq Let s = [36sp 4] + 1 and let 75 p(x) be the leverage score bound of Theorem 1. Let

2/(12)\ - (log sp.q.x + 1/0) for a sufficiently large constant c. Let 1, . . ., T, be time points

sampled independently according to the density proportional to T, ,(x) and let § be computed from
these points using kernel ridge regression according to the procedure of Theorem 28 and Claim 29.

Then with probability > 1 — 6:

m=«c-S

ly — 712 + 6Allgll? + 8]In]2. (30)

An identical bound holds when p is the Laplacian density p(x) = ﬁe"m'ﬂ/”, Ts,p(T) is the

leverage score bound of Theorem 2, and m = c - s?)’q)\ - (log sp,g.x + 1/9).

Universal Sampling. We remark that the sampling distribution of Corollary 33 is independent of the
frequency density q. That is, we can fit a wide range of Fourier constrained functions (bandlimited,
multiband, Gaussian process with any underlying kernel, etc.) with a single universal sampling
scheme. This is surprising and reflects the universality of Fourier sparse functions in approximating
these classes of functions through the frequency subset selection result of Theorem 31.

Achieving Optimal Sample Complexity. The sample complexity bounds of Corollary 33 are
polynomial in s, 4  rather than linear, as is essentially optimal. We note that a near linear bound
could be obtained by simply applying a second sampling step to the final kernel ridge regression
problem of Claim 29, using the ridge leverage scores of the finite kernel matrix K [Sar06, DMMO06a].
This is analogous to the final finite-dimensional random projection employed in Section B.3. A full
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proof requires an extension of Theorem 28, which applies to an approximate solution of the finite
ridge regression problem. This extension was shown in [AKM™19].

Alternatively, it may be possible to improve our bounds on the kernel operator leverage scores (Def.
7). In [AKM ™ 19] sample complexity O(sp 4,1 10g s, 4.1) is shown when p is the uniform density
over an interval. This proof starts from a bound essentially equivalent to Theorem 30. It then tightens
this bound via a shifting argument that bounds the kernel leverage scores of  near the edge of the
interval with the leverage scores of x closer to the center. It is not immediately clear how to extend
such an argument to the case when p is the Gaussian or Laplace density, but we believe than doing
so may be possible. In general, we conjecture that a simple closed form leverage score bound that
achieves within a constant factor of the optimal sample complexity exists.

D Empirically Estimating the Leverage Scores

The main technical challenge of this paper is to prove rigorous upper bounds on the leverage scores
of a function class F, under a distribution p. To do so, it is useful to have a way of empirically
estimating the frue leverage function 7r ;. Such an estimate may not be accurate for all z, and it
may not have a closed-form. However, a good enough estimate can serve as guidance in proving
theoretically sound bounds.

For some function classes (e.g., low-degree polynomials) establishing an empirical estimate for
TF p() is straight-forward. The class of sparse Fourier functions, 7, studied in this paper presents
a somewhat greater challenge, but we are able to obtain relatively good estimates, including those
used to plot Figure 1. In this section we briefly discuss our approach, which might be useful for
future work, for example on other distributions beyond Gaussian and Laplace. MATLAB code for
reproducing Figure 1 can be found in empirical_upper_bounds.m of the supplemental.

The key observation is that the function class 7} is a union of linear subspaces, and for each subspace,
it is possible to relatively easily approximate the true leverage scores. In particular, for any fixed

choice of frequencies A1, ..., Ay € R, consider the function class:
k
iX
T = i f@) =) a;e™® a5 €C
j=1

For any fixed set of frequencies, 7, ... », is a subset of 7, and

o= U T

A1, ALER

So, if we let T)\17.__7)\k7p(13) denote the leverage score of 7y, ., then the leverage scores of 7y
equal:

Tk;l’(x) = sSup T)\l,-u,/\k,P(x)' 3D
A, ARER
This equation is useful because, for any fixed A1, ..., A2, the right hand side is actually relatively

easy to approximate. In particular, any function f in 75, , can be written as Aa where o € C*
and A is an infinite dimensional linear operator with k& columns, the j being equal to %, Ie.,
Ths,....n is a k dimensional linear subspace. If we are estimating the leverage scores with respect to
distribution p, let A, be the rescaled linear operator with j™ column equal to ei’\ﬂ”\/ﬁ We have
\.,lea(a:) 2

e A v ey oY
It is well know that the optimal « for maximizing (32) can be obtain by setting ov = (A*.A,) ' A, (z)
where Aj is the adjoint operator of A, [AKM™*17, Bacl7, AKM*19]. This leads to a leverage
score of 7y, ... x, p(2) = Ap(x)* (A5 A,) "1 Ap(x), where A, ()" is the conjugate transpose of the
k length vector A, (x). While these expression involves infinite dimensional operators indexed by
values in IR, they can be very well approximated for any « discretizing A, to a finite number of

rows. Specifically, A, is replaced with a matrix A, with rows indexedt € {—R,—R+ A, —R +
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2A,...,R—A, R}, eachequal to [¢™?,/p(t)/A ..., ekt /p(t)/A] and we can approximate
o ~ (A3A,)"'Ap(x) for any given x. The leverage score is approximated as 7y, ...z, p(2) =
Ap(x)*([l;gp)ilfip(x)

With these equations in hand, our full approach for estimating 7y, ,(«) for a given z is:

o Set 7y ,(z) =0.

e Foriter=1,...,N
— Randomly select &k frequencies Aq,..., A\x € R.
- Approximately compute 7y, ., p(z) via discretization.
= Set 7k p(x) = max(Te, (%), Tay,... 20 p(T))-

To ensure this approach obtains a good approximation, it is important that the method for randomly
selecting subsets of k frequencies provides good “coverage”, as different frequency subsets can
lead to very different values of 7y, . Mp(x). One point to note is that, as frequencies become far
apart, the columns of 4, become close to mutual orthogonal, and the leverage scores converge to
the squared ¢, norms of the rows of A, which equal & - p(x) for any 2. This means that the benefit
of considering subsets involving distance frequencies is marginal, as such subsets always lead to
approximately the same scores. So, we can focus on sampling values of A1, ..., \; that are relatively
close together.

To generate the plots of Figure 1, we do so via independent sampling. At each iteration, a random
order of magnitude h was chosen on a geometric grid between .01 and 10 and Ay, ..., Ay where
chosen as random Gaussians with variance h. A large number of iterations (10 million) was run, and
the range of / was increased until doing so had no noticeable effect on the estimate for 73, ,(). This
leaves us reasonable confident that the curves of Figure 1 accurately reflect the true leverage scores,
although we of course can not be sure, as the method is only heuristic.

E Details for Experiments

Details of Sampling. MATLAB code for our modified random Fourier features method is included
in gaussianKernelMRFF.m and cauchyKernelMRFF .m. It uses simplified versions of the leverage
score upper bounds from Theorems 1 and 2. In particular, in both of these theorems, the leverage
score upper bound distributions are piecewise, following a different functions for frequencies above
and below a certain cutoff F'. F equals 61/20 - /s and 9v/2¢ - s in Theorems 1 and 2, respectively.
The bulk of each distribution is on values of |n| < F, so we ignore the “tail”” part of each distribution
when sampling. This does not seem to significantly effect the experimental results. More over, using
the empirical leverage score score distributions from Figure 1 as guidance, we used tighter values for
F than we were able to prove theoretically. For example, setting F' = 40 seems sufficient to capture
the bulk of the Fourier sparse leverage score distribution for the Gaussian measure, so this is the value
we used in our experiments. L.e. samples of 7 were drawn uniformly from the ball {7 : ||n||2 < 40}.

When sampling we also use the same trick from [RRO7] to achieve a real valued embedding, which
makes it easier to work with the embedding downstream (e.g., when implementing the preconditioned
solver). In particular, instead of including C - e=2min" @ in the embedding, where C' is the appropriate
constant as in Definition 3, we can include an entry equal of C'- cos(27n” = + 3) where 3 is a uniform
random variable from [0, 27]. It’s not hard to check that the corresponding real valued embedding
will still satisfy E[G*G] = K, and experimentally, approximation quality does not appear to suffer.

Details of Preconditioning. When solving (K + AI) ™'z with a preconditioner, each iteration of
the preconditioned solver requires 1) computing (K + AI)~'z for some vector z and 2) multiplying
K + Al by a vector w. The first step can be done efficiently whenever K = G*G where G € C"*™,
which is the type of approximation we get from a random Fourier features method. In particular,
let G = UXVT be G’s singular value decomposition. Due to the simplification discussed above,
G is always real-valued in our setting, and so is its SVD. We have U € R™*™ 3 € R"™*™ and
V € R™*™_ The SVD can be computed in O(m?n) time and more importantly, this operation is
very fast when G fits in memory, which is often possible even when K € R™"*" does not. So, for
both classical RFF preconditioning and modified RFF preconditioning, we choose values for m that
allow for fast computation of the SVD, and compute the decomposition as a preprocessing step.
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Then, it’s not hard to check that (K + AI) ™'z = V (£ + ALxm) ' V72 + 1 (z — VT2), which
can be computed in O(mn) time. This is much faster than the cost of multiplying a vector by K + AI,

so the cost of preconditioning ends up being a lower order term in the solver complexity: it increases
the cost of each iteration by just a small factor.
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